超级杂交稻产量潜力实现的途径分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着世界粮食安全问题的日益突出,超高产研究越来越引起国内外的高度重视。我国超级稻育种在世界上处于领先地位,目前已育成一批在生产上推广应用的超级稻品种(组合)。这些品种在小面积试验或特定气候条件下产量可达到12~17 t·hm~(-2),展示了超级稻品种的巨大增产潜力。但是,大多数超级稻品种的高产记录重演性差,在地区间或年度间产量表现出严重的不稳定性;小面积试验示范产量与农民田里实际产量存在较大差异。本研究选用超级杂交稻品种,研究栽培管理因素、气候因素对超级稻生长和产量的影响,得到的主要结果如下:
     1、超级杂交稻干物质生产特点与产量稳定性
     为探明超级杂交稻在不同种植地点和不同施肥量条件下的产量表现及干物质生产特点。于2004~2005年在湖南省桂东、长沙、衡阳、南县和永州5个地点进行大田试验,按照N:P_2O_5:K_2O为1:0.5:1的比例,设置3种施肥量处理(135、180、225 kgN·hm~(-2)),田间采用随机区组排列,4次重复,以超级杂交稻组合准两优527和两优293为试验材料。结果表明,超级杂交稻收获产量以桂东点产量最高,地点间差异显著,其中准两优527平均为7 492.3~12 209.2 kg·hm~(-2),两优293为6 984.0~11 679.5kg·hm~(-2)。产量构成因子和干物质生产量的地点间变化与收获产量一致,但在同一地点的不同施肥量处理间收获产量和干物质生产量差异均不显著。收获产量与单位面积穗数、结实率和千粒重表现为正相关,而与每穗粒数表现为负相关。超级杂交稻存在适宜的种植区域,且在施肥量为135~225 kg N·hm~(-2)的范围内,施肥量不是超高产栽培的限制因子。超级杂交稻的库容量大,提高结实率和粒重是实现超级杂交稻产量潜力的重要途径。
     2、不同产量水平下的超级杂交稻群体特征及通径分析
     为了解超级杂交稻产量形成的主要限制因子及影响方式。通过分析种植在湖南省5个生态区的超级稻主要产量性状与产量之间的多元相关性、回归关系及通径关系,估测了超级稻8个主要产量性状对产量影响的相对重要性。结果表明,超级稻在不同地方种植,其产量和产量构成因子均表现出很大的变化差异,有效穗数,每穗粒数、颖花量对产量的影响最大。研究结果启示我们在超级稻的实际栽培管理中,应尽量协调各因子间,特别是有效穗数和每穗粒数之间的矛盾,使其实现超高产潜力。
     3、基于ORYZA2000模型的超级稻生长模拟及生态适应性
     为了模拟超级杂交稻的生长进程和产量形成规律,以及验证超级稻在不同地方种植的产量差异。利用湖南省5个试验点的2年超级稻准两优527的田间试验数据资料,依2005年试验结果对水稻生长模拟模型ORYZA2000模拟超级稻生长进行参数校正和验证,获得了超级稻的基本作物参数,包括超级稻不同生育阶段的发育速度、生物量累积速度、比叶面积和干物质分配系数等。利用2004年的数据对模型进行检验分析,图解和回归分析结果显示ORYZA2000模拟超级稻生物量、叶面积、产量的模拟值与观测值基本呈线性关系,模拟效果良好,茎生物量、叶生物量、穗生物量、总生物量、叶面积和产量的相对均方根误差NRMSE分别为35%、47%、44%、32%、51%和24%。应用校正和验证的结果,初步得出了湖南省内5个地区超级的产量潜力,丰富了超级杂交稻模拟和产量潜力的理论和实践,对超级稻的发展及栽培管理有一定的参考价值。
     4、光温因子对超级杂交稻生长及产量的影响
     为了解各种光温因子对超级杂交稻生长及产量的影响。利用湖南省内多个试验点多年的超级稻大田小区试验数据,应用典型相关分析了光温因子与超级稻生物积累量、产量构成因素及产量的典型相关性。分析结果表明,不同生育时期内的光温因子与超级稻产量构成因子、生物积累量、及产量的组间均有着显著的典型相关性,尤其是与产量构成因子间的第一、第二、第三和第四典型相关系数均达到极显著水平。光温因子主要通过单位面积有效穗数、每穗粒数和单位面积颖花量的作用而影响超级稻产量;不同生育期对超级稻起主导作用的光温因子不同,全生育期内的光温因子以日均低温对超级稻的影响最大,其次是日均高温,再次是累积日温差。
     5、不同栽培方式对超级杂交稻产量形成的影响
     超级杂交稻的优化(稀植、乳苗移栽、结构施肥)栽培试验于2002-2004年在长沙进行,以比较不同栽培方法对超级杂交稻产量及物质生产的影响。以两优培九为材料,并以汕优63作为对照。结果表明,两种栽培法,两个供试品种的产量表现不同,其中两优培九采用优化栽培产量为8.20-10.37 t·hm~(-2),比传统栽培增产显著。主要表现为有效穗多,而结实率、千粒重、穗实粒数等产量因子差异不明显。汕优63采用优化栽培产量比传统栽培减产0.37%-8.8%。两种栽培方法间的茎蘖发生动态和单株分蘖数存在极显著差异,两品种单株分蘖数优化栽培比传统栽培分别多110.36%和110.64%,但由于移栽密度不同,两种栽培方式间的单位土地面积分蘖数没有明显差异。采用优化栽培的两优培九在各个生育时期,植株体内的含氮量比传统栽培的高。
     6、不同插植方式对超级杂交稻产量及产量形成的影响
     探索不同生长微环境对超级稻产量及产量形成的影响。于2006年至2007年,在湖南省长沙,桂东和永州,选用超级稻组合准两优527,两优293,和Y优一号进行不同株行距配比大田试验。试验设置两种移栽密度,每平方米20蔸和16.7蔸,三种株行距配比方式,等行距,宽行窄株和宽窄行。田间采用随机区组排列,3次重复。结果表明,采用宽窄行的产量显著高于等行距,略高于宽行窄株,主要是由于宽窄行方式适当扩行,更有利于增加每穗颖花数、结实颖花数、结实率,增加单位面积的结实颖花数和抽穗后干物积累量,提高经济系数。
     7、不同插植方式对超级杂交稻光能及养分利用率的影响
     探索不同株行距配比方式对超级稻光能和养分利用的影响。利用超级稻组合准两优527,两优293,Y优一号,于2006-2007年在长沙,桂东和永州进行不同株行距配比大田试验。主要研究等行距,宽行窄株和宽窄行插植方式的水稻群体冠层和底部的光辐射分布,以及氮磷钾养分吸收利用规律。研究结果表明,在相同地点种植的同一个超级稻品种,不同株行距配比方式,其整个群体的光截获量比率相同,但采用宽窄行的冠层光截获量所占比率低于等行距和宽行窄株处理。在桂东种植的超级稻生长后期群体的光截获比率达到了95-98%,明显高于长沙点。相同品种相同地点的不同株行距配比方式处理间的NPK养分吸收积累量,以及叶片中的酶生理活性没有差异。由此可见,采用宽窄行插植方式有利于改善超级稻群体内部的透光性。
     8、不同施肥水平下超级杂交稻对N、P、K的吸收累积规律
     探索超级杂交稻对N、P、K养分的吸收利用规律。于2004年和2005年,选用超级杂交稻品种准两优527和两优293为供试材料,在湖南省5个不同水稻种植生态区进行田间小区试验,研究了在农民实际平均施肥量及分别减少和增加25%施肥量形成的三种施肥水平条件下,超级杂交稻抽穗期和成熟期植株体内的N、P、K养分含量和吸收积累规律。结果表明,无论在抽穗期,还是成熟期,不同施肥水平条件下水稻植株体内的N、P、K养分含量均无显著差异,其在不同地点间的变化幅度低于相应的水稻产量和养分吸收量;养分吸收量差异主要由单位面积干物质生产量不同所引起。在不同施肥水平下,随着产量升高,N、P、K收获指数呈上升趋势,但生产单位重量稻谷所需养分量呈下降趋势。在产量最高的桂东点,其植株体内NPK养分含量和积累量均处于中等水平。采用多次施肥,不同施肥水平(135-225 kgN·hm~(-2)、29.7~49.5kg P·hm~(-2)、112.1~186.8 kg K·hm~(-2))对超级杂交稻株体内的N、P、K养分吸收积累影响不明显;随着产量的提高,超级杂交稻对N、P、K养分的吸收利用率也可提高,从而实现高产与养分高效利用的协调统一。
As world food security become a major concern for morn than half of the world's population, research on super high yielding has also attracted growing domestic and international attention. The super rice breeding progress of China is known in the world; it has released a number of super rice varieties which was accepted by farmers. These varieties showed a high yield record of 12 - 17 t·ha~(-1) in small testing areas and under specific ecosystems, which demonstrate the enormous production potential. However, many of the super hybrid rice varieties also showed instability in different regional yield trials. There is a big yield gap between experimental testing plots and farmers' fields. Several field experiments were conducted to analyze how managements and climate factors affect the growth and yield of super hybrid rice. The following results were obtained:
     1. Yield stability and dry matter characteristics of super hybrid rice
     The yield stability and dry matter production of super hybrid rice was analyzed under different fertilizer rates at different locations. Field experiments with two super hybrid rice cultivars (Zhunliangyou527 and Liangyou293) were conducted in Changsha, Guidong, Hengyang, Nanxian, and Yongzhou of Hunan province in 2004 and 2005. According to the ratio of 1N : 0.5P_2O_5 : 1K_2O, three fertilizer rates (135, 180, 225 kg N·ha~(-1)) were designed using randomized complete block with four replications. The results showed that the yield of super hybrid rice was highest in Guidong with significant differences among the five sites. The average yield of two years and three fertilizer rates ranged from 7 492.3-12 209.2 kg·ha~(-1) for Zhunliangyou527 and from 6 984.0-11 679.5 kg·ha~(-1) for Liangyou293. The regional variation of the dry matter accumulation and grain yield components showed the same tendency as the harvest yield. There were no significant differences in yield and dry matter production among the three fertilizer rates at same site. The grain yield showed significant positive correlations with productive panicles, seed setting rate and grain weight, and negative correlation with spikelet number per panicle. The fertilizer rate in the range from 135 kg N·ha~(-1) to 225 kg N·ha~(-1) was not the limiting factor in the yield performance. Since super hybrid rice has larger sink capacity, it is feasible to achieve high yield by increasing grain setting rate and grain weight.
     2. Path analysis of yield and yield components of super hybrid rice under different yield level
     Analysis were conducted of the correlation, stepwise regression and path analysis between the main yield traits and grain yield of super hybrid rice cultured in 5 different locations in Hunan province. The relative importance of 8 main yield traits contributing to the grain yield was estimated. The results showed that panicle number, spikelets per panicle, and spikelets per unit area have great effect on yield in different locations. The results suggest that the relation among all yield traits, especially between panicle number and spikelets per panicle must be assorted with each other.
     3. Preliminary approach on adaptability of Oryza2000 model for super rice in Hunan province
     The ORYZA2000 model was tested and verified for super rice via field experiments conducted at 5 experiment stations in Hunan province, in 2004 to 2005. From field experiments in 2005, the developmental rates of super rice in different stages, partitioning factors of dry matter, specific leaf areas were obtained. The biomass, LAI and yield were verified using the experimental data in 2004. The slope(α), intercept(β), and determination coincident (R~2) of the linear regression between simulated and measured values as well as the student's t-test assuming unequal variance and the normalized root mean square error (NRMSE) were used for the evaluating the effectiveness of ORYZA2000 model S. The results showed that ORYZA2000 model was acceptable in simulations of biomass and LAI. In general, the simulations for total biomass and panicle biomass were more accurate than that for biomass of green leaves and stem biomass. NRMSE of stem biomass, green leaves biomass, panicle biomass, total biomass and LAI, yield were 35%, 47%, 44%, 32%, and 51%, 24%, respectively. According to the results of calibration and evaluation, the authors derived the yield potential of 5 different areas in Hunan province. The result of the paper enriches the theory and practice of crop simulation and super rice cultivation, and would be an excellent reference for the development of super rice and its management.
     4. Effect of light and temperature on yield and yield component of super hybrid rice
     The canonical correlation analysis for super rice was tested and verified via fieldexperiments conducted at the 5 experiment stations in Hunan province, in 2004 to 2005. We analyzed the relationships between the biomass, yield components, yield of super hybrid rice and the effective accumulated temperature, extreme temperature difference, sunshine hours, daily average air temperature, minimum air daily temperature, and maximum air daily temperature during growth period of super hybrid rice. The results showed that the first, second, third, and fourth canonical correlation coefficient between the light and temperature factors with yield components of super hybrid rice were very significant. The light and temperature factors greatly affect the productive panicle number, spikelets per panicle, and spikelets per square meter area, and the resulting yield. The main affecting factors on super hybrid rice growth were not same at various growth stages. However, during the whole growth duration, the mean of minimum-daily air temperature greatly affected super hybrid growth and yield, followed by maximum-daily air temperature, and extreme temperature difference.
     5. Research on the optimum cultivation method of super hybrid rice
     Field experiments with Liangyoupei9 (super hybrid rice) and Shanyou63 (CK) were conducted in Changsha from 2002 to 2004 to compare the effects of different cultivation methods on the yield performance and dry matter production of super hybrid rice. Two cultivation methods, the optimized cultivation (OM) and traditional method (TM), were compared by using randomized completely block design with 4 replications. The results showed that the two varieties yielded differently under the two kinds of cultivation methods.Liangyoupei9 yielded 8.20-10.37 t·ha~(-1) under OM and significantly higher than that under TM. The yield of Shanyou63 under OM was reduced by 0.37%-8.8% compared with TM. There was a highly significant difference in the dynamics of change in tiller number per seedling between two cultivation methods. The tiller number per hill of the two varieties under OM was more than 110% than that of TM, but the tiller number per land area between two cultivation methods were not significantly different because of the different transplanting density. The plant nitrogen content of Liangyoupei9 under OM at each growth stage was not higher than that under TM.
     6. Uptake and utilization of nutrients by super hybrid rice under different fertilizer rates
     Characteristics of nitrogen (N), phosphorus (P) and potassium (K) uptake and their utilization in super hybrid rice were studied. Field experiments with super hybrid rice Zhunliangyou527 and Liangyou293 were conducted in five locations of Hunan province in 2004 and 2005. The following fertilizer application rates were used: low rate (135 kg N·ha~(-1), 29.7 kg P·ha~(-1) ,112.1 kg K·ha~(-1)), medium rate (180 kg N·ha~(-1), 39.6 kg P·ha~(-1),149.4 kg K·ha~(-1)) and high rate (225 kg N·ha~(-1), 49.5 kg P·ha~(-1),186.8 kg K·ha~(-1)) using randomized complete block design with 4 replications. Aboveground plants were sampled to measure the dry matter weight, NPK content, NPK uptake rate, NPK harvest index and nutrient use efficiency at heading and maturity stage. No significant differences in plant NPK content at heading and maturity stage were found between two tested varieties and among the 3 fertilizer rates. The variation in range of plant NPK content among 5 locations was relatively smaller than that of the actual yield as well as the NPK uptake rate. The differences in plant NPK uptake rates among the locations were mainly due to the differences in the dry matter production. With the increase in yield, the harvest index of NPK showed an increased tendency and the requirements for NPK nutrients to produce 1000 kg grain yield showed a decreasing tendency. The highest yield was recorded in Guidong site but the plant NPK nutrient content and their uptake rates were at the medium level among 5 locations. There were no significant differences in plant NPK content and uptake rate for super hybrid rice in the range of fertilizer rates of 135-225 kg N·ha~(-1), 29.7-49.5 kg P·ha~(-1), 112.1 -186.8 kg K·ha~(-1). With the increase in yield of super hybrid rice, the uptake and use efficiency of fertilizer NPK nutrients increased. Therefore, the high use efficiency of fertilizer nutrients was associated with the high yield performance of super hybrid rice.
     7. Effect of plant-row spacing on yield and yield components of super hybrid rice
     The yield performance and dry matter characteristics of super hybrid rice wereanalyzed under different plant-row spacings at different growing locations. Field experiments with three super hybrid rice cultivars (Zhunliangyou527, Liangyou293, and Yyoulhao) were conducted in Changsha, Guidong, and Yongzhou of Hunan province in 2006 and 2007. Two transplanting densities (Hd=High density, Ld=Low density) and three plant-row spacing (SQ= Square, RE= Rectangle, ST= Stripline) were designed by using randomized block with three replications. The results showed that the grain yield of ST was highest among the 3 plant-row spacing, and was significantly higher than SQ. This resulted from more spikelets per m~2, higher grain filling, higher grain weight, and more dry matter production after heading stage and harvest index.
     8. Effect of plant-row spacing on radiation and nutrient use efficiency of super hybrid rice
     The radiation and nutrient use efficiency of super hybrid rice were analyzed under different plant-row spacings at different growing locations. Field experiments with three super hybrid rice cultivars (Zhunliangyou527, Liangyou293, and Yyoulhao) were conducted in Changsha, Guidong, and Yongzhou of Hunan province in 2006 and 2007. Two transplanting densities (Hd=High density, Ld=Low density) and three plant and row spacing (SQ=Square, RE=Rectangle, ST=Stripline) were designed by using randomized block with three replications. PAR value at the canopy and 10 cm above water level and NPK uptake amount at mature stage were analyzed. The results showed that there were no differences in PAR value 10 cm above water level among the different plant-row spacings with same variety in the same location. However, the PAR value at canopy level of ST treatment was significantly lower than SQ and RE. There were no differences in nutrient use efficiency or enzyme activity in leaves among the plant-row spacings in the same variety and location. The results indicated that the bottom leaves can get more radiation with stripline row spacing.
引文
[1]陈友订.广东省超级稻育种研究进展与展望[J].广东农业科学,2005,(1):12-15.
    
    [2]青先国,王学华.超级稻研究的背景与进展[J].农业现代化研究,2001,22(2):99-102.
    
    [3]杨仁崔.国际水稻研究所的超级稻育种[J].世界农业,1996(2):25-27.
    
    [4]袁隆平,马国辉.超级杂交稻亩产800kg关键技术[M].中国三峡出版社,2006,11.
    
    [5]艾治勇.超级杂交稻形态及生理特性与抗倒性的关系研究[D].硕士论文,湖南农业 大学农学院,2006.
    
    [6]谢华安.中国特别是福建超级稻研究进展[J].中国稻米,2004,2:7-10.
    
    [7]袁隆平.杂交水稻超高产育种[J].杂交水稻,1997,(6):1-6.
    
    [8]邹应斌.水稻超高产栽培的理论与技术策略-兼论壮秆重穗栽培法[J].农业现代研 究,1997,18(1):30-34
    
    [9] Kropff M J.Quantitative understanding of yield potential. In:Cassman,K G(ed.),Breaking the Yield Barrier,IRRI, 1994,21-38.
    
    [10]杨守仁,张龙步,陈温福,等.水稻超高产育种要在协调矛盾中求发展[J].中国稻米, 1 997(2):3-5.
    
    [11]杨守仁.再论水稻超高产育种的理论和方法[J].沈阳农业大学学报,2003,34(5): 321-323.
    
    [12]张桂权,卢永根.粳型亲籼系的选育及其在杂交水稻超高产育种上的利用[J].杂交 水稻,1999,14(16):3-5.
    
    [13]何花榕,邓汉伦,翁国华,等.水稻超高产育种及其理论的发展[J].福建稻麦, 2000(3):56-60.
    
    [14]程式华,翟虎渠.杂交水稻超高产育种策略[J].农业现代化研究,2000,21(3): 147-150.
    
    [15]陈温福,徐正进,张龙步,等.水稻超高产育种研究进展与前景[J].中国工程科 学,2002,4(1):31-35.
    
    [16]周开达,马玉清,刘太清,等.杂交水稻亚种间重穗型组合选育-杂交水稻超高产育 种的理论与实践[J].四川农业大学学报,1995,13(4):403-407.
    
    [17]伏军,徐庆国,唐湘如,等.水稻超高产育种新技术探索[J].湖南农业大学学 报,1995,21(6):545-549.
    
    [18]王熹,陶龙兴,俞美玉,等.超级杂交稻协优9308生理模型的研究[J].中国水稻科 学,2002,16(1):38-44.
    
    [19]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义[J].中国 水稻科学,2005,19(3):280-284.
    
    [20]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国 科学(C辑),2002,32(3):211-218.
    
    [21]严进明,翟虎渠,张荣铣,等.重穗型杂种稻光合作用和光合产物运转特性研究[J]. 作物学报,2001,27(2):261-266.
    
    [22]刘秋英,蔡耀辉,匡贤彦,等.超高产组合新优752干物质积累与分配特性研究[J].江 西农业学报,1998,10(4):23-28.
    
    [23]陈温福,徐正进,张龙步.水稻超高产育种生理基础[J].沈阳:辽宁科学技术出版 社,1995:169-194.
    
    [24]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学, 1997,30(3):52-59.
    
    [25]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学, 2001,1 5(4):265-270.
    
    [26]蔡建中,王余龙,何杰生,等.水稻产量构成因素与群体干物质生产的关系及其对产 量的影响[J].江苏农学院学报,1989,10(4):9-12.
    
    [27]蒋彭炎.高产水稻的若干生物学特性[J].中国稻米,1994,1(2):43-45.
    
    [28] Ying J,Peng S,He Q,et al.Comparison of high-yield rice in tropical and subtropical environments I.Determinants of grain and dry matter yields.Field Crops Research, 1998,57:71-84.
    
    [29]裴又良.超级杂交稻两优培九的营养特性研究[J].杂交水稻,2005,20(3):68-70.
    
    [30]邹应斌,黄见良,屠乃美,等.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影 响[J].作物学报,2001,27(3):343-350.
    
    [31]严进明,翟虎渠,张荣铣,等.重穗型杂种稻光合作用和光合产物运转特性研究[J].作 物学报,2001,27(2):261-266.
    
    [32] Zou Yingbin,Peng Jiming.Review and outlook of cultivation researches on hybrid rice in China. In:Yuan Longping and Peng Jiming editor.Hybrid Rice and World Food Security, Beijing:China Science and Technology Press,2005,85-101.
    
    [33]全永明.超级杂交稻生育特性及其高产栽培技术[J].杂交水稻,2002,17(2):26-28.
    
    [34]杨惠杰,杨仁崔,李义珍,等.水稻超高产的决定因素[J].福建农业科技学报, 2002,17(4):199-203.
    
    [35]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J]. 福建农业学报,2000,15(3):1-8.
    
    [36]朱运昌,廖伏明.水稻两系亚种间杂种优势的研究进展[J].杂交水稻,1990,(3): 32-34.
    
    [37]马国辉.超级杂交稻超高产理论与实践初论[N].中国农业科技导报,2005,7(4):3-8.
    
    [38]黄升谋,邹应斌,刘春林.杂交水稻两优培九强、弱势粒结实生理研究[J].作物学 报,2005,31(1):102-107.
    
    [39]苏祖芳,张娟,王辉斌,等.水稻群体茎蘖动态与成穗率和产量形成关系的研究[J]. 江苏农学院学报,1997,18(1):36-40.
    
    [40]青先国.水稻丰产高产实用技术[M].长沙:湖南科学技术出版社,2004:38-44.
    
    [41]邹应斌.超级杂交稻高产栽培研究进展[J].耕作与栽培,2006(5):1-5.
    
    [42]邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究Ⅰ概念与理论依据[J].中国农 学通报,2006,22(5):1 58-1 62.
    
    [43]邹应斌,周上游,唐启源.中国超级杂交水稻高产栽培研究的现状与展望[J].中国农 业科技导报,2003,5(1):1-3.
    
    [44]邹应斌,唐启源,汪汉林,等.超级杂交水稻优化栽培技术研究[J].杂交水稻.2003, 18(4):24-26.
    
    [45]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中 国农业科学,2008,41(7):1927-1936.
    
    [46]凌启鸿主编.作物群体质量[M].上海:上海科技出版社,2000.
    
    [47]王志琴,仇明,杨建昌,等.两优培九结实期根伤流液和叶片中的细胞分裂素含量及 其与叶片衰老的关系[J].扬州大学学报(农业与生命科学版),2003,24(4):16-21.
    
    [48]朱诚,傅亚斌,孙宗修,等.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系 [J].中国水稻科学,2002,16(4):326-330.
    
    [49]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005, 38(2):258-264.
    
    [50]姚克敏,邹江石,王志南,等.两系杂交稻组合两优培九和65396的光合形态特征研??究[J].杂交水稻,1999,14(5):35-38.
    
    [51]严斧,李悦丰,卓儒洞.两系组合两优培九与三系组合Ⅱ优58后期光合生产特性比 较研究[J].杂交水稻,2001,16(1):51-54.
    
    [52]肖凯,谷俊涛,张荣铣,等.杂种小麦光合特性的初步研究[J].作物学报,1997,23(4): 425-431.
    
    [53]李霞,焦德茂.超级杂交稻两优培九的光合作用特性[J].江苏农业学报,2002,18(1): 9-13.
    
    [54]焦德茂,李霞,黄雪青,等.不同高产品种后期早衰与光抑制、光氧化之间的关系[J]. 中国农业科学,2002,35(5):487-492.
    
    [55]王强,卢从明,张其德,等.超高产杂交稻两优培九的光合作用、光抑制和C4途径 酶特性[J].中国科学(C辑),2002,32(6):482-487.
    
    [56]陈友订,万邦惠,张旭.华南双季超级稻秧苗生理特性的研究[J].作物研究.2004(1): 4-7
    
    [57]陈友订,万邦惠,张旭.华南双季超级稻幼穗第2次枝梗原基分化期生理性状研究 [J].西南农业学报,2004,17(5):588-592.
    
    [58]陈友订,万邦惠,张旭.华南早籼超级稻成熟期生理特性研究[J].广西农业科学, 2004,35(5):359-361
    
    [59]宗寿余,吕川根,赵凌,等.两系法亚种间杂交稻两优培九的高产生理基础初探[J]. 南京农大学报,2000,16(3):8-12.
    
    [60]王荣富,黄正来,王建华,等.两系杂效稻两优培九苗期若干光合特性初探安徽农业 大学学报,2003,30(2):113-116.
    
    [61]王强,张其德,卢从明,等.超高产杂交稻不同生育期的光合色素含量、净光合速率 和水分利用效率[J].植物生态学报.2002,26(6):647-651.
    
    [62]欧志英,彭长连,阳成伟,等.超高产水稻剑叶的高效光合特性[J].热带亚热带植物 学报.2003,11(1):1-6.
    
    [63]姚克敏,胡雪琼,顾显跃,等.两系法杂交稻两优培九和65396的光合特性与株型优 势[J].江苏农业科学,2000(1):8-12.
    
    [64]郑景生,林文,姜照伟,等.超高产水稻根系发育形态学研究[J].福建农业学报,1999, 14(3):5-8.
    
    [65]李木英,石庆华,谭雪明.水稻根系营养吸收特性及其与干物质生产和稻米品质关??系的研究[J].江西农业大学学报,1996,1 8(4):376-382
    
    [66]唐启源,邹应斌,米湘成.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用. 杂交水稻[J].2003,18(1):44-48.
    
    [67]张传胜,龙银成,周娟,等.不同产量类型籼稻品种氮素吸收利用特征的研究[J].扬 州大学学报,2004,25(4):17-2 1.
    
    [68] Jifeng Ying,Shaobing Peng,Qingrui He,et al.Comparison of high-yield rice in tropicaland subtropical environments I.Determinants of grain and dry matter yields. FieldCrops Research,1998,57:71-84.
    
    [69] Jifeng Ying,Shaobing Peng,Gaoqun Yang,et al.Comparison of high-yield rice intropical and subtropical environments II.Nitrogen accumulation and utilizationefficiency.Field Crops Research,l998,57: 85-93.
    
    [70]杨从党,朱德峰,周玉萍,等.不同生态条件下水稻产量及其构成因子分析[J].西南 农业学报.2004,17(增刊),35-39.
    
    [71] T.L.Jeng,T.H.Tseng,HF.S.Wang,et al.Yield and grain uniformity in contrasting rice genotypes suitable for different growth environments .Field Crops Research,2006,99:59-66.
    
    [72]邹长明,秦道珠,徐明岗,等.水稻的氮磷钟养分吸收特性及其与产量的关系[J].南 京农业大学学报,2002,25(4):6-10.
    
    [73]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,146-165: 308-311.
    
    [74]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科 学,2002,35(9):1 095—11031.
    
    [75] Peng S,Buresh RJ,Huang J,et al.Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China.Field Crops Research, 2006, 96:37-47.
    
    [76]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005, 38(12):2457-2467.
    
    [77]黄见良,李合松,李建辉,等.不同杂交水稻吸氮特性与物质生产的关系[J].核农学 报,1998,12(2):89-94.
    
    [78] C.Witt,A.Dobermann,S.Abdulrachman,et al. Internal nutrient efficiencies of irrigated??low land rice in tropical and subtropical Asia. Field Crops Research,1999,63(2):113-118.
    
    [79] Stanley Omar P B.Samonte,Lloyd T.Wilson,James C.Medley,et al. Nitrogenutilization efficience: relationships with grain yield,grain protein,and yield-relatedtraits in rice.Agronomy Journal, 2006, 98:168-176.
    
    [80] U.Singh,J.K Ladha,E.G.Castillo,et al.Genotypic variation in nitrogen use efficiencyin medium- and long-duration rice.Field Crops Research, 1998,58:35-53.
    
    [81]胡泓,王光火.施钾条件下杂交水稻氮磷养分吸收利用特点[J].土壤通 报,2003,34(3):202-204
    
    [82]徐正进,陈温福,张龙步.日本水稻育种的现状与展望[J].水稻文摘,1990,(5):1-6.
    
    [83] Peng,S.,G.S.Khush,P.Virk,Q.Tang,et al..Progress in ideotype breeding to increase rice yield potential.Field Crops Research,2008,108:32-38.
    
    [84]张桂莲,陈立云,雷东阳,等.水稻耐热性研究进展[J].杂交水稻,2005,20(1):1-5.
    
    [85]焦德茂,童红玉,张建善,等.水稻适应广幅光强的光合特性及品种间差异[J].中国 水稻科学,1993,7(4):243-246.
    
    [86]熊绪让,裴又良,马国辉.论湖南省超级稻超高产栽培的主要限制因素及其对策[J]. 湖南农业科学,2005,(2):21-23.
    
    [87]欧志英,林桂珠,彭长连.超高产杂交水稻培矮64S/E32和两优培九剑叶对高温的 响应[J].中国水稻科学,2005,19(3):249-254.
    
    [88] Elstner E F,Wagner G A,Schutz W.Activated oxygen in green plants inrelation to stress situations.Curr Topics Plant Biochem Physiol, 1988,7:159 - 187.
    
    [89] Asada K.The water-water cycle in chloroplasts:Scavenging of active oxygens and dissipation of excess photons.Annu Rev Plant Physiol Plant Mol Biol, 1999,50:601-609.
    
    [90]吕川根,宗寿余,赵凌,等.两系法杂交稻两优培九结实率稳定性及温度的影响分析 [J].中国水稻科学,2003,17(4):339-342.
    
    [91]谢戎,何光华,左永树,等.两系杂交水稻产量性状的相关性及对播期的反应[J].生 态农业研究,1998,6(1):23-27
    
    [92]姜文超,孙龙泉,肖伯群,等.播种期对两优培九产量及生育特性的影响[J].杂交水 稻,2001,16(1):38-39.
    
    [93]赵新华,段祥茂,徐宗进,等.播期对不同类型粳稻品种产量构成因素的影响[J].甘 肃科学学,报,2001,13(4):51-54.
    
    [94]李国生,苏祖芳,张亚洁.抽穗结实期的温度对水稻产量构成因素的影响[J].耕作与 栽培,1995,(5)39-40.
    
    [95] Shaobing Peng,Jianliang Huang,John E.Sheehy,et al. Rice yields decline with higher night temperature from global warming. PNAS. 2004,101( 27): 9971-9975.
    
    [96]杨联松,孙明,张培江.温度、光照对汕优121生育期及产量因素的影响[J].安徽农 业科学,1998:10-14.
    
    [97]陈跃进.播种期对水稻米质与产量的影响[J].湖南农学院学报,1992,12(4):1-7.
    
    [98]郭玉华,张龙步,徐正进,等.穗部光照条件的改变对水稻产量及物质生产与分配的 影响[J].沈阳农业大学学报,2001,32(5):323-327.
    
    [99]王书裕.水稻灌浆与气温[J].气象,1980,7(1):19-25.
    
    [100]上海植生所人工气候室.早稻开花期高温对结实的影响[J].植物学报,1976,18(4): 323-328.
    
    [101]上海植生所人工气候室.旱稻开花结实对高温伤害的敏感时间[J].植物学报, 1977,19(4):126-131.
    
    [102]佐藤庚.高温和光照对水稻稳产的影响[J].农业技术,1975.30(12):155-157.
    
    [103]朱兴明,曾庆曦,宁清利.自然高温对杂交稻开花受精的影[J].中国农业科 学,1983,(2):37-44.
    
    [104]王人民,丁元树.水稻抽穗期和结实期的生态因子研究Ⅱ:光照和温度对早稻结实 与干物质生产及分配的影响[J].浙江农业大学学报,1991,17(2):169-174.
    
    [105]李达模,于新民,王洪春.水稻开花期冷害机理与鉴定指标的研究[J].中国农业科 学,1986,(2):12-17.
    
    [106]朱碧岩,程方民,吴永常,等.稻米粒重形成规律与结实期温度的关系[J].西北农业 大学学报,1996,24(3):53-58.
    
    [107]李祥洲,任吕福,陈晓玲.水稻杂交种间杂种一代籽粒充实的气温条件研究[J].作 物学报,1996,22(2):247-250.
    
    [108]李卫国,王广元,于晓慧,等.温光变异对水稻农艺性状的影响[J].山西农业科学 1997,25(1):33-35.
    
    [109] D.Casanova, J.Goudriaanb, M.M. Catala Fornerc, et al. Rice yield prediction from??yield components and limiting factors. European Journal of Agronomy,2002,17:41-61.
    
    [110] A.G.Cnossen,M.J.Jim_enez,T.J.Siebenmorgen.Rice fissuring response to highdrying and tempering temperatures.Journal of Food Engineermg,2003,59:61- 69.
    
    [111] Hiroyuki Shimonoa,Toshihiro Hasegawab,Shigeto Fujimurac,et al. Responses ofleaf photosynthesis and plant water status in rice to low water temperature atdifferent growth stages. Field Crops Research,2004,89:71-83.
    
    [112] A.Iguazl, C.Arroquil, A.Esnoz, et al.Modelling and Simulation of Heat Transfer inStored Rough Rice with Aeration. Biosystems Engineering, 2004,89(1),69-77.
    
    [113]李霞,高亮之,金之庆,等.水稻光合对温光逆境适应性的品种间差异[J].江苏农业 科学,1997,(1):13-15.
    
    [114]黄英金,罗永锋,黄兴作,等.水稻灌浆期耐热性的品种间差异及其与剑叶光合特 性和内源多胺的关系[J].中国水稻科学,1999,13(4):205-210.
    
    [115]姚克敏,张恒云,王志南.气象条件与杂交稻干物质积累及其分配规律的研究(三) [J].农业气象,1986,8(1):22-26.
    
    [116]姚克敏,王志南.气象条件与杂交稻干物质积累及其分配规律的研究[J].中国农 业气象,1985,7(1):5-11.
    
    [117]姚克敏,王志南.气象条件与杂交稻干物质积累及其分配规律的研究(二)[J].农业 气象,1985 7(3):6-11
    
    [118]沙国栋,李林.淮北淮南不同气候条件与水格产量形成的初步分析[J].江苏农业 科学,1984.
    
    [119]Tanak.不同环境下水稻生长情况的比较,水稻与气候[M].农业出版社,1976.
    
    [120]赵强基.单季稻品种生产力与生态特性的演进趋向[J].江苏农业学报,1985.1(2)
    
    [121]Robertson.G.,评价温度对作物发育影响简易农业气候方向的发展[M].作物气象 生态译丛,北京:农业出版社,1984.
    
    [122] Wit.CT.de. Physiological potential of crop production. Plant Breeding Perspectives.Sneep.J. et al.(Eds).Pucoc. Aageningen. 1979:47-81.
    
    [123] Yoshida.S.Fundamentals of rice crop science. IRRI.1981.
    
    [124]松岛省三.膝井义典,养贤堂.作物大系第一编:稻Ⅱ水稻[J].生育,1962.
    
    [125]梁光商主编,水稻生态科学[M].农业出版社.1983.
    
    [126]高亮之.中国水稻季节与稻作制度的气候生态研究[J].农业气象,1983(1):50-55.
    
    [127]高亮之.中国水稻的光温资源与生产力[J].中国农业科学,1984(1):17-23.
    
    [128]高亮之.中国不同类型水稻生育期的气象生态模式及其应用[J].农业气象, 1982(6)1-8.
    
    [129]李林,沙国栋.江苏省水稻气候生态的研究[J].江苏农业科学,1984(4):1-5.
    
    [130]李林.杂交稻适宜栽培季节的气象生态研究[J].江苏农业科学.1980(5):1-6.
    
    [131]游修龄.稻作史记集[M].中国农业出版社,1993
    
    [132]中国农业科学院主编[M].中国稻作学.农业出版社,1986
    
    [133] B.Zou,J.M.Peng.Review and Outlook of Cultivation Researches on Hybrid Rice in China, In: Hybrid and World Food Security, Eddied by Yuan Longping. Beijing: Chinese Science technology Press, 2005.
    
    [134]朱德峰,林贤青,陶兴龙,等.水稻强化栽培技术体系的形成与发展[J].中国稻 米,2005,(2):17-18.
    
    [135]汤圣祥.马达加斯加的水稻强化栽培[J].世界农业,2002,281(9):44.
    
    [136]马均.水稻超高产强化栽培技术规范[J].中国农技推广,2005(5):24-25.
    
    [137]袁隆平.水稻强化栽培体系.杂交水稻[J].2001,16(4):1-3.
    
    [138]彭既明,罗闰良.国际水稻强化栽培会议在三亚召开[J].杂交水稻,2002,17(3):59.
    
    [139]马均,陶诗顺,田彦华,等.水稻强化栽培试验初报[J].杂交水稻,2002,17(5):42-44.
    
    [140]钟海明,黄爱明,刘建萍,等.杂交水稻强化栽培增产效果及经济效益分析[J].杂交 水稻,2003,1 8(4):45-46.
    
    [141]许凤英,马均,王贺正,等.强化栽培条件下水稻的根系特征及其与产量形成的关 系[J].杂交水稻,2003,18(4):61-65.
    
    [142]马均,陶诗顺.杂交中稻超多蘖壮秧超稀植高产栽培技术的研究[J].中国农业科 学.2002,35(1):42-48.
    
    [143]凌启鸿,过益先,费槐林,等.水稻栽培理论与技术兼作物栽培学的发展述评(上) [J].中国稻米,1999,1,3-8.
    
    [144]凌启鸿,论中国特色作物栽培科学的成就与振兴[D].全国第九届水稻高产理论 与实践学术研讨会论文,海南三亚.2003.
    
    [145]凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J]. 作物学报,1995,21(4),463-469.
    
    [146]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科 学,1993,26(6),1-11.
    
    [147]方宣钧,王守林,巫伯舜,等.水稻栽培技术[M].北京:金盾出版社,1991,27-30.
    
    [148]李义珍,王朝祥.水稻高产工程研究(晚稻部分)[J].福建农业科技,1979,4,11-17.
    
    [149]李义珍,王朝祥.水稻高产工程研究(早稻部分)[J].福建农业科技,1979,1,1-9.
    
    [150]李义珍.水稻器官的相关生长和形态诊断[J].福建农业科技,1978,4,20-31.
    
    [152]李义珍,杨高群,彭桂峰,等.两系杂交稻培矮64S/E32的超高产特性与栽培研究,Ⅰ. 超高产的植株性状[J].杂交水稻,2000,15(1),28-30.
    
    [152]李义珍,杨高群,彭桂峰,等.水稻超高产库源结构的研究[D].全国第八届水稻高产 理论与实践学术研讨会论文.厦门,2001.
    
    [153]邹应斌,周上游,唐启源.中国超级杂交水稻高产栽培研究的现状与展望[J].中国 农业科技导报,2003,5(1):31-35.
    
    [154]邹应斌,唐启源,敖和军.超级杂交水稻优化栽培技术研究[J].杂交水稻, 2003,18:(4):24-27.
    
    [1] Williams R L. Physiological comparison of Amaroo and YRL 39. In: Beecher H G, Dunn B W (eds). Yanco Agricultural Annual Report. Yanco Agricultural Institute, NSW, Australia, 1992: 81-85.
    
    [2] Amano T, Shi C, Qin D, Tsuda M, Matsumoto Y. High-yielding performance of paddy rice achieved in Yunnan province, China: I. High yielding ability of Japonica F_1 hybrid rice, Yu-Za 29. Japanese Journal of Crop Science, 1996, 65(1): 16-21. (in Japanese, with English abstract)
    
    [3]邹应斌.超级杂交稻高产栽培研究进展[J].耕作与栽培,2006,(5):1-5.
    
    [4]邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究Ⅰ概念与理论依据[J].中国农 学通报,2006,22(5):158-162.
    
    [5]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福 建农业学报,2000,15(3):1-8.
    
    [6]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学, 2001,15(4):265-270.
    
    [7]王熹,陶龙兴,俞美玉,等.超级杂交稻协优9308生理模型的研究[J].中国水稻科学, 2002,16(1):38-44.
    
    [8]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义[J].中国水 稻科学,2005,19(3):280-284.
    
    [9]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量的关系[J].中国科 学(C辑),2002,32(3):211-218.
    
    [10]严进明,翟虎渠,张荣铣,等.重穗型杂种稻光合作用和光合产物运转特性研究[J].作 物学报,2001,27(2):261-266.
    
    [11]刘秋英,蔡耀辉,匡贤彦,等.超高产组合新优752干物质积累与分配特性研究[J].江 西农业学报,1998,10(4):23-28.
    
    [12]陈温福,徐正进,张龙步.水稻超高产育种生理基础[M].沈阳:辽宁科学技术出版社, 1995:169-194.
    
    [13]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学, 1997,30(3):52-59.
    
    [14] Ying J, Peng S, He Q, et al. Comparison of high-yield rice in tropical and subtropical??environments I. Determinants of grain and dry matter yields. Field Crops Research,1998, 57: 71-84.
    
    [15] Ying J, Peng S, Yang G, et al. Comparison of high-yield rice in tropical andsubtropical environments II. Nitrogen accumulation and utilization efficiency. FieldCrops Research, 1998, 57: 85-93.
    
    [16] Ramasamy S, Ten Berge HFM, Purushothaman S. Yield formation in rice inresponse to drainage and nitrogen application. Field Crops Research, 1997, 51:65-82.
    
    [17]邹江石,吕川根,王才林,等.两系杂交稻“两优培九”选育及栽培特性[J].中国农业科 学,2003,36(8):869-872.
    
    [18]吴文革,吴桂成,杨联松,等.超级稻Ⅲ优98的产量构成与物质生产特性研究[J].扬 州大学学报(农业与生命科学版),2006,27(2):11-15.
    
    [19]张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51-56.
    
    [20] Yoshida H, Horie T, Shiraiwa T. A model explaining genotypic and environmental variation of rice spikelet number per unit area measured by cross-locational experiments in Asia. Field Crops Research, 2006, 97: 337-343.
    
    [21]邹应斌,黄见良,屠乃美,等.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影 响[J].作物学报,2001,27(3):343-350.
    
    [22] 吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科 学,2007,40(2):250-257.
    
    [23]张洪松,岩田忠寿,佐滕勉.粳型杂交稻与常规稻的物质生产及营养特性的比较[J]. 西南农业学报,1995,8(4):11-16.
    
    [24] Song X F, Agata W, Kawamitsu Y. Studies on dry matter and grain production of F_1 hybrid rice in China: I. Characteristic of dry matter production. Japanese Journal of Crop Sciencse, 1990, 59: 19-28. (in Japanese, with English abstract).
    
    [25] Yamauchi M. Physiological bases of higher yield potential in F_1 hybrids. In: Virmani S S (ed). Hybrid Rice Technology: New Developments and Future Prospects. International Rice Research Institute, Los Ban~os, Philippines, 1994: 71-80.
    
    [26] Sinclair T R, Bai Q. Analysis of high wheat yields in northwest China. Agricultural Systems, 1997,53:373-385.
    
    [1]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福 建农业学报,2000,15(3):1-8.
    
    [2]邹应斌.超级杂交稻高产栽培研究进展[J].耕作与栽培,2006(5):1-5.
    
    [3]邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究Ⅰ概念与理论依据[J].中国农 学通报,2006,22(5):158-162.
    
    [4]张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51-56.
    
    [5] Song X F, Agata W, Kawamitsu Y. Studies on dry matter and grain production of F_1 hybrid rice in China: I. Characteristic of dry matter production. Japanese Journal of Crop Sciencse, 1990, 59: 19-28. (in Japanese, with English abstract).
    
    [6] Yamauchi M. Physiological bases of higher yield potential in F_1 hybrids. In: Virmani S S (ed). Hybrid Rice Technology: New Developments and Future Prospects. International Rice Research Institute, Los Ban~os, Philippines, 1994: 71-80.
    
    [7]郑玉美.杂交稻产量与主要经济性状的相关和通径分析[J].福建稻麦科技,2005,23 (2):5-7
    
    [8] K.A. Gravois,R.S. Helms.Path analysis of rice yield and yield components as affectedby seeding rate.Agron. J., Jan 1992; 84:1- 4.
    
    [9] Joseph R. Duffy, James Watt, Robert J. Duffy. Path Analysis: A strategy forinvestigating multivariate causal relationships in communication disorders.J SpeechHear Res, Dec 1981; 24: 474 - 490.
    
    [10] Jason A. Bond, Timothy W. Walker, Brian V. Ottis, et al.Rice Seeding and NitrogenRate effects on yield and yield components of two rice cultivars.Agron. J., Feb 2008;100:393-397.
    
    [11] Linghe Zeng,Michael C. Shannon.Effects of salinity on grain yield and yieldcomponents of rice at different seeding densities.Agron. J., May 2000; 92: 418 - 423.
    
    [12] Kenneth A. Gravois,Ronald W. McNew.Genetic relationships among and selection forRice Yield and Yield Components.Crop Sci., Mar 1993; 33: 249 - 252.
    
    [13] S. O. PB Samonte, L. T. Wilson, A. M. McClung.Path analyses of yield and??yield-related traits of fifteen diverse rice genotypes.Crop Sci., Sep 1998; 38: 1130 -1136.
    
    [14] Ramon C, George A., Walter W., Russell D., Oliver Schabenberger. SAS for Mixed Models (Second Edition). SAS Institute, Inc., 2006.
    
    [15]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中 国农业科学,2008,41(7):1927-1936.
    
    [16]裴又良.超级杂交稻两优培九的营养特性研究[J].杂交水稻,2005,20(3):68-70.
    
    [1] Williams R L. Physiological comparison of Amaroo and YRL 39. In: Beecher H G, Dunn B W (eds). Yanco Agricultural Annual Report. Yanco Agricultural Institute, NSW, Australia, 1992: 81-85.
    
    [2] Amano T, Shi C, Qin D, Tsuda M, Matsumoto Y. High-yielding performance of paddy rice achieved in Yunnan province, China: I. High yielding ability of Japonica F_1 hybrid rice, Yu-Za 29. Japanese Journal of Crop Science, 1996, 65(1): 16-21. (in Japanese, with English abstract)
    
    [3]邹应斌.超级杂交稻高产栽培研究进展[J].耕作与栽培,2006(5):1-5.
    
    [4]邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究Ⅰ概念与理论依据[J].中国农 学通报,2006,22(5):158-162.
    
    [5]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福 建农业学报,2000,15(3):1-8.
    
    [6]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学, 2001,15(4):265-270.
    
    [7]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国 农业科学,2008,41(7):1927-1936.
    
    [8] Kropff M J.Matthews R B, Van Laar H H, Ten Berge H F M. The rice model ORYZA1 and its testing. In: Matthews R B, Kropff M J, Bachelet D, Van Laar H H ed. Modelling the impact of climate change on rice production in Asia, CAB International, Wallingford, UK, 1995,27-50.
    
    [9] Kropff, M.J., Van Laar, H.H., Matthews, R.B., ORYZA1, an ecophysiological model for irrigated rice production. In: SARP Research Proceedings, AB-DLO, Wageningen, The Netherlands, 1994: 110.
    
    [10] Ten Berge, H.F.M., Kropff, M.J., Founding a systems research network for rice. In: Bouma, J.,Kuyvenhoven, A., Bouman, B.A.M., Luyten, J.C., Zandstra, H.G (Eds.), Eco-regional Approaches for Sustainable Land Use and Food Production. Kluwer Academic Publishers, Dordrecht, 1995: 263-282.
    
    [11] Wopereis M C S, Bouman B A M, Tuong T P, et al. ORYZAW: rice growth model for irrigated and rainfed environments, SARP Research Proceedings, IRRI/AB-DLO,??Wageningen, Netherlands, 1996,159.
    
    [12] Drenth H., Ten Berge H F M, Riethoven J J M. ORYZA simulation modules forpotential and nitrogen limited rice production. In: SARP Research Proceedings.IRRI/AB-DLO, Wageningen, Netherlands, 1994,223.
    
    [13] Aggarwal P K, Kropff M J, Cassman K G, et al. Simulating genotypic strategies forincreasing rice yield potential in irrigated tropical environments. Field CropsResearch. 1997,51:5-17.
    
    [14] Bouman B A M, Kropff M J, Tuong T P, et al. ORYZA2000: modeling lowland rice.International Rice Research Institute, Los Banos, Philippines, and WageningenUniversity and Research Centre, Wageningen, Netherlands,2001,235.
    
    [15] Wopereis, M.C.S.,. Quantifying the impact of soil and climate variability on rainfedrice production, Ph.D. Thesis, Wageningen Agricultural University, Wageningen, TheNetherlands, 1993:188.
    
    [16] Guerra L C, Bhuiyan S I, Tuong T P,et al. Producing more rice with less water fromirrigated systems. International Rice Research Institute Discussion Papers.Manila,Philippines,1998.
    
    [17] B.A.M. Bouman, Hengsdijk H, Hardy B, et al .Water-wise rice production.Proceedings of the International Workshop on Water-wise Rice Production. 8-11April 2002,Los Banos,Philippines. Los Banos (Philippines): International RiceResearch Institute, 2002,356.
    
    [18] Casanova D, Goudriaan J, Bosch A D. Testing the performance of ORYZA 1, anexplanatory model for rice growth simulation, for Mediterranean conditions.European Journal of Agronomy, 2000,12(3-4): 175-189.
    
    [19] Lansigan F P, Pandey S, Bouman B A M. Combining crop modeling with economicrisk-analysis for the evaluation of crop management strategies.Field CropsResearch,1997,51(1-2):133-145.
    
    [20] Young M D B, Gowing J W, Wyseure G C L, et al. Parched-Thirst: development andvalidation of a process-based model of rainwater harvesting. Agricultural WaterManagement. 2002,55(2):121-140
    
    [21]李亚龙,崔远来,李远华,等.基于ORYZA2000模型的早稻生长模拟及氮肥管理 研究[J].农业工程学报.2005,21(12):141-146.
    
    [22]薛昌颖,杨晓光,B A M Bournan,等.ORYZA2000模型模拟北京地区早稻的适应性 初控[J]. 作物学报,2005,31(12): 1567-1571.
    [23] Caton B P, Foin T C, Hill J E. A plant growth model for integrated weed management in direct-seeded rice. II. Validation testing of water-depth effects and monoculture growth. Field Crops Research, 1999,62:145-155
    [24] Kobayashi K, Salam M U. Comparing simulated and measured values using mean squared deviation and its components. Agronomy Joumal,2000,92:345-352.
    [25] Gauch H G, Hwang J T G, Fick G W. Model evaluation by comparison of model-based predictions and measured values. Agronomy Journal, 2003, 95(6): 1442-1446.
    
    
    [1] Shaobing Peng, Jianliang Huang, John E. Sheehy, et al. Rice yields decline with higher night temperature from global warming. PNAS. 2004 ,101( 27):9971-9975.
    
    [2] Bauer A., A. B. Frank, A. L. Black. Estimation of spring wheat leaf growth rates andanthesis from air temperature. Agron. J. 1984. 76:829-835.
    
    [3] Barlow E. W. B., L. Boersma, J. L. Young. Photosynthesis, transpiration, and leafelongation in corn seedling at suboptimal soil temperature. Agron. J. 1977.69:95-100.
    
    [4] Baker D. G, B. S. Sharratt, H. C. Chiang, et al. Base temperature selection for theprediction of European corn borer instars by the growing degree day method. Agric.Fores. Meteorol. 1984. 32:55-58.
    
    [5] Baker, J. T., P. J. Pinter, Jr., R. J. Reginato, E. T. Kanemasu. Effects of temperature onleaf appearance in spring and winter wheat cultivars. Agron. J. 1986. 78:605-613.
    
    [6] Hunter R. B., L. A. Hunt, L. W. Breuer. Photoperiod and temperature effects on corn. J.Plant Sci. 1974.54:71-78.
    
    [7] Tollenaar. M., T. B. Daynard, R. B. Hunter. Effect of temperature on rate of leafappearance and flowering date in maize. Crop Sci. 1979.19:363-366.
    
    [8] Weigand, C. L., J. A. Duartion of grain filling and kernel weight of wheat as affectedby temperature. Crop Sci. 1981. 21:95-101.
    
    [9] Colville, D. C, K. J. Frey. Development rate and growth duration of oats in responseto delayed sowing. Agron. J. 1986.78:417-421.
    
    [10] Warrington, I. J., E. T. Kanemasu. Corn growth response to temperature and photoperiod I. Seedling emergence, tassel initiation, and anthesis. Agron. J. 1983. 75:749-754.
    
    [11] Menderski, H. J., M. E. Miller, C. R. Weaver. Accumulated heat units for classifying corn hybrid maturity. Agron. J. 1973.65:743-747.
    
    [12] Yoshida, S., Y. Hara. Effects of air temperature and light on grain filling of an indica and a joponica rice (Oryza sativa L.) under controlled environmental conditions. Soil Sci. Plant Nutr, 1977. 231:93-107.
    
    [13]姚凤梅,张佳华,孙白妮,等.气候变化对中国南方稻区水稻产量影响的模拟和分 析[J].气候与环境研究,2007,05:1006-9585.
    
    [14]姚克敏,刘梅,潘永地,等.水稻气候生产力的数值模拟及其应用[J].南京气象学院 学报,1 999,02:1000-2022.
    
    [15]卢碧林,王维金,吴和明,等.生态环境对稻米品质影响的灰色分析[J].湖北农业科 学,2004,05:0439-8 114.
    
    [16] D. V. Seshu,F. B. Cady. Response of rice to solar radiation and temperature estimated from international yield trials. Crop Sci., 1984:24: 649- 654.
    
    [17]松岛省三著,庞城译.稻作的理论与技术[M].北京:中国农业出版社, 1 966,1 98-200,252.
    
    [18]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中 国农业科学,2008,41(7):1927-1936.
    
    [19]高惠璇.两个多重相关变量组的统计分析(1):典型相关与典型冗余分析[J].数理统 计与管理,2002,21(1):57-61.
    
    [20] Hiroyuki shimono, Toshihior Hasegawa, Kazuto Iwama. Response of growth and grain yield in paddy rice to cool water at different growth stage. Field Crop Research . 2002.73(2-3):67-79.
    
    [21]王夫玉.温光对水稻籽粒充实度的影响[J].中国农业科学.2001.34(4):396-40
    
    [22]杨从党,朱德峰,周玉萍,等.不同生态区温度差异与水稻产量因子的关系[J].云南 农业科技(增刊),2003:41-44.
    
    [23] Jifeng Ying, Shaobing Peng, Qingrui He, et al. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crops Research, 1998, 57:71-84.
    
    [24]周鸿凯,郭建夫,黎华寿,等.光温因子与杂交水稻生态群体的产量和品质性状的典 型相关分析[J].应用与生态学报,2006,17(4):663-667.
    
    [1]朱德峰,林贤青,陶兴龙,等.水稻强化栽培技术体系的形成与发展[J].中国稻 米,2005(2):17-18.
    
    [2]马均.水稻超高产强化栽培技术规范[J].中国农技推广,2005(5):24-25.
    
    [3]马均,陶诗顺.杂交中稻超多蘖壮秧超稀植高产栽培技术的研究[J].中国农业科学, 2002,35(1):42-48.
    
    [4]邹应斌,唐启源,汪汉林,等.超级杂交水稻优化栽培技术研究[J].杂交水稻, 2003,18(4):24-26
    
    [5]李合生主编.植物生理生化实验原理和技术[M].北京:高等教育出版社,1988.
    
    [6]袁隆平.水稻强化栽培体系[J].杂交水稻,2001,16(4):1-3.
    
    [7]彭既明,罗闰良.国际水稻强化栽培会议在三亚召开[J].杂交水稻,2002,17(3):59.
    
    [8]徐富贤,郑家奎,朱永川,等.冬水田杂交中稻小苗超稀栽培对水稻生长的影响[J].杂 交水稻,2003,18(3):40-43.
    
    [9]马均,陶诗顺,田彦华,等.水稻强化栽培试验初报[J].杂交水稻,2002,1 7(5):42-44.
    
    [10]钟海明,黄爱明,刘建萍,等.杂交水稻强化栽培增产效果及经济效益分析[J].杂交 水稻,2003,1 8(4):45-46.
    
    [11]许凤英,马均,王贺正,等.强化栽培条件下水稻的根系特征及其与产量形成的关系 [J].杂交水稻,2003,18(4):61-65.
    
    [12]刘云开,罗先富,王学华.超级稻稀植强化栽培技术研究[J].湖南农业科 学,2002,(6):19-22.
    
    [13]郑家国,姜心禄.水稻超高产的突破技术-强化栽培[J].四川农业科技,2002,10: 11-12.
    
    [14]严进明,翟虎渠,张荣锐,等.重穗型杂种稻光合作用和光合产物运转特性研究[J]. 作物学报,2001,27(2):261-266.
    
    [15]吕川根,王才林,宗寿余,等.温度对水稻亚种间杂种育性及结实率的影响[J].作物 学报,2002,28(4):499-504.
    
    [16]刘瑞虎.播期对两优培九生育特性及产量的影响[J].安徽农学通报,2002,8(6): 22-24.
    
    [17]汤圣祥.马达加斯加的水稻强化栽培[J].世界农业,2002,281(9):44.
    
    [18]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科 学,1993,26(6):1-11.
    
    [1]林贤青,朱德峰,张玉屏.超级稻高产栽培株型模式.中国稻米,2002,(2):10-11.
    
    [2]庄宝华,张书标,章清杞,等.两系亚种间杂交稻两优培九产量形成的生理特性.福建 农林大学学报(自然科学版),2003,32(2):137-141.
    
    [3]邹应斌.超级杂交稻高产栽培研究进展.耕作与栽培,2006(5):1-5.
    
    [4]邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究Ⅰ概念与理论依据.中国农学 通报,2006,22(5):158-162.
    
    [5]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究.中国 农业科学,2008,41(7):1927-1936.
    
    [6]姚守礼,姚先进,王成德,等.水稻宽窄行栽培试验研究.现代化农业, 2001,267(10):18-19.
    
    [7]白朴,项雄,王元辉,等.超级稻的特征特性与配套栽培技术研究.种 子,2006,25(4):98-101.
    
    [8]周斌,丁金海,刘立中.超级稻高产栽培技术探讨.安徽农学通报,2006,12(6):119-121.
    
    [9]徐妍,周维佳,王厚俊.水稻宽窄行拉绳打点定距插秧技术经济效益分析.农业技术 经济,2000,2:34-37.
    
    [10]姚永平,宋子洲,叶静.水稻宽窄行配置扩行增产机理研究.耕作与栽培,2000,6: 41-42.
    
    [11] Ramon C, George A., Walter W., et al. SAS for Mixed Models (Second Edition). SAS Institute, Inc., 2006.
    
    [12]凌启鸿.作物群体质量.上海:上海科学技术出版社,2000:150-154.
    
    [13]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响.中国水稻科学, 2005,19(5):422-426.
    
    [14]郑克武,邹江石,吕川根.氮肥和栽插密度对杂交稻“两优培九”产量及氮素吸收利 用的影响.作物学报,2006,32(6):885-893.
    
    [15]闫川,丁艳锋,王强盛,等.行株距配置对水稻茎秆形态生理与群体生态的影响.中 国水稻科学,2007,21(5):530-536.
    
    [16]周维佳,刘远坤,罗德强,等.贵州杂交水稻高产栽培栽插模式研究.耕作与栽培, 2003,20(3):20-21.
    
    [17]吴洪恺,纪凤高,文正怀,等.水稻栽插不同株行距配比方式初探.耕作与栽 培.2000,(1):17-18.
    
    [18]陈正龙,周铭成,赵伯康,等.水稻“扩行、减苗”与群体质量关系的再论证.江苏农业 科学,2005(5):32-34.
    
    [1] 张洪程,王夫玉.中国水稻群体研究进展[J].中国水稻科学,2001,15(1):51-56.
    
    [2] 张俊宝,曹海峰,孙涛,等.水稻三超宽行栽培对水稻生育及产量的影响[J].中国农业科技导 报,2006,8(2):15-18.
    
    [3] 姚永平,宋子洲,叶静.水稻宽窄行配置扩行增产机理研究[J].耕作与栽培,2000,6:41-42.
    
    [4] 王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学, 2005,19(5):422-426.
    
    [5] 闫川,丁艳锋,王强盛,等.行株距配置对水稻茎秆形态生理与群体生态的影响[J].中国水稻 科学,2007,2 1(5):530-536.
    
    [6] 徐正进,陈温福,张步龙,等.不同穗型水稻群体生态环境的比较研究(简报)[J].植物生理学 通讯.1990,32(9):191-195.
    
    [7] 王建林,徐正进,衣先众.插秧量与行距配置对北方杂交稻和常规稻产量及其构成因子的 影响[J].中国水稻科学,2006,20(6):631-637.
    
    [8] 姚守礼,姚先进,王成德,等.水稻宽窄行栽培试验研究[J].现代化农业,2001,267(10): 18-19.
    
    [9] 白朴,项雄,王元辉,等.超级稻的特征特性与配套栽培技术研究[J].种 子,2006,25(4):98-101.
    
    [10] 周斌,丁金海,刘立中。超级稻高产栽培技术探讨[J].安徽农学通报2006,12(6):119-121.
    
    [11] 徐妍,周维佳,王厚俊.水稻宽窄行拉绳打点定距插秧技术经济效益分析[J].农业技术经 济,2000,2:34-37.
    
    [12]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科 学,2008,41(7):1927-1936.
    
    [13] Mitchell, P L, E. J. Sheehy , I. F. Woodward-Potential yields and the efficiency of radiation use in rice. IRRI Discussion Paper Series, 1989,32:1-62.
    
    [14] 鲁如坤主编.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    
    [15] Ramon C, George A., Walter W., et al. SAS for Mixed Models (Second Edition). SAS Institute, Inc., 2006.
    
    [16]郑克武,邹江石,吕川根.氮肥和插植密度对杂交稻“两优培九”产量及氮素吸收利用的影 响[J].作物学报,2006,32(6):885-893.
    
    [17] 徐正进.水稻不同穗型群体冠层光分布的比较研究[J].中国农业科学,1990,23(4):10-16.
    
    [18]凌启鸿.作物群体质量.上海:上海科学技术出版社,2000:150-154.
    
    [19]周维佳,刘远坤,罗德强,等.贵州杂交水稻高产栽培栽插模式研究[J].耕作与栽培, 2003,20(3):20-21.
    
    [20]吴洪恺,纪凤高,文正怀,等.水稻栽插不同株行距配比方式初探[J].耕作与栽培,??2000,(1):17-18.
    
    [21] C. Vijayalakshmi, R. Radhakrishnan, M. nagarajan, C. Rajendran. Effect of solar radiation deficit on rice productivity. Journal of Agronomy and Crop Science.1991. 167(3):184-187.
    
    [22] Tohru Kobata, Makoto Sugawara, Sadanori Takatu. Shading during the early grain filling period does not affect potential grain dry matter increase in rice. Agron. J., 2000,92: 411-417.
    
    [23] B. Venkateswarlu, B. S. Vergara, R. M. Visperas. Influence of photo synthetically active radiation on grain density of rice. Crop Sci. 1987,7:1210-1214.
    
    [24] 陈正龙,周铭成,赵伯康,等.水稻“扩行、减苗”与群体质量关系的再论证[J].江苏农业科 学,2005,(5):32-34.
    
    [25]欧志英,彭长连,阳成伟,等.超高产水稻剑叶的高效光合特性[J].热带亚热带植物学 报,2003,11(1):1-6.
    
    [1] Fu Q G,Yu J Y,Chen Y X. Effect of nitrogen applications on dry matter and nitrogen partitioning in rice and nitrogen fertilizer requirements for rice production. Journal of Zhejiang University (Agric. & Life Sci.), 2000, 26(4):399-403.
    
    [2]薛正平,杨星卫,段项锁,等.精准农业水稻最佳氮肥施用量研究[J].中国生态农业学 报,2003,11(1):53-55.
    
    [3]苏祖芳,张亚洁,张娟,等.基蘖肥与穗粒肥配比对水稻产量形成和群体质量的影响 [J].江苏农学院学报,1995,16(3):21-30.
    
    [4]王淑红,邹应斌,冯跃华,等.超级稻“三定”栽培法研究Ⅱ:不同施肥量对超级杂交稻 产量及生长生理特性的影响[J].中国农学通报,2006,22(6):141-146.
    
    [5]邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究Ⅰ:概念与理论依据[J].中国农 学通报,2006,22(5):158-163.
    
    [6]敖和军,王淑红,邹应斌,彭少兵,等.超级杂交稻干物质生产特点与产量稳定性研究 [J].中国农业科学,2008,41(7):1927-1936.
    
    [7] Jifeng Ying, Shaobing Peng, Qingrui He, et al. Comparison of high-yield rice intropical and subtropical environments Ⅰ. Determinants of grain and dry matter yields.Field Crops Research, 1998, 57:71-84.
    
    [8] Jifeng Ying, Shaobing Peng, Gaoqun Yang, et al. Comparison of high-yield rice intropical and subtropical environments Ⅱ. Nitrogen accumulation and utilizationefficiency. Field Crops Research, 1998, 57:85-93.
    
    [9]叶全宝,张洪程,魏海燕,等.不同土壤及氮肥条件下水稻氮利用效率和增产效应研 究[J].作物学报,2005,31(11):1422-1428.
    
    [10]杨从党,朱德峰,周玉萍,等.不同生态条件下水稻产量及其构成因子分析[J].西南 农业学报.2004,17(增刊),35-39.
    
    [11] T.L. Jeng, T.H. Tseng, HF.S. Wang, et al.Yield and grain uniformity in contrasting rice genotypes suitable for different growth environments. Field Crops Research, 2006,99:59-66
    
    [12]邹长明,秦道珠,徐明岗,等.水稻的氮磷钾养分吸收特性及其与产量的关系[J].南 京农业大学学报,2002,25(4):6-10.
    
    [13]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,146-165, 308-311.
    
    [14]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科 学,2002,35(9):1095-11031.
    
    [15] Peng S, Buresh RJ, Huang J, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Research, 2006,96:37-47.
    
    [16]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12): 2457-2467.
    
    [17] Ramon C, George A., Walter W., et al. SAS for Mixed Models (Second Edition).SAS Institute, Inc., 2006.
    
    [18] C. Witt, A. Dobermann, S. Abdulrachman, et al. Internal nutrient efficiencies ofirrigated low land rice in tropical and subtropical Asia. Field Crops Research, 1999,63(2):113-118.
    
    [19]黄见良,李合松,李建辉,等.不同杂交水稻吸氮特性与物质生产的关系[J].核农学 报,1998,12(2):89-94.
    
    [20]张传胜,龙银成,周娟,等.不同产量类型籼稻品种氮素吸收利用特征的研究[J].扬 州大学学报.2004,25(4):17-21.
    
    [21]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品 质的影响[J].中国农业科学,2004,37(4):490-496.
    
    [22]张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影 响[J].中国农业科学.2003,36(7):800-806.
    
    [23] Milson C E, Bollich P K, Norman R J. Nitrogen application timing effects on nitrogen efficiency of dry-seeded rice. Soil Science Society of American Journal. 1998,62(4):959-964
    
    [24]杨漫江,胡腾胜.氮钾肥配施比例对准两优527产量及化肥利用率的影响[J].贵州 农业科学,2006,34(4):42-43.
    
    [25]郑志广,尹德明,李子芳,等.不同肥水条件对水稻生育状况及产量构成因素的影响 [J].天津农学院学报,2003,10(2):9-13.
    
    [26] Stanley Omar P B.Samonte, Lloyd T.Wilson, James C.Medley,et al. Nitrogenutilization efficience: relationships with grain yield, grain protein,and yield-relatedtraits in rice. Agronomy. Journal, 2006,98: 168-176.
    
    [27] U.Singh,J.K Ladha,E.GCastillo,et al. Genotypic variation in nitrogen use efficiencyin medium- and long-duration rice.Field Crops Research, 1998,58:35-53.
    
    [28] Koutroubas SD, Ntanos DA.. Genotypic differences for grain yield and nitrogenutilization in Indica and Japonica rice under Mediterranean conditions. Field CropsResearch, 2003, 83:251-260.
    
    [29]陈进红,郭恒德,毛国娟,等.杂交粳稻超高产群体干物质生产及养分吸收利用特 点[J].中国水稻科学,2001,15(4):271-275.
    
    [30]杜永,刘辉,杨成,等.超高产栽培迟熟中粳稻养分吸收特点的研究[J].作物学 报,2007,33(2):208-215.
    
    [31] Hiroshi Hasegawa. High-yielding rice cultivars perform best even at reduced nitrogen fertilizer rate. Crop Science. 2003, 43:921-926.