用户名: 密码: 验证码:
高维化学计量学方法的研究及其在农药分析方面的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学计量学是一门新兴发展的交叉学科,它运用数学、统计学和计算机科学等方法设计最优化学量测策略,通过对化学数据的分析处理最大限度地获取化学及相关信息。当前化学计量学的研究主要分为两个方面:化学计量学基础理论与方法的研究;化学计量学方法在化学及其相关领域中应用,可以解决传统方法无法处理的问题,体现化学计量学的优势。
     本文作者在仔细分析了当前国内外化学计量学发展方向及其研究动态的基础上,选取高维数据分析中的几个重要问题进行了深入系统的理论、方法和应用研究。随着可产生高阶数据的高阶分析仪器的不断发展,高维数据的分辨与校正已成为化学计量学领域的一大热点,在处理复杂化学体系的无扰动、实时在线分析以及传统分析化学难于处理的复杂多组份平衡与动力学体系的解析方面有着独特的优势。
     本论文主要涉及以下几个方面:
     1.多线性成分模型(第二章)
     为了进一步理解基于多线性成分模型而提出的分解算法以及这些算法在实际中的应用,有必要对多线性成分模型的优势及特点进行阐述和探索。本章从多线性成分模型的数学表述及图形表述入手,阐述了其相应模型的本质及相互联系。这些工作也可为数学学科多线性代数的发展提供很有意义的参考。
     2.多线性数据分析在动力学研究方面的应用(第三章-第四章)
     第三章应用三线性平行因子分析方法直接检测了河水和自来水中西维因及其降解产物1-萘酚的含量,并应用此方法研究西维因在河水和自来水中的降解过程,得到了满意的结果。第四章应用四线性平行因子分析方法检测了农业污水中西维因的含量,同时利用四线性分解的优势,同时对其水解过程进行研究,得到了满意的结果。对化学反应的动态过程进行研究,是化学的一个重要方面,用常规的分析方法,很难在未知成分干扰下对研究对象在复杂体系中的动力学过程进行研究,而这两个工作充分利用了二阶校正和三阶校正的优势,能够直接对其动态过程进行解析,体现了多线性数据分析在动力学研究方面的潜力和优势。
     3.四线性分解方法的研究(第五章)
     随着研究体系日益复杂、分析仪器更加智能化、分析手段更加丰富,使得处理四维响应数据阵也越来越迫切。当四维数据基于四线性成分模型进行定量预测分析时,这一方法可被称作“三阶校正”,其具有的优势叫做“三阶优势”。理论上,三阶校正的优势不仅包括“二阶优势”,即能够在未知干扰共存的情况下也能对感兴趣组分进行定量分析,而且还会包括更多的优势。然而,目前我们还仍然缺乏对四维数阵四线性成分模型的理论优势的整体理解,因此对于四线性成分模型理论和三阶优势的探索已变得十分迫切而必要。本文提出了交替不对称四线性分解算法。为了探索高阶数据的分析特征,我们运用分别基于该算法和四维平行因子分析算法的三阶校正方法用于处理模拟的和实际的四维数阵。结果显示,这两种四维算法都能在定量分析上获得满意的结果。新算法与四维平行因子分析算法相比较,新算法收敛速度要明显快于四维平行因子分析算法,并且对模型的预估成分数不敏感,这种特性避免了在三阶校正中模型需要选择正确组分数的尴尬。
     4.三线性数据分析在农药分析方面的应用(第六章-第八章)
     农药主要是指用来防治危害农林牧业生产的有害生物(害虫、害螨、线虫、病原菌、杂草及鼠类)和调节植物生长的化学药品,但通常也把改善有效成分物理、化学性状的各种助剂包括在内。由于农药的滥用,产生了许多环境问题和公共卫生问题,对自然界的生态平衡和人的生存健康都产生了很大的危害,因此农药残留的问题引起了世界各国和国际组织的重视。第六章采用基于自加权三线性分解(SWATLD)的二阶校正方法,来定量检测蜂蜜中的多菌灵、西维因和1-萘酚,并与二阶标准加入法和液相色谱与质谱联用方法的结果相一致。第七章采用三种二阶校正方法:平行因子分析法(PARAFAC)、自加权交替三线性分解方法(SWATLD)和交替惩罚三线性分解方法(APTLD)的二阶优势,利用数学分离来代替化学分离,实现严重干扰下对多菌灵定量测定。第八章采用交替三线性分解法检测苹果和香蕉中西维因的含量。
Chemometrics is a developing composite discipline. It uses the methods of mathematics, statistics and computer sciences to extracting the optimal scheme for chemical measurements and to elucidating the data collected from chemical measurements. There are two important aspects in study on chemometrics: one is the research on basic theories and methods, another is on applications of chemometrics to chemistry and relative scientific fields.
     The author has been analyzing carefully the development direction and the research focus of chemometrics, and carried out the research on multi-way chemometric methodologies and their applications. With the development of high-order analytical instrumentation, multi-way data analysis has become an active domain with practical significance. Chemometric methodologies not only comprehensively expand the fundamental theory of modern analytical chemistry, but also provide a variety of powerful techniques for direct and on-line analysis of complex chemical systems, which are generally hard to handle by conventional analytical techniques.
     Studies presented in the thesis primarily deals with the following aspects of multi-way data analysis in chemometrics.
     1. The multilinear component model (Chapter 2):
     In order to further understand the decomposition algorithms based on multilinear component model and the applications of these algorithms in practice, it is necessary to realize and explore the characteristics and advantages of multilinear decomposition algorithms. Based on the mathematical and graphic expressions of multilinear component model, the nature of these decomposition algorithms were analyzed in details. The algorithms of multi-way arrays and methodologies provide interesting hints to develop multilinear algebra in mathematics.
     2. Application of multilinear data analysis to the study of dynamics (Chapter 3– Chapter 4):
     In Chapter 3 it provided a novel method to determine carbaryl and 1-naphthol in river water and tap water and used this method to investigate the hydrolysis of carbaryl. In Chapter 4 a new method to determine carbaryl in effluent was given and the hydrolysis of carbaryl in effluent with the aid of three-order calibarion was studied. Monitoring a chemical reaction is an important aspect in chemistry. But it is difficult to achieve this aim in presence of uncalibrated interference in complex system with traditional methods. It was convenient to implement the aim using the methods in this thesis and validates the power and potential of second-order calibration and three-order calibration.
     3. The quadrilinear decomposition method (Chapter 5):
     The instruments that generate quadrilinear data array are available to chemist, it is necessary to develop a quadrilinear decomposition method to analyze quadrilinear data array. It can be used to three-order calibration and it not only retains the second-order advantage of second-order calibration but also holds additional advantages. They can be defined the‘third-order advantage’. However, the complete third-order advantages are still unknown. So it is pressing to explore the theory of quadrilinear decomposition and third-order advantage. In Chapter 5 a novel method, alternating asymmetric quadrilinear decomposition (AAQLD), is developed for decomposition of quadrilinear data and applied to third-order calibration. By treating simulated and real data sets, the results indicated that both AAQLD and PARAFAC work well. It was shown a much higher convergence rate compared with quadrilinear PARAFAC. Moreover, it is generally insensitive to the overestimates of the component number chosen. This offers the advantage that in third-order calibration one need not pay much attention to determining a proper component number for the model, and it is difficult for quadrilinear PARAFAC to avoid it.
     5. The applications of three-way data analysis in Pesticide analysis (Chapter 6 to Chapter 8):
     Pesticides were used to control mainly harmful organisms (such as pests, pest mites, nematodes, pathogens, weeds and rodents), which harm agriculture, forestry and animal husbandry and regulate plant growth. However, there are a lot of environmental issues and public health issues for the abuse of pesticides. The issue of pesticide residue has aroused attention of many countries and international organizations. In Chapter 6 it provided a novel method to determine carbendazim, carbaryl and 1-naphthol in honey, and validate it by second-order standard addition method (SOSAM) and high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS). In Chapter 7 with the aid of three second-order calibaration methods, parallel factor analysis (PARAFAC), selfweighted alternating trilinear decomposition (SWATLD) and alternating penalty trilinear decomposition algorithm (APTLD), quantifying carbendazim in banana was performed. In Chapter 8 a new method for determination of carbofuran in apple and banana is proposed with the aid of alternating trilinear decomposition (ATLD) coupled with excitation–emission matrix fluorescence.
引文
[1]梁文平,唐晋,王夔.新世纪化学发展战略思考.中国基础科学, 2000, 5:33-61
    [2]徐光宪. 21世纪是信息科学、合成化学和生命科学共同繁荣的世纪.化学通报, 2003, 1:3-12
    [3]王佛松,王夔,陈新滋,彭旭明.展望21世纪的化学.北京:化学工业出版社, 2000
    [4]徐光宪. 21世纪化学的前瞻.大学化学, 2001, 16(l): 1-7
    [5]梁逸曾,俞汝勤.分析化学手册(第十分册),化学计量学.北京:化学工业出版社. 2000
    [6]陈洪渊.原始性创新是21世纪分析化学面临的最根本挑战.中国科学基金, 2003, 5:257-261
    [7]汪尔康. 21世纪分析化学.北京:科学出版社, 1999
    [8]王夔.科学走向新世纪聚中国科学院第十次院士大会学术报告,北京:科学出版社, 2001, 37-42
    [9] Latinen H A. Analytical chemistry in a changing world. Analytical Chemistry, 1980, 52: 606A-609A
    [10]高鸿.分析化学前沿.北京:科学出版社, 1991
    [11]梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法.长沙:湖南科学技术出版社, 1996
    [12]许禄,邵学广.化学计量学方法.北京:科学出版社, 2004
    [13]陆晓华.化学计量学.武汉:华中理工大学出版社, 1997
    [14]俞汝勤.化学计量学导论.长沙:湖南教育出版社, 1991
    [15] Kizil R, Irudayaraj J. Discrimination of Irradiated Starch Gels Using FT-Raman Spectroscopy and Chemometrics. Journal of Agriculture and Food Chemistry, 2006, 54(1): 13-18
    [16] Khurana H K, Cho I K, Shim J Y, Li Q X, Jun, S. Application of Multibounce Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy and Chemometrics for Determination of Aspartame in Soft Drinks. Journal of Agriculture and Food Chemistry, 2008, 56(3): 778-783
    [17] Prado B M, Kim S, Ozen, B F, Mauer L J. Differentiation of Carbohydrate Gums and Mixtures Using Fourier Transform Infrared Spectroscopy and Chemometrics. Journal of Agriculture and Food Chemistry, 2005, 53(8): 2823-2829
    [18] Downey G, Briandet R, Wilson R H, Kemsley E K. Near- and Mid-InfraredSpectroscopies in Food Authentication: Coffee Varietal Identification. Journal of Agriculture and Food Chemistry,1997, 45(11): 4357-4361
    [19] Cen H, He Y. Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends in Food Science & Technology, 2007, 18(2): 2-83
    [20] Cozzolino D, Smyth H E, Cynkar W, Dambergs R G, Gishen M. Usefulness of chemometrics and mass spectrometry-based electronic nose to classify Australian white wines by their varietal origin. Talanta, 2005, 68(2): 382-387
    [21] Einax J, Chemometrics in Environmental Chemistry Statistical Methods. Berlin Germany: Springer-Verlag, 1995
    [22] Johnson K, Juan A D, Rutan S C. Three-way data analysis of pollutant degradation profiles monitored using liquid chromatography-diode array detection. Journal of Chemometrics, 1999, 13(3-4): 331-341
    [23] Beltran J L, Guiteras J, Ferrer R. Three-way multibariate calibration procedures applied to high-performance liquid chromatography coupled with fast-scanning determination of polycyclic aromatic hydrocarbons in water samples,Analytical Chemistry, 1998, 70(9): 1949-1955
    [24] Hergert L A, Escandar G M. Spectrofluorimetric study of theβ-cyclodextrin- ibuprofen complex and determination of ibuprofen in pharmaceutical preparations and serum. Talanta, 2003, 60(2-3): 235-246
    [25] Espinosa-Mansilla A, de la Pena A M, Gomez D G, Salinas F,Photoinduced spectrofluorimetric determination of fluoroquinolones in human urine by using three-and two-way spectroscopic data and multivariate calibration, Analytica Chimica Acta, 2005, 531(2): 257-266
    [26] Aureli L, Cruciani G, Cesta M C, Anacardio R, De Simone L, Moriconi A. Predicting Human Serum Albumin Affinity of Interleukin-8 (CXCL8) Inhibitors by 3D-QSPR Approach. Journal of Medicinal Chemistry, 2005, 48(7): 2469-2479
    [27] Ghasemi N, Niazi A. Determination of captopril in pharmaceutical preparation and biological fluids using two- and three-way chemometrics methods. Chinese Chemical, 2007, 18(4): 427-430
    [28] Hansch C, Fujita T, Classical and Three-Dimensional QSAR in Agrochemistry. Washington, DC: American Chemical Society, 1995.
    [29] Chaudry U A, Popelier P L A. Estimation of pKa using Quantum topological molecular similarity descriptors: application to carboxylic acids, anilines and phenols. Journal of Organic Chemistry, 2004, 69(2): 233-241
    [30] Rodriguez-Cuesta M J, Boque R, Rius F X, et al.. Determination of carbendazim, fuberidazole and thiabendazole by three-dimensional excitation-emission matrix fluorescence and parallel factor analysis. Analytica Chimica Acta, 2003, 491(1): 47-56
    [31] Andersen C M, Mortensen G. Fluorescence Spectroscopy: A Rapid Tool for Analyzing Dairy Products. Journal of Agriculture and Food Chemistry, 2008, 56(3): 720-729
    [32] Bengtsson S, Berglof T, Sjoqvist T. Predicting the Leachability of Pesticides from Soils Using Near-Infrared Reflectance. Journal of Agriculture and Food Chemistry, 1996, 44(8): 2260-2265
    [33] Pan Y, Jiang J, Wang R, Cao H. Advantages of support vector machine in QSPR studies for predicting auto-ignition temperatures of organic compounds. Chemometrics and Intelligent Laboratory Systems, 2008, 92(2): 169-178
    [34] Mayes A G, Whitcombe M J. Synthetic strategies for the generation of molecularly imprinted organic polymers. Advanced Drug Delivery Reviews, 2005, 57(12): 1742-1778
    [35] Carlson R. Designs for explorative experiments in organic synthetic chemistry. Chemometrics and Intelligent Laboratory Systems, 2004, 73(1): 151-166
    [36] Lakshminarayanan S, Mhatre P, Gudi R. Identification of bilinear models for chemical processes using canonical variate analysis. Industrial & Engineering Chemistry Research, 2001, 40(20): 4415-4427
    [37] Shen M, Wagner M S, Castner D G, et al.. Multivariate surface analysis of plasma-deposited tetraglyme for reduction of protein adsorption and monocyte adhesion. Langmuir, 2003, 19(5): 1692-1699
    [38] Rios P, Stuart J A, Grant E. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery. Environmental Science & Technology, 2003, 37(23): 5463-5470
    [39]梁逸曾,俞汝勤.化学计量学在我国的发展.化学通报,1999, 10: 14-19
    [40]吴海龙,梁逸曾,俞汝勤.分析化学计量学.分析实验室,1999,11: 94-102
    [41] Lohnes M T, Guy R D, Wentzell P D. Window target-testing factor analysis: Theory and application to the chromatographic analysis of complex mixtures with multiwavelength fluorescence detection. Analytica Chimica Acta, 1999, 389(1-3): 95-113
    [42] Liang Y Z, Leung A K M, Chau F T. A roughness penalty approach and its application to noisy hyphenated chromatographic two-way data. Journal ofChemometrics, 1999, 13(5): 511-524
    [43] Xu Q S, Liang Y Z. On the equivalence of window factor analysis and orthogonal projection resolution. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 335-338
    [44] Maeder M. Evolving factor analysis for the resolution of overlapping chromatographic peaks. Analytical Chemistry, 1987, 59(3): 527-530
    [45] Malinowski E.R. Window factor analysis: Theoretical derivation and application to flow injection analysis data. Journal of Chemometrics, 1992, 6(1): 29-40
    [46] Gampp H, Maeder M, Meyer C J. Calculation of equilibrium constants from multiwavelength spectroscopic data—III: Model-free analysis of spectrophotometric and ESR titrations. Talanta, 1985, 32(12): 1133-1139
    [47] Maeder M, Zuberbühler A D. The resolution of overlapping chromatographic peaks by evolving factor analysis. Analytica Chimica Acta, 1986, 181(2): 287-291
    [48] Kvalheim O M, Liang Y Z. Heuristic evolving latent projections: resolving two-way multicomponent data. 1. Selectivity, latent-projective graph, data scope, local rank, and unique resolution. Analytical Chemistry, 1992, 64(8): 936-946
    [49] Liang Y Z, Kvalheim O M, Keller H R, et al.. Heuristic evolving latent projections: resolving two-way multicomponent data. 2. Detection and resolution of minor constituents. Analytical Chemistry, 1992, 64(8): 946-953
    [50] Jiang J H, Sasic S, Yu R Q, et al. Resolution of two-way data from spectroscopic monitoring of reaction or process systems by parallel vector analysis (PVA) and window factor analysis (WFA): inspection of the effect of mass balance, methods and simulations. Journal of Chemometrics , 2003, 17(3): 186-197
    [51] Sánchez F C, Bogaert B, Rutan S C, et al.. Multivariate peak purity approaches. Chemometrics and Intelligent Laboratory Systems. 1996, 34(2): 139-171
    [52] Karjalainen E. The spectrum reconstruction problem: Use of alternating regression for unexpected spectral components in two-dimensional spectroscopies. Chemometrics and Intelligent Laboratory Systems, 1989, 7(1-2): 31-38
    [53] Tauler R, Casassas E. Spectroscopic resolution of macromolecular complexes using factor analysis: Cu (II) -polyethyleneimine system. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 305-317
    [54] Liang Y Z, Kvalheim O M. Heuristic evolving latent projections: Resolving hyphenated chromatographic profiles by component stripping. Chemometrics andIntelligent Laboratory Systems, 1992, 64, 20(2): 115-125
    [55] Manne R, Shen H L, Liang Y Z. Subwindow factor analysis. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 171-176
    [56] Shen H L, Manne R, Liang Y Z, et al.. Local resolution of hyphenated chromatographic data. Chemometrics and Intelligent Laboratory Systems, 1999, 45(1-2): 323-328
    [57] Jiang J H, Ozaki Y, Kleimann M, et al.. Resolution of two-way data from on-line Fourier-transform Raman spectroscopic monitoring of the anionic dispersion polymerization of styrene and 1,3-butadiene by parallel vector analysis (PVA) and window factor analysis (WFA). Chemometrics and Intelligent Laboratory Systems, 2004, 70(1): 83-92
    [58] Windig W, Guilment J. Interactive self-modeling mixture analysis. Analytical Chemistry, 1991, 63(14): 1425-1432
    [59] Jiang J H, Liang Y Z, Ozaki Y. On simplex-based method for self-modeling curve resolution of two-way data. Chemometrics and Intelligent Laboratory Systems, 2003, 65(1): 51-65
    [60] Wang J H, Liang Y Z, Yu R Q, et al. Local chemical rank estimation of two-way data in the presence of heteroscedastic noise: A morphological approach. Chemometrics and Intelligent Laboratory Systems, 1996, 32(2): 265-272
    [61] Juan A, Bogaert B, Sanchez F C, et al.. Application of the needle algorithm for exploratory analysis and resolution of HPLC-DAD data. Chemometrics and Intelligent Laboratory Systems, 1996, 33(2): 133-145.
    [62] Juan A, Vander H Y, Taule R, et al.. Assessment of new constraints applied to the alternating least squares method. Analytica Chimica Acta, 1997, 346(3): 307-318
    [63] Malinowski E R. Automatic window factor analysis: A more efficient method for determining concentration profiles from evolutionary spectra. Journal of Chemometrics, 1996, 10(4): 273-279
    [64] Gemperline P J. A priori estimates of the elution profiles of the pure components in overlapped liquid chromatography peaks using target factor analysis. Journal of Chemical Information and Computer Sciences, 1984, 24(4): 206-212
    [65] Vandeginste B G M, Derks W, Kateman G. Multicomponent self-modelling curve resolution in high-performance liquid chromatography by iterative target transformation analysis. Analytica Chimica Acta, 1985, 173(1): 253-264
    [66] Paatero P. Least squares formulation of robust non-negative factor analysis. Chemometrics and Intelligent Laboratory Systems, 1997, 37(1): 23-35
    [67] Gargallo R, Tauler R, Sanchez F C, et al.. Validation of alternating least-squares multivariate curve resolution for chromatographic resolution and quantitation. Trends in Analytical Chemistry, 1996, 15(7): 279-286
    [68] Elbergali A K, Brereton R G, Rahmani A. Influence of the method of calculation of noise thresholds on wavelength selection in window factor analysis of diode array high-performance liquid chromatography. The Analyst, 1996, 121(5): 585-590
    [69] Sanchez F C, Rutan S C, Gil Garcia M D, et al.. Resolution of multicomponent overlapped peaks by the orthogonal projection approach, evolving factor analysis and window factor analysis. Chemometrics and Intelligent Laboratory Systems, 1997, 36(2): 153-164
    [70] Ritter C, Gilliard J A, Cumps J, et al.. Corrections for heteroscedasticity in window evolving factor analysis. Analytica Chimica Acta, 1996, 318(2): 125-136
    [71] Elbergali A, Nygren J, Kubista M. An automated procedure to predict the number of components in spectroscopic data. Analytica Chimica Acta, 1999, 379(1-2): 143-158
    [72] Xie Y L, Hopke P K, Paatero P J. Positive matrix factorization applied to a curve resolution problem. Journal of Chemometrics, 1998, 12(6): 357-364
    [73] Shao X G, Cai W S. Resolution of multicomponent chromatograms by window factor analysis with wavelet transform preprocessing. Journal of Chemometrics, 1998, 12(2): 85-93
    [74] Sanchez F C, Vandeginste B G M, Hancewicz T M, et al.. Resolution of Complex Liquid Chromatography-Fourier Transform Infrared Spectroscopy Data. Analytical Chemistry, 1997, 69(8): 1477-1484
    [75] Lilley K A, Wheat T E. Drug identification in biological matrices using capillary electrophoresis and chemometric software. Journal of Chromatography B, 1996, 683(1): 67-76
    [76] Statheropoulos M, Smaragdis E, Tzamtzis N, et al.. Principal component analysis for resolving coeluting substances in gas chromatography-mass spectrometry doping control analysis. Analytica Chimica Acta, 1996, 331(1-2): 53-61.
    [77] Thurston T J, Brereton R G, Foord D J, et al.. Monitoring of a second-order reaction by electronic absorption spectroscopy using combined chemometric and kinetic models. Journal of Chemometrics, 2003, 17(6): 313-322.
    [78] Joaquim C G, Esteves da S, Adélio A S C M, et al.. Simultaneous use of evolving factor analysis of fluorescence spectral data and analysis of pH titration data forcomparison of the acid-base properties of fulvic acids. Analytica Chimica Acta, 1996, 318(3): 365-372
    [79] Koons J M, Ellis P D. Applicability of factor analysis in solid state NMR. Analytical Chemistry, 1995, 67(23): 4309-4315
    [80] Grabaric B S, Grabaric Z, Tauler R, et al.. Application of multivariate curve resolution to the voltammetric data Factor analysis ambiguities in the study of weak consecutive complexation of metal ion with ligand. Analytica Chimica Acta, 1997, 341(2-3): 105-120
    [81] Bijlsma S, Boelens H F M, Hoefsloot H C J, et al.. Constrained least squares methods for estimating reaction rate constants from spectroscopic data. Journal of Chemometrics, 2002, 16(1): 28-40
    [82] Winding W, Hornak J P, Antalek B. Multivariate Image Analysis of Magnetic Resonance Images with the Direct Exponential Curve Resolution Algorithm (DECRA): Part 1. Algorithm and Model Study. Journal of Magnetic Resonance, 1998, 132(2): 298-306
    [83] Antalek B, Hornak J P, Windig W. Multivariate Image Analysis of Magnetic Resonance Images with the Direct Exponential Curve Resolution Algorithm (DECRA): Part 2. Application to Human Brain Images. Journal of Magnetic Resonance, 1998, 132(2): 307-315
    [84] Andrew J J, Hancewicz T M. Rapid analysis of raman image data using two-way multivariate curve resolution. Applied Spectroscopy, 1998, 52(6): 797-804
    [85] Diaz-Cruz M S, Tauler R, Casassas E, et al.. Application of multivariate curve resolution to voltammetric data. Part 1. Study of Zn (II) complexation with some polyelectrolytes. Journal of Electroanalytical Chemistry, 1995, 393(1-2): 7-16
    [86] Mendieta J, Diaz-Cruz M S, Tauler R, et al.. Application of multivariate curve resolution to voltammetric data. II. Study of metal-binding properties of the peptides. Analytical Biochemistry, 1996, 240(1): 134-141
    [87] Ren S X, Gao L. The speciation of Copper (II) / Ethylenediamine / Oxalate system by evolving factor analysis. Journal of Automatic Chemistry, 1995, 17(5): 17-177
    [88] Grung B, Kvalheim O M Detection and quantification of embedded minor analytes in three-way multicomponent profiles by evolving projections and internal rank annihilation. Chemometrics and Intelligent Laboratory Systems, 1995, 29(2): 213-221
    [89] Furusjooe E, Danielsson L G, Koenberg E, et al.. Evaluation techniques for two-way data from in situ fourier transform mid-infrared reaction monitoring inaqueous solution. Analytical Chemistry, 1998, 70(9): 1726-1734
    [90] Esteban M, Harlyk C, Rodriguez A R. Cadmium binding properties of the C-terminal hexapeptide from mouse metallothionein: study by linear sweep voltammetry and multivariate curve resolution analysis. Journal of Electroanalytical Chemistry, 1999, 468(2): 202-212
    [91] Diaz-Cruz M S, Mendieta J, Tauler R, et al.. Multivariate curve resolution of cyclic voltammetric data: application to the study of the cadmium- binding properties of glutathione. Analytical Chemistry, 1999, 71(20): 4629-4636
    [92] Keesey R L, Ryan M D. Use of evolutionary factor analysis in the spectroelectrochemistry of escherichia coli sulfite reductase hemoprotein and a Mo/Fe/S cluster. Analytical Chemistry, 1999, 71(9): 1744-1752.
    [93] Bijlsma S, Smilde A K. Application of curve resolution based methods to kinetic data. Analytica Chimica Acta, 1999, 396(2-3): 231-240
    [94] Winding W, Antalek B, Sorriero L J, et al. Applications and new developments of the direct exponential curve resolution algorithm (DECRA). Examples of spectra and magnetic resonance images. Journal of Chemometrics, 1999, 13(2): 95-110
    [95] Esteves da Silva J C G, Machado A A S C, Angeles R M, et al.. Quantitative study of Be (II) complexation by soil fulvic acids by molecular fluorescence spectroscopy. Environmental Science & Technology, 1996, 30(11): 3155-3160
    [96] Darj M M, Malinowski E R. Complexation between copper (II) and glycine in aqueous acid solutions by window factor analysis of visible spectra. Analytical Chemistry, 1996, 68(9): 1593-1598
    [97] Booksh K S, Kowalski B R. Theory of analytical chemistry. Analytical Chemistry, 1992, 66(15): 782A-791A.
    [98] Harshman R A. Foundations of the PARAFAC procedure: Models and conditions for an‘explanatory’multi-modal factor analysis. UCLA Working Papers in Phonetics, 1970, 16(1): 1-84
    [99] Carroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via an N-way generalization of "Eckart-Young" decomposition. Psychometrika, 1970, 35(3): 283-319
    [100] ?hman J, Geladi P, Wold S. Residual bilinearization. Part 1: Theory and algorithms. Journal of Chemometrics, 1990, 4(1): 79-90
    [101] ?hman J, Geladi P, Wold S. Residual bilinearization. Part 2: Application to HPLC-diode array data and comparison with rank annihilation factor analysis. Journal of Chemometrics, 1990, 4(2): 135-146
    [102] Liang Y Z, Manne R, Kvalheim O M. Constrained background bilinearization. Chemometrics and Intelligent Laboratory Systems, 1992, 14(1-3): 175-184
    [103] Sanchez E, Kowalski B R. Generalized Rank Annihilation Factor Analysis. Analytical Chemistry, 1986, 48(2): 496-499
    [104] Ho C N, Christian G D, Davidson E R. Application of the method of rank annihilation to quantitative analyses of multicomponent fluorescence data from the video fluorometer. Analytical Chemistry, 1978, 50(8): 1108-1113
    [105] Ho C N, Christian G D, Davidson E R. Application of the method of rank annihilation to fluorescent multicomponent mixtures of polynuclear aromatic hydrocarbons. Analytical Chemistry, 1980, 52(7): 1071-1079
    [106] Ho C N, Christian G D, Davidson E R. Simultaneous multicomponent rank annihilation and applications to multicomponent fluorescent data acquired by the video fluorometer. Analytical Chemistry, 1981, 53(1): 92–98
    [107] Lorber A. Quantifying chemical composition from two-dimensional data arrays. Analytica Chimica Acta, 1984, 164(1): 293-297
    [108] Sanchez E, Kowalski B R. Tensorial resolution:A direct trilinear decomposition. J. Chemometrics, 1990, 4(1): 29-45
    [109] Tucker L R. The extension of factor analysis to three-dimensional matrices, in Contributions to Mathematical Psychology. New York: Holt, Rinehart & Winston, 1964, 110-182
    [110] Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31(3): 279-311
    [111] Olivieri A C, Arancibia J A, de la Pena A M, et al.. Second-order advantage achieved with four-way fluorescence excitation-emission kinetic data processed by parallel factor analysis and trilinear least-squares determination of methotrexate and leucovorin in human urine. Analytical Chemistry, 2004, 76(19): 5657-5666
    [112] Wilson B E, Sanchez E, Kowalski B R. An improved algorithm for the generalized rank annihilation method. Journal of Chemometrics, 1989, 3(3): 493-498
    [113] Li S, Hamilton C, Gemperline P J. Generalized rank annihilation method using similarity transformations. Analytical Chemistry, 1992, 64(6): 599-607
    [114] Faber K, Lorber A, Kowalski B R. Generalized rank annihilation method: Standard errors in the estimated eigenvalues if the instrumental errors are heteroscedastic and correlated. Journal of Chemometrics, 1997, 11(2): 95-109
    [115] Li S, Gemperline P J. Eliminating complex eigenvectors and eigenvalues in multiway analyses using the direct trilinear decomposition method. Journal of Chemometrics, 1993, 7(1): 77-88
    [116] Lin Z, Booksh K S, Burgess L W, et al.. A second-order fiber optic heavy metal sensor employing second-order tensorial calibration. Analytical Chemistry, 1994, 66(15): 2552-2560
    [117] Booksh K S, Lin Z, Wang Z, et al.. Extension of trilinear decomposition method with an application to the flow probe sensor. Analytical Chemistry, 1994, 66(15): 2561-2569
    [118] Henshow J M, Burgess L W, Booksh K S, et al.. Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 1. Multivariate calibration of fujiwara reaction products. Analytical Chemistry, 1994, 66(20): 3328-3336
    [119] Gui M, Rutan S C, Agbodian A. Kinetic detection of overlapped amino acids in thin-layer chromatography with a direct trilinear decomposition method. Analytical Chemistry, 1995, 67(18): 3293-3299
    [120] Damiani P C, Nepote A J, Bearzotti M, et al.. A test field for the second-order advantage in bilinear least-squares and parallel factor analyses: fluorescence determination of ciprofloxacin in human urine. Analytical Chemistry, 2004, 76(10): 2798-2806
    [121] Linder M, Sundberg R. Precision of prediction in second-order calibration with fous on bilinear regression method. Journal of Chemometrics, 2002, 16(1): 12-27
    [122] Linder M, Sundberg R. Second-order bilinear calibration: the effects of vectorising the data matrices of the calibration set. Chemometrics and Intelligent Laboratory Systems, 2002, 63(2): 107-116
    [123] Saurina J, Hemandez-Cassou S, Tauler R. Multivariate curve resolution and trilinear decomposition methods in the analysis of stopped-flow kinetic data for binary amino acid mixtures. Analytical Chemistry, 1997, 69(13): 2329-2336
    [124] Juan A, Rutan S C, Tauler R, et al.. Comparison between the direct trilinear decomposition and the multivariate curve resolution-alternating least squares methods for the resolution of three-way data sets. Chemometrics and Intelligent Laboratory Systems, 1998, 40(1): 19-32
    [125] Bro R. Multiway calibration. Multilinear PLS. Journal of Chemometrics, 1996, 10(1): 47-61
    [126] Smilde A K. Comments on multilinear PLS. Journal of Chemometrics, 1997, 11(5): 367-377
    [127] de Jong S. Regression coefficients in multilinear PLS. Journal of Chemometrics, 1998, 12(1): 77-81
    [128] Paatero P. Construction and analysis of degenerate PARAFAC models. Journal of Chemometrics, 2000, 14(3): 285–299
    [129] Tomasi G, Bro R. PARAFAC and missing values. Chemometrics and Intelligent Laboratory Systems, 2005, 75(2): 163-180
    [130] Wu H L, Shibukawa M, Oguma K. An alternating trilinear decomposition method with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbous. Journal of Chemometrics, 1998, 12(1): 1-26
    [131] Jiang J H, Wu H L, Chen Z P, et al.. Coupled vectors resolution method for chemometric calibration with three-way data. Analytical Chemistry, 1999, 71(19): 4254-4262
    [132] Jiang J H, Wu H L, Li Y, et al. Alternating coupled vectors resolution (ACOVER) method for trilinear analysis of three-way data. Journal of Chemometrics, 1999, 13(6): 557-578
    [133] Jiang J H, Wu H L, Li Y, et al.. Three-way data resolution by alternating slice-wise diagonalization (ASD) method. Journal of Chemometrics, 2000, 14(1): 15-36
    [134] Li Y, Jiang J H, Wu H L, et al.. Alternation coupled matrics resolution method for three-way array analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 33-43
    [135] Chen Z P, Wu H L, Jiang J H, Li Y, Yu R Q. A novel trilinear decomposition algorithm for second-order linear Calibration. Chemometrics and Intelligent Laboratory Systems, 2000, 52(1): 75–86
    [136] Chen Z P, Wu H L, Yu R Q. On the self-weighted alternating trilinear decomposition algorithm the property of being insensitive to excess factors used in calculation. Journal of Chemometrics, 2001, 15(5): 439-453
    [137] Chen Z P, Li Yang, Yu R Q. Pseudo alternating least squares algorithm for trilinear decomposition. Journal of Chemometrics, 2001, 15(3): 149-167
    [138] Chen Z P, Wu H L, Li Y, et al.. Novel constrained PARAFAC algorithm for second-order linear calibration. Analytica Chimica Acta, 2000, 423(1): 187-196
    [139] Cao Y Z, Chen Z P, Mo C Y, et al.. A PARAFAC algorithm using penalty diugonalization error (PDE) for three-way data array resolution. The Analyst, 2000, 125(12): 2303-2310
    [140] Bro R. PARAFAC: Tutorial and applications. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 149-171
    [141] Rayens W S, Mitchell B C. Two-factor degeneracies and a stabilization of PARAFAC. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 173-181
    [142] Wu H L, Yu R Q, Oguma K. Trilinear component analysis in modern analytical chemistry. Analytical Sciences, 2001, 17(11): i483-i486
    [143] Rinnan A, Andersen C M. Handling of first-order Rayleigh scatter in PARAFAC modelling of fluorescence excitation–emission data. Chemometrics and Intelligent Laboratory Systems, 2005, 76(1): 91-99
    [144] Bylunda D, Danielssona R, Malmquistb G, et al.. Chromatographic alignment by warping and dynamic programming as a pre-processing tool for PARAFAC modelling of liquid chromatography–mass spectrometry data. Journal of Chromatography A, 2002, 961(2): 237-244
    [145] Comas E, Ana Gimeno R, FerréJ, et al.. Time shift correction in second-order liquid chromatographic data with iterative target transformation factor analysis. Analytica Chimica Acta, 2002, 470(2): 163-173
    [146] Paatero P. A weighted non-negative least squares algorithm for three-way‘PARAFAC’factor analysis. Chemometrics and Intelligent Laboratory Systems, 1997, 38(2): 223-242
    [147] Bro R, De John S. A fast non-negativity constrained least-squares algorithm. Journal of Chemometrics, 1997, 11(5): 395-401
    [148] Diewok J, de Juan A, Maeder M, et al.. Application of a combination of hard and soft modeling for equilibrium systems to the quantitative analysis of pH-modulated mixture samples. Analytical Chemistry, 2003, 75(3): 641-647
    [149] Lavine B, Workman J J. Chemometrics: Fundamental review. Analytical Chemistry, 2004, 76(12): 3365-3372
    [150] Bro R, Workman J J, Kowalski P R. Review of chemometrics applied to spectroscopy: 1985–1995, Part III. Multi-way analysis. Applied Spectroscopy reviews, 1997, 32(3): 237-261
    [151] Baunsgaard D, Andersson C A, Arndal A, et al.. Multi-way chemometrics for mathematical separation of fluorescent colorants and colour precursors fromspectrouorimetry of beet sugar and beet sugar thick juice as validated by HPLC analysis. Food Chemistry, 2000, 70(1): 113-121
    [152] JiJi R D, Andersson G G, Booksh K S. Application of PARAFAC for calibration with excitation–emission matrix fluorescence spectra of three classes of environmental pollutants. Journal of Chemometrics, 2000, 14(3): 171-185
    [153] Muroski A R, Booksh K S, Myrick M L. Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 1. Instrumentation and Background Correction. Analytical Chemistry, 1996, 68(20): 3534-3538
    [154] Booksh K S, Muroski A R, Myrick M L. Single-Measurement Excitation/Emission Matrix Spectrofluorometer for Determination of Hydrocarbons in Ocean Water. 2. Calibration and Quantitation of Naphthalene and Styrene. Analytical Chemistry, 1996, 68(20): 3539-3544
    [155] Beltran J L, Ferrer R, Guiteras J. Multivariate calibration of polycyclic aromatic hydrocarbon mixtures from excitation–emission fluorescence spectra. Analytica Chimica Acta, 1998, 373(2-3): 311-319
    [156] Nahorniak M L, Booksh K S. Optimizing the implementation of the PARAFAC method for near-real time calibration of excitation-emission fluorescence analysis. J. Chemometrics, 2003, 17(11): 608-617
    [157] JiJi R D, Cooper G A, Booksh K S. Excitation-emission matrix fluorescence based determination of carbamate pesticides and polycyclic aromatic hydrocarbons. Analytica Chimica Acta, 1999, 397(1-3): 61-72
    [158] JiJi R D, Booksh K S. Mitigation of Rayleigh and Raman Spectral Interferences in Multiway Calibration of Excitation-Emission Matrix Fluorescence Spectra. Analytical Chemistry, 2000, 72(4): 718-725
    [159] Pedersen D K, Munck L, Engelsen S B. Screening for dioxin contamination in fish oil by PARAFAC and N-PLSR analysis of fluorescence landscapes. J. Chemometrics, 2002, 16(8-10): 451-460
    [160] Espinosa-Mansilla A, de la Pe?a A M, Ca?ada-Ca?ada F, Gómez D G. Determinations of fluoroquinolones and nonsteroidal anti-inflammatory drugs in urine by extractive spectrophotometry and photoinduced spectrofluorimetry using multivariate calibration. Analytical Biochemistry, 2005, 34(2): 275-286
    [161] Mahedero M C, Díaz N M, de la Pe?a A M, Espinosa Mansilla A, Gómez D G, Gil D B. Strategies for solving matrix effects in the analysis of sulfathiazole in honey samples using three-way photochemically induced fluorescence data.Talanta, 2005, 65(3): 806-813
    [162] Escandar G M, Gómez D G, Espinosa Mansilla A, de la Pe?a A M, Goicoechea H C. Determination of carbamazepine in serum and pharmaceutical preparations using immobilization on a nylon support and fluorescence detection. Analytica Chimica Acta, 2004, 506(2): 161-170
    [163] Arancibia J A, Escandar G M. Two different strategies for the fluorimetric determination of piroxicam in serum. Talanta, 2003, 60(6): 1113-1121
    [164]吴海龙,龙宁,方艺峰,莫翠云,俞汝勤.交替三线性分解算法用于水杨酸和2 ,52二羟基苯甲酸的荧光法同时测定.分析试验室, 2002, 21(2): 44-47
    [165] Jin S Y, Xu Z C , Chen J P, Liang X M, Wu Y N, Qian X H. Determination of organophosphate and carbamate pesticides based on enzyme inhibition using a pH-sensitive fluorescence probe. Analytica Chimica Acta, 2004, 523(1): 117-123
    [166] Braga J W B, Bottoli C B G, Jardim I C S F, Goicoechea H C, Olivieri A C, Poppi R J. Determination of pesticides and metabolites in wine by high performance liquid chromatography and second-order calibration methods. Journal of Chromatography A, 2007, 1148(2): 200-210
    [167] Piccirilli C, Escandar G M. Partial least-squares with residual bilinearization for the spectrofluorimetric determination of pesticides. A solution of the problems of inner-filter effects and matrix interferents. Analyst, 2006, 131(9): 1012-1020
    [168] Bijlsma S, Smilde A K. Estimating reaction rate constants from a two-step reaction: A comparison between two-way and three-way methods. Journal of Chemometrics, 2000, 14(5-6): 541-560
    [169] Tan Y X, Jiang J H, Wu H L, et al.. Resolution of kinetic system of simultaneous degradations of chlorophyll a and b by PARAFAC. Analytica Chimica Acta, 2000, 412(1-2): 195-202
    [170] Sanchez-Ponce R, Rutan S C. Steady state kinetic model constraint for multivariate curve resolution-alternating Least Squares analysis. Chemometrics and Intelligent Laboratory Systems, 2005, 77(1): 50-58
    [171] Pla F F P, Redon J F B, Valero R. A new algorithm for the kinetic data analysis. Chemometrics and Intelligent Laboratory Systems, 2000, 53(1): 1-19
    [172] Zhao Y, Wang G, Li W, Zhu Z L. Determination of reaction mechanism and rate constants of alkaline hydrolysis of phenyl benzoate in ethanol–water medium by nonlinear least squares regression. Chemometrics and Intelligent Laboratory Systems, 2006, 82(1-2): 193-199
    [173] Cruz S C, Rothenberg G, Westerhuis J A, Smilde A K. Estimating kinetic parameters of complex catalytic reactions using a curve resolution based method. Chemometrics and Intelligent Laboratory Systems, 2008, 91(1): 101-109
    [174] Tan Y X, Jiang J H, Wu H L, Cui H, Yu R Q. Resolution of kinetic system of simultaneous degradations of chlorophyll a and b by PARAFAC. Analytica Chimica Acta, 2000, 412(1-2): 195-202
    [175] Guterres M V, Volpe P L, Ferreira M C. Multiway Calibration for Creatinine Determination in Human Serum Using the JafféReaction. Applied Spectroscopy, 2004, 58(1): 54-60
    [176] Nomikos P, MacGregor J F. Monitoring of batch processes using multi-way principal component analysis. AIChE Journal, 1994, 40(8): 1361-1375
    [177] Kenneth S, Dahl A, Michael J, et al.. Translating third-order data analysis methods to chemical batch Processes. Chemometrics and Intelligent Laboratory Systems, 1999, 46(2): 161-180
    [178] Smilde A K, Tates A A, Boelens H F M, et al.. Systematic investigation of process and product variations in a spindraw-winding process. Chemical Engineering Science, 2001, 56(17): 4993-5002
    [179] Bezemer E, Rutan S C. Analysis of three- and four-way data using multivariate curve resolution-alternating least squares with global multi-way kinetic fitting. Chemometrics and Intelligent Laboratory Systems, 2006, 81(1-2): 82-93
    [180] Porter S E G, Stoll D R, Rutan S C, Carr P W, Cohen J D. Analysis of Four-Way Two-Dimensional Liquid Chromatography-Diode Array Data: Application to Metabolomics. Analytical Chemistry, 2006, 78(15), 5559-5569
    [181] Damiani P C, Duran-Meras I, Garc?a-Reiriz A, Jimenez-Giron A, Pena A M, Olivieri A C. Multiway Partial Least-Squares Coupled to Residual Trilinearization: A Genuine Multidimensional Tool for the Study of Third-Order Data. Simultaneous Analysis of Procaine and Its Metabolite p-Aminobenzoic Acid in Equine Serum. Analytical Chemistry, 2007, 79(18): 6949-6958
    [182] de la Pena A M, Meras I D, Giron A J, Goicoechea H C. Evaluation of unfolded-partial least-squares coupled to residual trilinearization for four-way calibration of folic acid and methotrexate in human serum samples. Talanta, 2007, 72(4): 1261-1268
    [183] Goicoechea H C, Yu S J, Olivieri A C, Campiglia A D. Four-Way Data Coupled to Parallel Factor Model Applied to Environmental Analysis: Determination of 2,3,7,8-Tetrachloro-dibenzo-para-dioxin in Highly Contaminated Waters bySolid-Liquid Extraction Laser-Excited Time-Resolved Shpol’skii Spectroscopy. Analytical Chemistry, 2005, 77(8), 2608-2616
    [184] Nikolajsen R P H, Booksh K S, Hansen A M, Bro R. Quantifying catecholamines using multi-way kinetic modeling. Analytica Chimica Acta, 2003, 475(1-2): 137-150
    [185] Nahorniak M L, Cooper G A, Kim Y C, Booksh K S. Three- and four-way parallel factor (PARAFAC) analysis of photochemically induced excitation–emission kinetic fluorescence spectra. Analyst, 2005,130(1): 85-93
    [186] Arancibia J A, Olivieri A C, Gil D B, Mansilla A E, Duran-Meras I, Pena A M. Trilinear least-squares and unfolded-PLS coupled to residual trilinearization: New chemometric tools for the analysis of four-way instrumental data. Chemometrics and Intelligent Laboratory Systems, 2006, 80(1): 77-86
    [187] de la Pena A M, Meras I D, Giron A J. Four-way calibration applied to the simultaneous determination of folic acid and methotrexate in urine samples. Analtical and Bioanalytical Chemistry, 2006, 385(7): 1289-1297
    [188] Kroonenberg P M, Leeuw de J. Principal components analysis of three-mode data by means of alternating least-squares algorithms. Psychometrika, 1980, 45(1): 69-97
    [189] Malinowski E R, Factor Analysis in Chemistry(3rd Edition). New York: Wiley, 2002, 208-209
    [190] Smilde A K. Three-way analyses: Problems and prospects. Chemometrics and Intelligent Laboratory Systems, 1992, 15(2-3): 143-157
    [191] Kruskal J B, Harshman R A, Lundy M E. Rank, decomposition and uniqeness for 3-way and N-way arrays in Multiway Data Analysis. Amsterdam: Elsevier, 1989, 7-18
    [192] Louwerse D J, Smilde A K, Kiers H A L. Cross-validation of multiway component models. Journal of Chemometrics, 1999, 13(5): 491-510.
    [193] Louwerse D J, Smilde A K. Multivariate statistical process control of batch processes based on three-way models. Chemical Engineering Science, 2005, 5(7): 1225-1235
    [194] Pravdova V, Boucon C, Jong de S, et al. Three-way principal component analysis applied to food analysis: an example. Analytica Chimica Acta, 2002, 462(2): 133-148
    [195] Estienne F, Matthijs N, Massart D L, et al. Multi-way modelling of high-dimensionality electroencephalographic data. Chemometrics andIntelligent Laboratory Systems, 2001, 58(1): 59-72
    [196] Smilde A K, Tauler R, Henshaw J M, et al. Multicomponent determination of chlorinated hydrocarbons using a reaction-based chemical sensor. 3. medium-rank second-qrder calibration with restricted Tucker models. Analytical Chemistry, 1994, 66(20): 3345-3351
    [197] Meng X, Morris A J, Martin E B. On-line monitoring of batch processes using a PARAFAC representation. Journal of Chemometrics, 2003, 17(1): 65-81
    [198] Anna de J, Tauler R. Comparison of three-way resolution methods for non-trilinear chemical data sets. Journal of Chemometrics, 2001, 15(10): 749-772
    [199] Engelsen S B, Bro R. PowerSlicing. Journal of Magnetic Resonance, 2003, 163(1): 192-197
    [200] Westerhuis J A, Kourti T, Macgregor J. Comparing alternative approaches for multivariate statistical analysis of batch process data. Journal of Chemometrics, 1999, 13(3-4): 397-413
    [201] Geladi P, Xie Y L, Polissar A, et al. Regression on parameters from three-way decomposition. Journal of Chemometrics, 1998, 12(5): 337-354
    [202] Munck L, N?rgaard L, Engelsen S B, et al. Chemometrics in food science: A demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemometrics and Intelligent Laboratory Systems, 1998, 44(1): 31-60
    [203] Lathauwer L D, Moor B D, Vandewalle J. An introduction to independent component analysis. Journal of Chemometrics, 2000, 14(3): 123-149
    [204] Pravdova V, Walczak B, Massart D L, et al. Three-way principal component analysis for the visualization of trace elemental patterns in vegetables after different cooking procedures. Jounal of Food Composition and Analysis, 2001, 14(2): 207-225
    [205] Pravdova V, Estienne F, Walczak B, et al. A robust version of the Tucker3 model. Chemometrics and Intelligent Laboratory Systems, 2001, 59(1): 75-88
    [206] Heyden Y V, Pravdova V, Questier F, et al. Parallel coordinate geometry and principal component analysis for the interpretation of large multi-response experimental designs. Analytica Chimica Acta, 2002, 458(2): 397-415
    [207] Smilde A K, Bro R, Geladi P. Multi-way Analysis: Applications in the Chemical Sciences, New York: Wiley, 2004, 23-104
    [208] Carbaryl, EHC 153, 1994,http://www.inchem.org/documents/ehc/ehc/ehc153.html
    [209] ANDREOU V G, CLONIS Y D. A portable fiber-optic pesticide biosensor based on immobilized cholinesterase and solgel entrapped bromcresol purpe for in field use. Biosensors & Bioelectronics, 2002, 17(1-2): 61-69
    [210] POGACNIK L, FRANKO M. Determination of organophosphate and carbamate pesticides inspiked sampes of tap water and fruit juices by a biosensorwith photothermal detection. Biosensors & Bioelectronics, 1999, 14(6): 569-578
    [211] SUWANSA ARD S, KANATHARANA P. Semi disposable reactor biosensors for detecting carbamate pesticides in water. Biosensors and Bioelectronics, 2005, 20(3): 445-454
    [212] BOGDAN B, DIDIER F, ANDREI D, et al.. Biosensors based on highly sensitive acetylcholinesterases for enhanced carbamate insecticides detection. Analytica Chimica Acta, 2006, 562(1): 115-121
    [213] ROSA C L, PARIENTE F, HERNáNDEZ L, et al.. Amperometric flow-through biosensor for the determination of pesticides. Analytica Chimica Acta, 1995, 308(1-3): 129-136
    [214] SOLNáR, SAPELNIKOVA S, SKLáDAL P, et al.. Multienzyme electrochemical array sensor for determination of phenols and pesticides. Talanta, 2005, 65(2): 349-357
    [215] MAURIZ E, CALLE A, ABAD A, et al.. Determination of carbaryl in natural water samples by a surface plasmon resonance flow-through immunosensor. Biosensors and Bioelectronics, 2006, 21(11): 2129 - 2136
    [216] MAURIZ E, CALLE A, MONTOYA A, et al.. Determination of environmental organic pollutants with aportable optical immunosensor. Talanta, 2006, 69(2): 359 - 364.
    [217] GONZáLEZ-MARTíNEZ M A, MORAIS S, PUCHADES R, et al.. Development of an automated controlled-pore glass flow-through immunosensor for carbaryl. Analytica Chimica Acta, 1997, 347(1-2): 199-205.
    [218] Bladek J, Rostkowski A, Miszczak M. Application of instrumental thin-layer chromatography and solid-phase extraction to the analyses of pesticide residues in grossly contaminated samples of soil. Journal of Chromatography A, 1996, 754(1-2): 273-278
    [219] Oh-Shin Y S, Ko M, Shin H S. Simultaneous quantification of insecticides including carbaryl in drinking water by gas chromatography using dual electron-capture and nitrogen–phosphorus detection. Journal ofChromatography A, 1997, 769(2): 285-291
    [220] Nunes G S, Ribeiro M L, Polese L, Barcelo D. Comparison of different clean-up procedures for the determination of N-methylcarbamate insecticides in vegetable matrices by high-performance liquid chromatography with UV detection. Journal of Chromatography A, 1998, 795(1): 43-51
    [221] Tan B L L, Mustafa M A. Analysis of selected pesticides and alkylphenols in human cord blood by gas chromatograph-mass spectrometer. Talanta, 2003, 61(3): 385-391
    [222] Li H P, Li J H, Li G C, Jen J F. Simultaneous determination of airborne carbamates in workplace by high performance liquid chromatography with fluorescence detection, Talanta, 2004, 63(3): 547-553
    [223] Aulakha J S, Malik A K, Mahajan R K. Solid phase microextraction-high pressure liquid chromatographic determination of nabam, thiram and azamethiphos in water samples with UV detection. preliminary data. Talanta, 2005, 66(1): 266-270
    [224] Totti S, Fernández M, Ghini S, PicóY, Fini F, Ma?es J, Girotti S. Application of matrix solid phase dispersion to the determination of imidacloprid, carbaryl, aldicarb, and their main metabolites in honeybees by liquid chromatography–mass spectrometry detection. Talanta, 2006, 69(3): 724-729
    [225] Song S L, Ma X D, Li C J. Multi-residue determination method of pesticides in leek by gel permeation chromatography and solid phase extraction followed by gas chromatography with mass spectrometric detector. Food Control, 2007, 18(5): 448-453
    [226] BUREL L, GIAMARCH I P, STEPHAN L, et al.. Molecular and atomic ultra trace analysis by laser induced fluorescence with OPO system and ICCD camera. Talanta, 2003, 60(2-3): 295-302
    [227] DíAZ A N, SáNCHEZ F G, GUERRERO M M L. Modulated anisotropy fluorescence for quantitative determination of carbaryl and benomyl. Talanta, 2003, 60(2-3): 629-634A.
    [228] OLMO M D, LASERNA J, ROMERO D, et al.. Determination of trace amounts of carbaryl in water by solid-phase laser-induced fluorescence. Talanta, 1997, 44(3): 443-449
    [229] PACIONI N L,VEGLIA A V. Determination of carbaryl and carbofuran in fruits and tap water byβ-cyclodextrin enhanced fluorimetric method. Analytica Chimica Acta, 2003, 488(2): 193-202
    [230] SáNCHEZ F G,DíAZ A N, TORIJAS M C. Selective determination of carbaryl and benomyl by fluorescence polarization. Analytica Chimica Acta, 2000, 414(1-2): 25-32
    [231] Saurina J, Leal C, Compa?óR, Granados M, Tauler R, Prat M D. Determination of triphenyltin in sea-water by excitation–emission matrix fluorescence and multivariate curve resolution. Analytica Chimica Acta, 2000, 409(1-2): 237-245
    [232] Xia A L, Wu H L, Fang D M, Ding Y J, Hu L Q, Yu R Q. Alternating penalty trilinear decomposition algorithm for second-order calibration with application to interference-free analysis of excitation-emission matrix fluorescence data. Journal of Chemometrics, 2005, 19(2): 65-76
    [233] Thurston T J, Brereton R G. Estimation of second order rate constants using chemometric methods with kinetic constraints. Analyst, 2002, 127(5): 659-668
    [234] de Carvalho A R, del Nogal Sánchez M, Wattoom J, Brereton R G. Comparison of PLS and kinetic models for a second-order reaction as monitored using ultraviolet visible and mid-infrared spectroscopy. Talanta, 2006, 68(4): 1190-1200
    [235] Rohe T, Becker W, K?lle S, Eisenreich N, Eyerer P. Near infrared (NIR) spectroscopy for in-line monitoring of polymer extrusion processes. Talanta, 1999, 50(2): 283-290
    [236] Svensson O, Josefson M, Langkilde F W. Reaction monitoring using Raman spectroscopy and chemometrics, Chemometrics and Intelligent Laboratory Systems, 1999, 49(1): 49-66
    [237] Khatri C G, Rao C R. Solutions to some functional equations and their applications to characterization of probability distributions. Sankhya Series A, 1968, 30(2): 167-180
    [238] Chen Z P, Liu Z, Cao Y Z, et al. Efficient way to estimate the optimum number of factors for trilinear decomposition. Analytica Chimica Acta, 2001, 444(2): 295-307
    [239] Bro R, Kiers H H L. A new efficient method for determining the number of components in PARAFAC modes. Journal of Chemometrics, 2003, 17(5): 274-286.
    [240] Louwerse D J, Smilde A K, Kiers H A L. Cross-validation of multiway component models. Journal of Chemometrics, 1999, 13(5): 491-510.
    [241] Xie H P, Jiang J H, Long N, et al. Estimation of chemical rank of a three-way array using a two-mode subspace comparison approach. Chemometrics andIntelligent Laboratory Systems, 2003, 66(1): 101-115
    [242] Xie H P, Jiang J H, Shen G L, et al. Estimation of the chemical rank for the three–way data: a principal norm vector orthogonal projection approach. Computers & Chemistry, 2002, 26(2): 183-189
    [243] Chen Z P, Liang Y Z, Jiang J H, et al. Determination of the number of components in mixtures using a new approach incorporating chemical information. Journal of Chemometrics, 1999, 13(1): 15-30
    [244] Durell S R, Lee C H, Ross R T, et al. Factor analysis of the near-ultraviolet absorption spectrum of plastocyanin using bilinear, trilinear, and quadrilinear models. Archives of Biochemistry and Biophysics, 1990, 278(1):148-160
    [245] Harshman R A, Lundy M E. The PARFAC model for three-way factor analysis and multi-dimensional scaling, In: Law H G, Snyder C W, Hattie J A, McDonald R P (Eds.), Research Methods for Multi-mode Data Analysis, New York: Praeger, 1984, 216-284
    [246] Hu L Q, Wu H L, Jiang J H, et al. Use of pseudo-sample extraction and the projection technique to estimate the chemical rank of three-way data arrays. Analytical and Bioanalytical Chemistry, 2006, 384(7-8): 1493-1500
    [247] Hu L Q, Wu H L, Jiang J H, et al. Estimating the chemical rank of three-way data arrays by a simple linear transform incorporating Monte Carlo simulation. Talanta, 2007, 71(1): 373-380
    [248] Stanimirova I, Simeonov V. Modeling of environmental four-way data from air quality control. Chemometrics and Intelligent Laboratory Systems, 2005, 77(1-2): 115-121
    [249] Zhang Y, Wu H L, Xia A L, Han Q J. Interference-free determination of Sudan dyes in chilli foods using second-order calibration algorithms coupled with HPLC-DAD. Talanta, 2007, 72(3): 926-931
    [250] Arroyo D, Cruz Ortiz M, Sarabia L A, Palacios F. Advantages of PARAFAC calibration in the determination of malachite green and its metabolite in fish by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A, 2008, 1187(1-2): 1-10
    [251] Kim Y C, Jordan J A, Nahorniak M L, Booksh K S. Photocatalytic Degradation-Excitation-Emission Matrix Fluorescence for Increasing the Selectivity of Polycyclic Aromatic Hydrocarbon Analyses. Analytical Chemistry, 2005, 77(23): 7679-7686
    [252] Olivieri A C, Computing Sensitivity and Selectivity in Parallel Factor Analysisand Related Multiway Techniques: The Need for Further Developments in Net Analyte Signal Theory. Analytical Chemistry, 2005, 77(15): 4936-1946
    [253] Xia L, Wu H L, Li S F, Zhu S H, Hu L Q, Yu R Q. Alternating penalty quadrilinear decomposition algorithm for an analysis of four-way data arrays. Journal of Chemometrics, 2007, 20(3-4): 133-144
    [254] Wu H L, Yu R Q, Shibukawa M, Oguma K. Second-Order Standard Addition Method Based on Alternating Trilinear Decomposition. Analytical Science, 2000, 16(2): 217-220
    [255] Malinowski E R, Howery D G. Factor Analysis in Chemistry. New York: Wiley-Interscience,1980
    [256] Zhang Y, Wu H L, Xia A L. Trilinear decomposition method applied to removal of three-dimensional background drift in comprehensive two-dimensional separation data. Journal of Chromatography A, 2007, 1167(2): 178-183
    [257] García-Reiriz A, Damiani P C, Culzoni M J, Goicoechea H C, Olivieri A C. A versatile strategy for achieving the second-order advantage when applying different artificial neural networks to non-linear second-order data: Unfolded principal component analysis/residual bilinearization. Chemometrics and Intelligent Laboratory Systems, 2008, 92(1): 61-70
    [258] Lozano V A, Iba?ez G A, Olivieri A C.Three-way partial least-squares/residual bilinearization study of second-order lanthanide-sensitized luminescence excitation-time decay data: Analysis of benzoic acid in beverage samples. Analytica Chimica Acta, 2008, 610(2): 186-195
    [259] De Zan M M, Gil García M D, Culzoni M J, Siano R G, Goicoechea H C, Galera M M. Solving matrix-effects exploiting the second order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms: I. Effect of signal pre-treatment. Journal of Chromatography A, 2008, 1179(2): 106-114
    [260] Gil García M D, Culzoni M J, De Zan M M, Valverde R S, Galera M M, Goicoechea H C. Solving matrix effects exploiting the second-order advantage in the resolution and determination of eight tetracycline antibiotics in effluent wastewater by modelling liquid chromatography data with multivariate curve resolution-alternating least squares and unfolded-partial least squares followed by residual bilinearization algorithms: II. Prediction and figures of merit.Journal of Chromatography A, 2008, 1179(2): 115-124
    [261] García-Reiriz A, Damiani P C, Olivieri A C. Analysis of amoxicillin in human urine by photo-activated generation of fluorescence excitation–emission matrices and artificial neural networks combined with residual bilinearization. Analytica Chimica Acta, 2007, 588(2): 192-199
    [262] Generalized rank annihilation factor analysis, iterative target transformation factor analysis, and residual bilinearization for the quantitative analysis of data from liquid chromatography with photodiode array detection Mathieu J. P. Gerritsen, Huib Tanis, Bernard G. M. Vandeginste, Gerrit Kateman Anal. Chem.; 1992; 64(18); 2029-2035.
    [263] Gil D B; de la Pena A M, Arancibia J A, Escandar G M, Olivieri A C. Second-Order Advantage Achieved by Unfolded-Partial Least-Squares/Residual Bilinearization Modeling of Excitation-Emission Fluorescence Data Presenting Inner Filter Effects. Analytical Chemistry, 2006, 78(23): 8051-8058
    [264] Anastassiades M, Schwack W. Analysis of carbendazim, benomyl, thiophanate methyl and 2,4-dichlorophenoxyacetic acid in fruits and vegetables after supercritical fluid extraction. Journal of Chromatography A, 1998, 825(1): 45-54
    [265] Garrido J, de Alba M, Jimenez I, Casado E, Folgueiras M L. Chromatographic analysis of imazalil and carbendazim in fruits method validation and residue monitoring program 1995. Journal of Chromatography A, 1997, 765(1): 91-97
    [266] Singh S B, Foster G D, Khan S U. Microwave-Assisted Extraction for the Simultaneous Determination of Thiamethoxam, Imidacloprid, and Carbendazim Residues in Fresh and Cooked Vegetable Samples. Journal of Agricultural and Food Chemistry, 2004, 52(1): 105-109
    [267] Crescenzi C, Corcia A D, Guerriero E, Samperi R. Development of a Multiresidue Method for Analyzing Pesticide Traces in Water Based on Solid-Phase Extraction and Electrospray Liquid Chromatography Mass Spectrometry. Environmental Science & Technology, 1997, 31(2): 479-488
    [268] Carretero A S, Curces-Blanco C, Ramirez S C, Pancorbo A C, Gutiearrez A F. Application of Micellar Electrokinetic Capillary Chromatography to the Analysis of Uncharged Pesticides of Environmental Impact. Journal of Agricultural and Food Chemistry, 2004, 52(19): 5791-5795
    [269] Kubilius D T, Bushway R J. Phosphorylation of PhosphoenolpyruvateCarboxylase from Crassula argentea. Journal of Agricultural and Food Chemistry, 1998, 46(10): 4224-4227
    [270] Pico Y, Rodriguez R, Manes J. Capillary electrophoresis for the determination of pesticide residues. Trends in Analytical Chemistry, 2003, 22(3): 133-151
    [271] Cho Y A, Kim Y J, Hammock B D, Lee Y T, Lee H S. Development of a Microtiter Plate ELISA and a Dipstick ELISA for the Determination of the Organophosphorus Insecticide Fenthion. Journal of Agricultural and Food Chemistry, 2003, 51(27): 7854-7860
    [272] Leal C, Granados M, Beltran J L, Compano R, Prat M D. Application of Partial Least Squares Multivariate Calibration to Triphenyltin Determination in Sea-water With Excitation–Emission Matrix Fluorescence. Analyst, 1997, 122(11): 1293-1298
    [273] Xia A L, Wu H L, Fang D M, Ding Y J, Hu L Q, Yu R Q. Determination of Daunomycin in Human Plasma and Urine by Using an Interference-free Analysis of Excitation-Emission Matrix Fluorescence Data with Second-Order Calibration. Analytical Science, 2006, 22(9): 1189-1196.
    [274] Smilde A, Bro R, Geladi P. Multi-way Analysis with Applications in the Chemical Sciences. Chichester: John Wiley & Sons, 2004
    [275] Blasco C, Fernandez M, Pico Y, Font G, Manes J. Simultaneous determination of imidacloprid, carbendazim, methiocarb and hexythiazox in peaches and nectarines by liquid chromatography–mass spectrometry. Analytica Chimica Acta, 2002, 461(1): 109-116
    [276] Blasco C, Font G, Pico Y. Multiple-stage mass spectrometric analysis of six pesticides in oranges by liquid chromatography–atmospheric pressure chemical ionization–ion trap mass spectrometry. Journal of Chromatography A, 2004, 1043(2): 231-238
    [277]中国农业百科全书委员会农药卷编辑委员会.中国农业百科全书,农药卷.北京:农业出版社, 1993
    [278] Rezi? I, Horvat A J M, Babi? S, Ka?telan-Macan M. Determination of pesticides in honey by ultrasonic solvent extraction and thin-layer chromatography. Ultrasonics Sonochemistry, 2005, 12(6): 477-481
    [279] Patil V B, Shingare M S. Thin-layer chromatographic detection of carbaryl using phenylhydrazine hydrochloride. Journal of Chromatography A, 1993, 653(1): 181-183
    [280] Tang F, Ge S, Yue Y, Hua R, Zhang R. High-performance thin-layerchromatographic determination of carbamate residues in vegetables. Journal of Planar Chromatography - Modern TLC, 2005, 18(1): 28-33
    [281] OhShin Y S, Ko M, Shin H S. Simultaneous quantification of insecticides including carbaryl in drinking water by gas chromatography using dual electron-capture and nitrogen–phosphorus detection. Journal of Chromatography A, 1997, 769(2): 285-291
    [282] Sánchez A G, Martos N R, Ballesteros E. Multiresidue analysis of pesticides in olive oil by gel permeation chromatography followed by gas chromatography–tandem mass-spectrometric determination. Analytica Chimica Acta, 2006, 558(1-2): 53-61
    [283] Petropoulou S S E, Tsarbopoulos A, Siskos P A. Determination of carbofuran, carbaryl and their main metabolites in plasma samples of agricultural populations using gas chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry, 2006, 385(8): 1444-1456
    [284] Mughari A R, Vázquez P P, Galera M M. Analysis of phenylurea and propanil herbicides by solid-phase microextraction and liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection. Analytica Chimica Acta, 2007, 593(2): 157-163
    [285] Kovalczuk T, Jech M, Poustka J, Haj?lováJ. Ultra-performance liquid chromatography–tandem mass spectrometry: A novel challenge in multiresidue pesticide analysis in food. Analytica Chimica Acta, 2006, 577(1): 8-17
    [286] Chang S Y, Liao C H. Analysis of glyphosate, glufosinate and aminomethylphosphonic acid by capillary electrophoresis with indirect fluorescence detection. Journal of Chromatography A, 2002, 959(1-2): 309-315
    [287] Coly A, Aaron J J. Cyclodextrin-enhanced fluorescence and photochemically-induced fluorescence determination of five aromatic pesticides in water. Analytica Chimica Acta, 1998, 360(1-3): 129-141
    [288] Hill K M, Hollowell R H, Dal Cortivo L A. Determination of N-methylcarbamate pesticides in well water by liquid chromatography with post-column fluorescence derivatization. Analytical Chemistry, 1984, 56(13): 2465-2468
    [289] The Positive List of Maximum Residue Limits for Agricultural and Veterinary Chemicals, implemented under the Japanese Food Sanitation Law. http://www.dairyaustralia.com.au/content/view/272/256/
    [290] Agrochemicals registered for use in Australian viticulture. http://www.awri.com.au/agrochemicals/mrls/search.asp
    [291] Australia New Zealand Food Standards Code. http://www.foodstandards.gov.au/thecode/foodstandardscode.cfm
    [292] The UK/EC MRL database. https://secure.pesticides.gov.uk/MRLs/
    [293] Saxberg B E H, Kowalski B R. Generalized standard addition method. Analytical Chemistry, 1979, 51(7): 1031-1038
    [294] Booksh K, Henshaw J M, Burgess L W, Kowalski B R. A second-order standard addition method with application to calibration of a kinetics-spectroscopic sensor for quantitation of trichloroethylene. Journal of Chemometrics, 1995, 9(4): 263-282
    [295] Comas E, Gimeno R A, Ferre J, Marce R M, Borrull F, Rius F X. Using second-order calibration to identify and quantify aromatic sulfonates in water by high-performance liquid chromatography in the presence of coeluting interferences. Journal of Chromatography A, 2003, 988(2): 277-284
    [296] Gimeno R A, Comas E, Marce R M, Ferre J, Rius F X, Borrull F. Analytica Chimica Acta, 2003, 498(): 47.
    [297] Sinha A E, Fraga C G, Prazen B J, Synovec R E. Trilinear chemometric analysis of two-dimensional comprehensive gas chromatography–time-of-flight mass spectrometry data. Journal of Chromatography A, 2004, 1027(1-2): 269-277
    [298]蔡道基,朱忠林,单正军.建议加强对克百威的环境管理.农药科学与管理, 1997, 63 (3) : 30-32.
    [299] GUPTA A,申继忠.土壤和植物中呋喃丹残留量的简易速测法.农业新技术新方法译丛, 1991 (1) : 29.
    [300]高晓辉.蔬菜上农药残留快速检测势在必行.农药科学与管理, 2000, 21 (1) : 16-17
    [301] De Kok A, Hiemstra M, Vreeker C P. Optimization of the postcolumn hydrolysis reaction on solid phases for the routine high-performance liquid chromatographic determination of N-methylcarbamate pesticides in food products. Journal of Chromatography A, 507(1): 459-472
    [302] Sharma V K, Jadhav R K, Rao G J, Saraf A K, Chandra H. High performance liquid chromatographic method for the analysis of organophosphorus and carbamate pesticides. Forensic Science International, 1990, 48(1): 21-25
    [303] Abad A, Moreno M J, PelegríR, Martínez M I, Sáez A, Gamón M, Montoya A. Determination of carbaryl, carbofuran and methiocarb in cucumbers and strawberries by monoclonal enzyme immunoassays and high-performance liquid chromatography with fluorescence detection: An analytical comparison. Journalof Chromatography A, 1999, 833(1): 3-12
    [304] Al-Kurdi Z, Al-Jallad T, Badwan A, Jaber A M Y. High performance liquid chromatography method for determination of methyl-5-benzoyl-2-benzimidazole carbamate (mebendazole) and its main degradation product in pharmaceutical dosage forms. Talanta, 1999, 50(5): 1089-1097
    [305] Sagratini G, Ma?es J, GiardináD, Damiani P, PicóY. Analysis of carbamate and phenylurea pesticide residues in fruit juices by solid-phase microextraction and liquid chromatography–mass spectrometry. Journal of Chromatography A,2007, 1147(2): 135-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700