轮式水稻钵苗行载机关键部件仿生研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻有序抛秧栽培技术是近10年来水稻生产机械化的热点和难点。一方面,钵育技术和抛栽技术对水稻的增产已为广大稻农接受;另一方面,没有真正好用、适用的抛秧机供稻农使用。从而导致稻农宁可人工栽插也不用机器的尴尬局面。主要原因就是目前推广和研制的机型普遍存在秧苗拔净率低、抛栽后直立度差、作业时雍泥涌水,并普遍存在机具笨重,破坏秧田等问题。
     为解决上述抛秧机存在的问题,本文在吉林省科技发展计划项目“水稻钵苗移栽机”以及国家科技支撑计划重大专项“仿生智能作业机械研究与开发”等项目资助下开展了水稻钵苗行栽机的仿生设计研究。
     本文研究开发了一种由驱动叶轮单独驱动的行走轮式行栽机,设计了独特的摆动钳式取秧机构。
     本文针对行栽机取秧机构中的秧夹与推杆间摩擦副在工作中易磨损导致秧夹使用寿命降低并影响取秧效果的问题,运用仿生设计方法,提取沙漠蜥蜴体表耐磨几何特征,设计开发了仿生耐磨秧夹;运用试验优化技术在摩擦磨损试验机上通过模型试验,得到了最优的仿生设计参数。
     为提高整机驱动性能,针对行栽机关键驱动部件——水田驱动叶轮,本文运用逆向工程技术提取水牛蹄特有的适于水田行走的外形几何参数,设计开发了仿生叶片;运用试验优化技术在自制的土槽叶轮试验台上通过模型试验,得到了优选的仿生叶片的参数;本文运用三维CAD建模技术和COMSOL大型有限元分析软件对最优参数的仿生叶片与普通平板叶片在介质中影响进行了数值模拟分析,进一步揭示了仿生叶片性能改善的机理。
     本研究设计的钵苗行栽机的整机田间性能试验效果较好,并在吉林省部分地区进行了示范推广,该机应用前景广阔。
Due to its peerless advantage to increase yield, rice potted seedling transplanting technology is widespread accepted by the rice farmer. However, the development of the transplanting mechanization technology is still imbalance. There are various problems in previous potted seedling transplanting machines. So, Rice farmers prefer handcraft inseminate to mechanism. According to this condition, experiment study on key parts of a row type potted seedling transplanter is conducted. Main contents of this paper are as follows:
     1. Based on review and analysis of rice planting agriculture tech and planter mechanism, a row type potted seedling transplanter is developed, and investigation on its key parts is conducted by applying bionic theories and techniques.
     2. In order to decrease the friction and abrasion between the gripping finger and the push rod in potted seedling transplanter, the anti-friction traits of desert lizard body surface is studied by converse engineering tech, and a novel seedling-fetching device of with swing clamp is brought forward, and the three-dimension virtual assemble model of seedling fetching and conveying device is constructed in CATIA software environment.
     Based on analysis on typical biology anti-grind form of desert lizard body surface, the non-smooth serration trait of squamas on a desert lizard body surface is analyzed by converse engineering, and the bionics structure unit is extracted. The experimental investigation on imitate unit is taken by a MG-2000 grating test machine, and relevant factors are analyzed and optimized according to the test results, and an bionics model is designed. Abrasion tests on the imitate model and flat model show that the gripping finger with non-smooth serration traits enhance the anti-grind performances. Compared to common flat gripping finger, the abrasion of the gripping finger with imitate structure reduces over 20%. Optimized results of the bionics trait unit are hole diameter by 1mm,distance between holes by 2mm.
     Under this condition, the abrasion of the gripping finger with bionics structure reduces 80%. Fatigue test on the bionic gripping finger with optimized parameters are conducted continuously for 300 hours and suggest that the imitate gripping finger can meet the demand for at least 3 operating seasons.
     3. To resolve the hipping-mud and passing-peduncle problems of rice potted seedling transplanter, a wheel with bionics blade is studied to replace traditional trailer structure. Optimized parameters of bionics blade are specified by model experiment.
     Based on the surface fabric information of buffalo hoof extracted by converse engineering tech, which is suitable for walling in the paddy field, an innovational bionic impeller is developed. Bionics vane design evaluation system is put forwarded. The optimized design parameters are specified by model test research and numerical simulate analysis. Analysis on paddle wheel machine status suggest that paddle–wheel drive mode is suitable for paddy field operation. Experiment shows that compared with flat vane, the max push value and the vane effective value of bionic impeller model are higher 37.8% and 38.3%, respectively.
     The operating numerical simulations of different paddle wheels with optimized bionics vane and flat vane are executed in COMSOL software environment. The results show that the flow velocity distribution of paddle wheel with optimized bionics vane surface is more even than the other one with flat vane. Low speed flow zone in the central part of the optimized bionics vane expand gradually along with the edge of vane surface and equably develop toward to the ends, while the flow velocity distribution of traditional flat vane surface is uneven, and edge flow velocity increase steeply. The optimized bionics vane surface can effectively reduce the vane quiver to liquid impact and the bounce resistance of abruption, separate liquid symmetrically from vane surface, and enhance vane impeller force and stability.
     4. The assess criterion of row type potted seedling transplanter is confirmed. The performance of row type potted seedling transplanter is tested in farm field. Experimental results validate the effect of row type potted seedling transplanter. Rice row type potted seedling transplanter is needed widely in the future. This paper applies bionics tech in the design of key parts of row type potted seedling transplanter, and gains good effect. With the wide application of the row type potted seedling transplanter, the rice planting mechanism ratio can promote remarkblely.
引文
[1]农业部农业机械化管理司,2008年水稻育插秧机械化技术示范推广会交流材料[C].广西南宁: 2008.
    [2]中国农业年鉴编委会.中国农业年鉴2006 .北京:中国农业出版社2006.12,177-179.
    [3]蒲红,刘宇辉,孟然.我国水稻栽植机械的研究现状及展望[J].佳木斯大学学报(自然科学版), 2003(02): 94.
    [4]李耀明.水稻抛秧栽培技术及机械化初探[J].江苏理工大学学报, 1994(02): 43-44.
    [5]宋建农,庄乃生,王立臣,等. 21世纪我国水稻种植机械化发展方向[J].中国农业大学学报, 2000(02): 25-27.
    [6]陈国伟.中国水稻栽植机械的发展[J].农机化研究,2006(09): 234-238.
    [7]宋建铨.对水稻种植机械化的思考[J].中国农机化, 2005(04): 59-60.
    [8]陈巧敏,李月华,杨国桥.我国种植机械的现状及发展前景[J].农业机械学报, 1996(S1): 37-38.
    [9]孙祖亮,苗天民.水稻机械抛秧移栽的试验应用[J].中国农机化, 1997(03): 53-54.
    [10]高连兴,张龙步,李宝筏,等.水稻钵盘育苗移植技术研究进展[J].中国农机化,1999(04): 35-37.
    [11]陈国伟.中国水稻栽植机械的发展[J].农机化研究,2006(09): 55-56.
    [12]魏文军,张绍英,宋建农.旋转锥盘式水稻抛秧机工作参数优化设计[J].农业工程学报,1998(04): 52-56.
    [13]王利强,吴崇友,高连兴,等.我国水稻机械种植现状与发展机直播的研究[J].农机化研究, 2006(03): 1-4.
    [14]康恩宽,白宝良,田志会,等.水稻抛秧栽培技术概况[J].北京农学院学报,1997(02): 69-73.
    [15]杨庚.水稻塑料钵体软盘旱育秧抛栽高产技术[J].农民科技培训, 2002(04): 18.
    [16]陈建国,杨新春,张文毅,等.水稻摆秧机的结构特点及其增产效果[J].农业机械学报,1998(增29): 90-93.
    [17]宋建农,魏文军,王立臣.旋转锥盘式水稻抛秧机的试验研究[J].农业机械学报,1996(S1): 47-48.
    [18]丁元贺,陈恒高,田金和,等.水稻机制钵苗抛秧机的研究[J].黑龙江八一农垦大学学报,1995(01): 59-60.
    [19]高连兴,李宝筏,辛明金,等.水稻气力抛秧原理与方案研究[J].沈阳农业大学学报,1998(02): 245-247.
    [20]王洋,张祖立,张亚双,等.国内外水稻直播种植发展概况[J].农机化研究,2007(01): 48-50.
    [21]金京德,张三元.浅谈日本水稻生产概况及吉林省水稻生产发展方向[J].吉林农业科学, 2000(05): 240-242.
    [22]鲍秉启,安龙哲,胡文英.我国和日本等国水田机械发展概况[J].农机化研究, 2002(03): 74-76.
    [23]袁钊和,杨新春.水稻生产机械化的“困惑”所在[J].中国农机化,1998(03): 55-56.
    [24]周定球,杨蕾,廖兴红.引进国外先进水稻插秧技术推进湖北省水稻种植机械化的发展[J].湖北农机化, 2000(06): 22-23.
    [25]金炯官,刘厚清.水稻钵体苗移栽机[J].农业机械学报, 1991(03): 43-44.
    [26]魏文军,宋建农,王立臣.水稻抛秧机秧苗运动分析及参数确定[J].农业机械学报,1998(04).112-116.
    [27]宋建农,王立臣. 2ZPY系列水稻抛秧机[J].农村实用工程技术, 1996(01): 94.
    [28]孙明敏,吕建华,郭慧琴,等.水稻抛秧机的改进设计和理论分析[J].浙江万里学院学报, 2001(01): 28-29.
    [29]袁钊和.机械抛秧技术推广工作中有待解决的问题[J].农机质量与监督,1998(01): 87-89.
    [30]王继先,潘兴喆. 2ZP-3型水稻抛秧机的研制[J].安徽农业大学学报(自然科学版), 2001(02): 234-238.
    [31]张树彬,李宝筏.水稻种植机械化探讨[J].沈阳农业大学学报, 1999(01): 28-29.
    [32]李永波.气流式机械抛秧技术在蒲江推广获得成功[J].四川农机, 2000(03): 50-51.
    [33]刘红. WFB-18ACP喷雾喷粉抛秧机[J].南方农机, 2001(05).
    [34]成都市农机局积极推广背负式机动气流抛秧机[J].四川农机, 2000(06).
    [35]吴丛进.水稻机械抛秧技术[J].南方农机,2001(06): 45.
    [36]韩豹.水稻营养钵育苗全自动栽植机的设计[J].东北农业大学学报, 2003(03): 59-60.
    [37]蒲红,刘宇辉,孟然.我国水稻栽植机械的研究现状及展望[J].佳木斯大学学报(自然科学版), 2003(02): 28-29.
    [38]武志,吴转丰.水稻生产全程机械化模式的思考与实践[J].农机化研究,2001(04): 23-25.
    [39]袁钊和,杨新春.我国水稻种植机械化发展与前景[J].农机市场, 2000(06): 20-21.
    [40]陈建国,杨新春,张文毅,等.水稻摆秧机的结构特点及其增产效果[J].农业机械学报, 1998(S1): 28-29.
    [41]宋建农,魏文军,王立臣.对水稻钵体苗有序栽植机械的研究[J].中国农机化,1999(05): 234-238.
    [42] Lu Y X. Significance and progress of bionics[J]. Journal of Bionics Engineering. 2004, 1(1): 1-3.
    [43]孙久荣,戴振东.仿生学的现状和未来[J].生物物理学报,2007, 23(3): 110-115.
    [44] Barthlott W, Neinhuis C. Purity of the sacred lotus,or escape from contamination in biological surfaces[J]. Planta. 1997, 202: 1-8.
    [45] Reif W E, Dinkelacher A. Hydrodynamics of the Squamation in Fast Swimming Sharks[J]. Neues Jahrbuch für Geologieund Palaeontologie Abhandlungen. 1982, 164(184-187).
    [46] Vincent J F V. Making biological materials[J]. Journal of Bionics Engineering. 2005, 2(4): 209-237.
    [47] Benyus J M. Biomimicry: Innovation Inspired by Nature[M]. New York: Willianm Morrow and Company, 1998.
    [48]孙毅.仿生学研究的若干新进展[J].科技情报开发与经济,2006(11): 143-144.
    [49] Walsh M J. Drag reduction of V-groove and transverse curvature riblets. In: Hough GR(ed) Viscous flow drag reduction[J]. Progress in astronautics and aeronautics, AIAA, New York. 1980, 72: 168-184.
    [50]桂泰江.仿生海洋防污涂料[J].中国涂料, 2005(10): 26-28.
    [51] Bechert D W, Bruse M, Hage W, et al. Fluid mechanics of biological surfaces and surfaces and their technological application[J]. Naturwisenchaften. 2000, 87(157-171).
    [52]黄勇,李翠伟,汪长安,等.陶瓷强韧化新纪元——仿生结构设计[J].材料导报, 2000(08): 117.
    [53] Heng-De L, Qing-Ling F, Fu-Zhai C, et al. Biomimetic reasearch base onthe study of the nature structure[[J]. Journal of Tsinghua University(Sci and Tech), 2001, 41(4): 62-65.
    [54] Curry F. Fracture of mother-of-peal and its significance for predatory techniques[J]. Nature, 2001, 204: 541.
    [55]赵建民,麦康森,张文兵,等.贝壳珍珠层及其仿生应用[J].高技术通讯, 2003(11): 94-98.
    [56]程华,黄宗明,石少卿,等.应用仿生原理设计遮弹层及其抗侵彻数值模拟分析[J].应用力学学报,2005(04): 593-597.
    [57]裴若娟,王艳芬.交通工程中的仿生结构[J].钢结构,2000(03): 50-53.
    [58]姚康德,沈锋.生物材料的仿生构思[J].中国工程科学, 2000(06): 16-20.
    [59]刘丽妍.仿生技术在纺织上的应用[J].现代纺织技术, 2004(03): 49-51.
    [60]林东洋,赵玉涛,施秋萍.仿生结构复合材料研究现状[J].材料导报, 2005(06): 28-31.
    [61]陈锦祥,倪庆清,李庆,等.“蜂窝-柱子”芯夹层轻量型仿生物复合材料结构[J].复合材料学报,2005(02): 103-108.
    [62]李保峰.仿生学的启示[J].建筑学报,2002(09): 24-26.
    [63]邱支振.动物运动仿生的反思与出路[J].安徽工业大学学报(自然科学版),2005(02): 104-107.
    [64]张涛,王臻,卢建熙,等.个体化人工骨双循环系统的仿生制造[J].中国矫形外科杂志, 2005(05): 35-37.
    [65]范细秋,张鸿海,贾可,等.基于“荷花效应”的MEMS功能表面仿生技术[J].武汉理工大学学报,2005(10): 51-53.
    [66]杜家纬.动植物功能性结构与分子的仿生[J].科学中国人,2004(04).
    [67]江小平,张鸿海,范细秋,等.仿生MEMS功能表面的分形设计[J].机械与电子, 2006(05): 3-6.
    [68]田武.海洋生物特异功能:带给人类的思索——海洋生物仿生技术趣谈[J].海洋世界,2002(08): 15-16.
    [69]云舒.走进仿生学的神奇世界[J].今日科苑,2005(04): 16-19.
    [70]杜家纬.生命科学与仿生学[J].生命科学,2004(05): 317-323.
    [71] Witte T H, Knill K, Wilson A M. Determination of peak vertical ground reaction force from duty factor in the horse(Equus caballus)[J] .Experimental Biology, 2004, 207 (21) :3639~3648 .
    [72]任露泉.地面机械脱附减阻仿生研究进展[J].中国科学(E辑:技术科学),2008(09): 1353-1364.
    [73]吴建宇,方红霞.仿生防污涂层的研究进展[J].黄山学院学报, 2007(03): 63-65.
    [74]房岩,孙刚,丛茜,等.仿生材料学研究进展[J].农业机械学报, 2006(11): 134-145.
    [75]张青,戴起勋,赵玉涛,等.仿生材料设计与制备的研究进展[J].江苏大学学报(自然科学版), 2003(06): 1538-1545.
    [76]朱自均.试论水稻抛秧配套技术存在的问题与发展趋势[J].作物杂志, 2000(03): 52-56.
    [77]刘文秀,陈道超,尹庆才. 2BS─1200型水稻钵苗摆栽机在广西试验情况分析[J].广西农业机械化,1999(03): 106.
    [78]陈福祥.水稻机械化育插秧技术是水稻栽植机械化之首选[J].农机使用与维修,2009(01): 94.
    [79]廖瑛菊,冯帮林.浅析机械化抛秧技术的应用[J].贵州农机化, 2004(05): 55-56.
    [80]庄乃生,蔡柯勇.水稻机械行栽省力节本增效[J].农机推广与安全, 2000(02): 106.
    [81]杨坚,吕坤业,劳天源,等.中国水稻机械化道路的探讨[J].广西农业机械化, 1996(04): 7-8.
    [82]张文龙,陆小良,黄晓元,等.机插水稻高产配套技术研究[J].上海农业科技,2008(04): 35-37.
    [83]王瑞丽,李宝筏.水稻钵苗有序移栽试验装置的研究[J].农机化研究, 2007(09): 94.
    [84]王均安.水稻直播机的设计与研制[J].中国农机化,1994(03): 49-50.
    [85]宋建农,王苹,王立臣,等.水稻钵苗移栽下坠高度及导管摩擦对栽深的影响[J].农业工程学报,2004(01): 12.
    [86]宋建农,魏文军,王立臣.对水稻钵体苗有序栽植机械的研究[J].中国农机化, 1999(05).
    [87]薛志勇.水稻机械化抛秧应注意的问题[J].四川农业科技, 2003(12): 47-48.
    [88]韩豹,范伟.全自动水稻钵苗有序浅栽植机的设计[J].农机化研究. 2003(01): 19-21.
    [89]王瑞丽,李宝筏.水稻钵苗有序移栽试验装置的研究[J].农机化研究, 2007(09).
    [90]邵耀坚.水稻工厂化育秧拔苗抛植机械手仿生机理的研究[J].华南农业大学学报,2000(21):78-81.
    [91]王玉兴,罗锡文,唐艳芹.气力有序抛秧机输秧机构动态模拟研究[J].农业工程学报,2004(20):109-112.
    [92]杨子万,范云翔,孙廷琮,等.空气整根营养钵育苗秧盘对培育水稻稀植大秧苗的影响[J].农业工程学报, 1995(02): 65-69.
    [93]范云翔,杨子万,林玉祥,等.全自动移栽机落苗系统的计算机仿真[J].农业机械学报,1994(04): 26-30.
    [94]陈恒高,陈庆军,于兴军,等.水稻钵秧行抛机的研究[J].黑龙江八一农垦大学学报, 2000(03): 47-48.
    [95]陈恒高,田金和,宋来田,等.机械手式水稻抛秧机的研究[J].农业机械学报,1998(03): 45.
    [96] Timothy M G, Rodger K, Steven J W. Biomechanical and energetic determinants of the walk-trot transition in horses[J] .Journal of Experimental Biology, 2004, 207 (24) :4215~4223.
    [97]王立臣,王苹,李益民,等. 2ZPY-H530型水稻钵苗行栽机试验研究[J].中国农业大学学报, 2002(04): 50-51.
    [98]包春江,李宝筏,包文育,等.水稻钵苗空气整根气吸式有序移栽机的研究[J].农业工程学报,2003(06): 45.
    [99]杨坚,阳潮声,陈兆耀,等. 2ZB-8电磁振动式小型水稻钵苗移栽机的研究[J].农业工程学报, 2002(06): 34.
    [100]王林力.水稻抛秧机的结构设计与性能试验[J].湖南农机, 1998(03): 106.
    [101]朱德全,陆凤珍,周纪平,等.水稻机抛秧关键技术研究[J].上海农业科技,1998(02): 234-238.
    [102]温诗铸.我国摩擦学研究的现状与发展[J].机械工程学报. 2004(11): 1-6.
    [103]温诗铸.世纪回顾与展望──摩擦学研究的发展趋势[J].机械工程学报, 2000(06): 1-6.
    [104]张嗣伟.摩擦学的进展与展望[J].摩擦学学报,1994(01): 84-88.
    [105] G R, Y K, Ligerman, et al. Experimental investigation of laser surface texturing forreciprocating automotive components[J]. Tri.Trans, 2002, 45(4): 444-449.
    [106] Jiho U, Jin L, Yoon H K. Laser engraving of micro-patterns on roll surfaces[J]. ISIJ International,2002, 42(11): 1266-1272.
    [107] Watyotha C, Salokhe V M. Pull,Lift and side force characteristics ofcage wheels with opposing circumferential blades [J]Soil and Tillage Research, 2001, 60( 3-4) 123-134.
    [108] Abd EI-Gawwad K A., Crolla D A. Off-road tyre modeling III. Effect of blades on tyre performance. J. Terramech, 1999 36(2) 63–75.
    [109]任露泉,丛茜,陈秉聪.几何非光滑典型生物体表防粘特性的研究[J].农业机械学报,1992, 23(2): 29-34.
    [110]任露泉.国家自然科学基金重点资助项目成果简介——生物脱附原理与地面机械仿生理论与技术研究取得重要进展[J].机械工程学报, 2003(09).79-80.
    [111]戴振东,佟金,任露泉.仿生摩擦学研究及发展[J].科学通报, 2006(20): 2353-2359.
    [112]邵荷生,曲敬信,许小棣,等.摩擦与磨损[M].北京:煤炭工业出版社,1992.
    [113] Tian X F, Kenney P E. Contact surface temperature models for finite bodies in dry and boundary lubricated sliding [J].Journal of Tribology Transactions of the ASME, 1993, 115: 411-418.
    [114] Tian L, Ren L, Liu Q, et al. The Mechanism of Drag Reduction around Bodies of Revolution Using Bionic Non-Smooth Surfaces[J]. Journal of Bionic Engineering, 2007, 4(2): 109-116.
    [115] Watremz M, Bricout J P. Friction, temperature, and wear analysis for ceramic coated brake disk [J]. Journal of Tribology Transactions of the ASME, 1996, 118: 457-465.
    [116]徐德生.仿生非光滑耐磨复合涂层的研究[D].吉林大学博士学位论文, 2004.
    [117] Ren L, Tong J C Q. Unsmooth cuticles of soil animals and their characteristics of reducing adhesion and resistance[J]. Sciences Bulletin,1998, 43: 166~169.
    [118]刘家俊.材料磨损原理及其耐磨性(第三版) [M].北京:清华大学出版社, 1993.
    [119]胡巧玲,李晓东,沈家骢.仿生结构材料的研究进展[J].材料研究学报,2003(04): 3-5.
    [120]任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报, 2005(07): 144-147.
    [121]任露泉,王再宙,韩志武.仿生非光滑表面滑动摩擦磨损试验研究[J].农业机械学报,2003(02): 196-199.
    [122]王再宙,韩志武,任露泉.激光处理非光滑凸包表面的耐磨性试验[J].吉林大学学报(工学版), 2002(02): 144-148.
    [123]郭颖杰,袁月明,安凤秀,等.吉林省4种农田松散土壤流变特性[J].吉林农业大学学报, 2004(05): 16-17.
    [124]陆怀民,陈秉聪.水田土壤流变模型[J].吉林大学学报(工学版), 1985(04): 267-271.
    [125]孙一源.农业土壤力学[M].北京:农业出版社, 1990: 349.
    [126]潘君拯.载荷条件及流变参量对水田履带式行走装置下陷量的影响[J].农业机械学报, 1984(04): 1-4.
    [127]潘君拯.流变学与水田土壤[J].自然杂志,1983(11): 315-320.
    [128]陈秉聪.车辆行走机构形态学及仿生减粘脱土理论[M].北京:机械工业出版社, 2001: 16219.
    [129] Moreno-Atanasio R,Ghadiri M .Mechanistic analysis and computer simulation of impact breakage of agglomerates: Effect of surface energy[J]. Chemical Engineering Science,2006,61:2476-2481.
    [130] Santomaso A C,Canu P.Transition to movement ingranular chute flows[J].Chemical Engineering Science,2001,56:3563-3573.
    [131]余群.地面机器系统的研究现状及展望[J].农业机械学报, 2000(02): 1-3.
    [132]陆怀民,陈秉聪.步行机械与水田步行机耕船[J].吉林大学学报(工学版),1985(03): 54-69.
    [133]鲁植雄.水牛步态研究[J].南京农业大学学报,1995(04): 69-73.
    [134]李世武,佟金,张书军,等.牛蹄三维几何模型逆向工程研究[J].农业工程学报, 2004(02): 156-160.
    [135]张永智,左春柽,孙少明,等.水田叶轮仿生增力叶片[J].吉林大学学报(工学版), 2008(S2): 153-157.
    [136]内蒙古农牧学院,安徽农学院.家畜解别学及组织胚胎学[M].北京:农业出版社, 1981.
    [137]安徽农学院.家畜解剖图谱[M].上海:上海人民出版社, 1977.
    [138]内蒙古农牧学院,安徽农学院.家畜解剖学[M].上海:上海科学技术出版社, 1976.
    [139] Aφ克.家畜解剖学(第一册)[M].北京:高等教育出版社, 1959.
    [140]陈勇,佟金,陈秉聪.黄牛在松软地面行走步态的逆向动力学分析[J].农业机械学报,2007(10): 165-169.
    [141]洪定鸽,江雄心,张明魁.逆向工程中的曲面模型重构[J].机械制造与自动化,2006(05): 10-12.
    [142]陆华忠,邵耀坚,罗锡文.水田叶轮单轮叶动力性能的试验研究[J].农业工程学报,1995(01): 65-70.
    [143]张永智,左春柽,孙少明,等.水田驱动叶轮仿生叶片机理数值模拟分析[J].农业机械学报, 2008(11): 176-179.
    [144]侯占峰,鲁植雄,黄学勤,等.水田土壤流变机理研究现状与展望[J].农机化研究,2007(01): 16-17.
    [145]陆怀民,陈秉聪.水田土壤流变模型[J].吉林大学学报(工学版), 1985(04): 267-271.
    [146]罗大海,诸葛茜,董力平,等.水田土壤下陷试验及其流变模型的研究[J].武汉理工大学学报(信息与管理工程版),1985(02): 15-16.
    [147]杨众.水稻抛秧机抛秧均匀度的测定方法[J].农机质量与监督,1996(Z1):35-36.