用户名: 密码: 验证码:
不同尺度区域农田土壤有机碳分布与变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳储存与变化研究是全球陆地生态系统碳循环和应对气候变化的重要课题,近期研究表明农田土壤具有重大的固碳潜力。中国拥有总耕地面积130M hm~2的农田,约占全球的7%,然而,中国农田土壤固碳潜力和固碳持续期尚未得到量化。农田生态系统土壤碳库受到强烈的人为干扰,同时又可以在较短的时间尺度上进行人为调节,研究不同尺度区域,影响土壤有机碳固定的因素显得更加迫切。
     本文选择县域(安徽省池州市贵池区)、省域(安徽省)和国家(中国)三种尺度来研究农田土壤有机碳时空差异及影响因素,采用第二次土壤普查资料(安徽省216个土种及218个典型剖面,贵池区66个土种),全国1980-2007年以来的耕作土壤的实测数据(1099个样点,其中,416个水稻土,683个旱作土),典型土种连续监测数据(5个)和县域尺度高密度均衡布点采样(5048个土样)调查分析,研究农田土壤有机碳的分布与变化,讨论了农田土壤有机碳的影响因素。主要结果如下:
     水稻土土壤有机碳含量及碳密度高于旱作土。贵池区(县域尺度)1984年水田耕层有机碳含量比旱地高出1/3,有机碳密度高出约5%。2005年贵池区土壤调查监测数据,统计分析得出:水田耕层有机碳含量比旱地高出45.18%,有机碳密度高出23.73%。安徽省第二次普查资料统计表明,全省表层土壤平均有机碳密度为31.64±16.39tC/hm~2,其中,水稻土耕层有机碳密度为27.7±6.72tC/hm~2,犁底层有机碳密度为14.11±6.44tC/hm~2。林地土壤表层有机碳密度(36.36±18.75tC/hm~2)高于全省表层土壤平均有机碳密度,旱作土壤表层有机碳密度(17.58±6.07tC/hm~2)则低于全省平均值。近20年来全国水田耕层有机碳含量为旱地耕层有机碳含量的175%-176%。
     安徽省土壤有机碳库为0.71Pg,其中,表层土壤有机碳总量达0.28Pg。在表层碳库中,林地>水稻土>旱地。表层有机碳库按地理区域碳库的大小为:皖南区>江淮丘陵区>淮北平原区>皖西大别山区>沿江平原区。气候和植被控制着表层土壤有机碳的省域分布,降水与土壤有机碳含量呈正相关。地形和母质影响土壤亚类间的有机碳的差异,土壤总氮与土壤有机质呈极显著相关,平原区土壤粘粒含量与表土有机碳固定有较大关系。
     近20多年来,中国水稻土和旱作土的有机碳含量70%样本上升,上升或下降幅度超过90%的样本集中在-1%~4%。对比贵池区1984年和2005年两个时段的农田土壤有机碳的含量和碳密度,水稻土有机碳含量年均提高了2.01%,有机碳密度年均提高了3%;旱作土有机碳含量年均提高了1.11%,有机碳密度年均增加了1.3%。
     农田土壤有机碳与地貌、植被、气候等自然地理因素相关。贵池区(县域尺度)的农田土壤有机碳含量按地貌类型由高到低的顺序为:平原>盆地>山地>丘陵,位于平坦地貌部位的农田土壤有机碳高于处于岗坡地、低洼渍水处的SOC。位于南坡、东坡的农田SOC高于北坡、西坡的田块。安徽省域土壤有机碳密度则是:皖南山区>皖西大别山区>沿长江平原>江淮丘陵区>皖北平原区。降水和植被类型控制土壤有机碳的省域分布,降水与土壤有机碳含量呈正相关,地形和母质影响土壤亚类的有机碳分布格局。全国尺度农田耕层土壤有机碳的含量受制于气候因素中的年均气温与降水。
     农田土壤有机碳含量与土壤性质相关。贵池区农田土壤有机碳与速效P、碱解氮呈正相关。水稻土黏粘含量与有机碳呈正相关,而旱作土则无线性相关。安徽省域分析表明:林地、水稻土和旱作土壤表层有机碳量与总氮之间的相关系数(R)均大于0.78,农田土壤粘粒含量与土壤有机碳固定也有一定关系。
     使用监测数据定量估算了中国农田土壤有机碳固定量和有效持续时间,旱地和水稻土分别需要34年和27年。利用有机碳的年增加率(RAI)的绝对值估算旱地和水稻土分别需要36年和29年。使用这些值估算出表土年均碳增额为32.0±65.4 Tg/yr和33.6±77.5Tg/yr(面积加权),1982-2006整个中国农田表层的总碳增额为0.77±1.57 Pg和0.81±1.86 Pg(面积加权)。旱地和水稻土的RAI值和原始的有机碳量呈负相关关系,表明有机碳含量低的土壤有较大固碳能力,估算得出旱作土和水稻土的固碳潜力为16.1g/kg和26.7g/kg。
Carbon(C) storage and sequestration is considered to be an important issue in the study of terrestrial C cycling and global climatic change.Recent studies have shown significant potential for soil C sequestration in croplands.China has a total area of croplands of 130Mhm~2,7%to the global total.However,the magnitude and duration of the C sequestration potential of China's cropland soils has not been quantified.
     The author selected three spatial scales to study the distribution and dynamic of soil organic carbon(SOC) of cropland:Guichi County as the local scale,Anhui province as the provincial scale and China as the country scale.Using the soil series data collected from the 2~(nd) National Soil Survey estimates the content and density of soil organic carbon in three scales.In this study,we used data of SOC change at monitoring sites from publications available in 1980-2007 to perform a meta-analysis to project the size,duration and potential capacity of soil carbon sequestration in China's croplands.The data set comprises 1099 observations including 416 from rice paddies and 683 from dry croplands across China. The main results were as follows:
     SOC content and carbon density in paddy soil was higher than that in dry cropland.SOC content and density in paddy soil were 1/3 and 5%higher respectively than that in dry cropland in 1984 while they in paddy soil were 45.18%and 23.73%higher respectively than that in dry cropland in 2005 in Guichi county.According to soil survey data from 2005, statistic analysis showed that total topsoil SOC density was 31.64±16.39tC/hm~2,with 36.36±18.75 tC/hm~2 from the forest soils,17.58±6.07tC/hm~2 from dry cropland soils and 27.7±6.72 tC/hm~2 from the plow layer of paddy soil and 14.11±6.44 tC/hm~2 from plow-pan layer in Anhui province.The content of paddy topsoil organic C was 175%-176%of dry lands in China.
     The results showed total organic carbon pool of Anhui province was 0.71Pg,and total topsoil SOC pool was 0.28 Pg,with the trends of forest soils>paddy soils>dryland soils. According to the geographical division,the size of topsoil carbon pool was in this order: south Anhui area>Jianghuai hill area>Huaibei Plain area>Wanxi Dabie Mountain area>Along the Yangtze River plain area.Climate and Vegetation dominates the provincial scale distribution of content SOC.There was a significant positive correlation between SOC and precipitation.The difference of SOC in soil subspecies depends on terrain and parent of material.The SOC storage was found closely related to the clay(<0.002mm) content and N enrichment in soils in plain area.
     SOC content of 70%samples both paddy soil and dry cropland increased in recent 20 years of China,those samples that changed over 90%ranged from-1%and 4%.Compared 1984 to 2005 in Guichi county,SOC content and density in paddy soil raised 2.01%and 3%, respectively,while dry cropland 1.11%and 1.3%every year.
     SOC content of cropland was relative to physical geography characteristics,such as physiognomy,vegetation,climate and so on.SOC content ranked as Plain>Basin>Mountanious Region>Hill according to physiognomy type on Guichi county scale.SOC content of cropland in flat physiognomy site was higher than that in hillock and low-lying place,and SOC content in south and east slope were higher than that in north and west slope.SOC density of Anhui provincal region ranked as South Anhui mountanious area>West Anhui Dabieshan mountainious area>Changjiang Plain>Jianghuai hill area>Huaibei Plain area.SOC distribution was positive relative to precipitation,which was influenced by precipitation and vegetation.SOC distribution was affected by landform and parent materials in soil subspecies.Topsoil SOC content of cropland on national scale was controlled by air temperature and precipitation.
     There was a close relationship between SOC content and soil property.However,there was difference between dry cropland and paddy soil for the factors impacting SOC content in Guichi County.The positive correlation was shown between SOC and available P, available N and clay content for paddy soil.The results also indicated there was a significant correlation between SOC content of topsoil and total N(R~2>0.78) on the scale of Anhui province,and clay content affected the SOC sequestration.
     The estimated effective duration for SOC sequestration is 34-36 year for dry croplands and 27-29 years for rice paddies.Using the average RAIs,a topsoil C stock increase for the whole of China between 1982 and 2006 can be projected between 32.0±65.4 Tg C/yr and 33.6±77.5;Tg C/yr,with a total C stock increase between 0.77±1.57 Pg C and 0.81±1.86 Pg C.There is still a high potential for C sequestration,as the achievable level under current practices is estimated to be at 16.1 g C/kg and at 26.7 g C/kg for dry croplands and rice paddies,respectively.
引文
Aguilar R E, Kelly F,Heil R D. Effects of cultivation on soils in northern great plains rangeland. Soil. Sci.Soc. Amer. 1988, 52:1081-1085.
    Alan L W. Carbon and nitrogen sequestration and soil aggregation under sorghum cropping sequences.Biology and Fertility of Soils, 2005,41: 95-100.
    Arrouays D, Saby N, Walter C, et al. Relationships between particle-size distribution and organic carbon in French arable topsoils. Soil Use and Management, 2006, 22(1): 48-55.
    
    Batjes N. H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci., 1996, 47:151-163
    Bellamy P H, Loveland P J, Bradley R L, et al. Carbon losses from all soils across England and Wales 1978-2003. Nature, 2005, 437(8): 245-248.
    Bhatti J S, Apps M J, Tarnocai C. Estimates of soil organic carbon stocks in central Canada using three different approaches. Can. J.For. Res., 2002, 32: 805-812
    Black A L, Tanaka D L. A conservation tillage-cropping systems study in the northern Great Plains of the United States//Paul EA, eds. Soil Organic Matter in Temperate Agroecosystems: Long-term Experiments in North America.London: CRC Press: 1997,335-342.
    Bordovsky D G, Choudhary M, Gerard C J. Effect of tillage, cropping, and residue management on soil properties in the Texas rolling plains. Soil Science, 1999.164: 331-340.
    Bouwman A F. Globale distibution of the major soil sand land cover types. Wiley and Sons, New York,1990: 33-59.
    Bowman R A, Reeder J D, Wienhold B J. Quantifying laboratory and field variabilityto assess potential for carbon sequestration. Commun.Soil Sci. Plant Anal, 2002, 33(9/10): 1629-1642.
    Brejda J J, Mausbach M J, Goebel J J, et al. Estimating surface soil organic carbon content at a regional scale using the national resource inventory. Soil Sci. Soc. Am. J., 2001, 65: 842-849.
    Bruce A. Mc Carl & Ronald D. Sands. Competitiveness of terrestrial greenhouse gas offsets: are they a bridge to the future. Climatic Change, 2007, 80:109-126.
    Buringh P. Original carbon in soils of the world. In: Woodwell G M, ed. The Role of Terrestrial Vegetation in the Global Carbon Cycle. 1984, 23: 247.
    Burke I C, Laurenroth W K, Coffin D P. Recovery of soil organic matter and N mineralization in semiarid grasslands: Implications for the conservation reserve program. Ecological Applications,1995, 5: 793-801.
    Burke I C, Yonker C M, PartonW J, et al·Texture, climate and cultivation effects on soil organicmatter content inUSgrassland soils·Soil Sci·Soc·Am·J·, 1989,53: 800-805.
    Cao M K, Woodward F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change. Nature, 1998, 393: 249-252.
    Dalai R.C, Chan K.Y. Soil organic matter in rainfed croppingsystems of the Australian cereal belt.Australian Journal of Soil Research, 2001,39:435-464.
    Dale W J, Peter S C. Effects of forest management on soil C and N storage: Meta analysis. Forest Ecology and Management, 2001,140: 227-238.
    Dersch G, Eiohm PC Effects of agronomic practices on the soil carbon storage potential in arable farming in Austria.Nutrient Cycling in Agroecosystems, 2001, 60: 49-55.
    Dutilleul P, Legendre P. Spatial heterogeneity against heteroscedasticity: An ecological paradigm versus A statistical concept. Oikos, 1993, 66:152-171.
    Eghball B, Mielke L N, Doran J W. Distribution of organic carbon and inorganic nitrogen in a soil under various tillage and crop sequences. Journal of Soil and Water Conservation. 1994, 49: 201-205.
    Epstein HE, Burke IC, Lauenroth WK. Regional patterns of decomposition and primary production rates in the U. S. Great Plains.Ecology, 2002.83: 320-327.
    Eswaran H, Reich F, Kimble J M. Global soil carbon stocks In: Lal R, Kimble J, and Eswarn H eds.Global Climate Change and Pedogenic Carbonates.USA: Lewis Publishes, 1999.15-26.
    Eswaran H, Van Den Berg E, Reich P. Organic carbon in soils of the world. Soil Sci. Am. J., 1993,57:192-194.
    Fang J. Carbon cycle of Chinese terrestrial ecosystem and its global significance. In: Wang G, Monitiring of Greenhous Gas Concentration and Emission and Relevant Processes. China Environment Science Press, 1996.129-139.
    
    FAOSTAT. http://faostat.fao.org/site/418/DesktopDefault.aspx? PageID=418(2006).
    Gill R, Burke I C, Milchunas D G. Relationship between root biomass and soilorganicmatterpools in the short-grass steppe of eastern Colorado.Ecosystems, 1999,2:226-236.
    Goulden M L, Wofsy S C, Harden J W, et al. Sensitivity of Boreal forest carbon balances to soil thaw.Science, 1998,279:214-217.
    Guo L B, Gifford R M. Soil carbon stocks and land use change: A meta analysis. Global Change Biology,2002, 8(4): 345-360.
    Guo L P, Lin E D. Carbon sink in crop land soils and emissions of greenhouse gases from paddy soils:Are view of work in China. Global Change Science, 2001, (3): 413-418.
    Guohan Song, Lianqin Li, Genxing Pan et al. Topsoil organic storage of China and its loss by cultivation.Biogeochemistry.Biogeochemistry, 2005,74: 47-62.
    Hassink J, Whitmore A P. A model of the protection of organic matter in soil. Soil Science Society of America Journal, 1997, 61:131-139.
    Hassink J. Preservation of plant residues in soils differing in unsaturated protective capacity. Soil Science Society of American Journal, 1996, 60: 487-491.
    Holt J A. Grassing pressure and soil carbon, microbial biomass and enzyme activities in semiarid northeastern Australia.Applied Soil Ecology, 1997, 5:143-149.
    Hook P B, Burke I C. Biogeochemistry in a shortgrass landscape: Control by topography, soil texture,and andmicroclimate. Ecology, 2000,81(10): 2686-2703.
    IPCC. Climate Change 1995-impacts. Adaptations and mitigation of climate change: scientific-technical anayses. Cambridge: Cambridge University Press, 1996.
    IPCC. Climate Change 1995: The science of climate change, Report of Working Group I. Cambridge University Press, New Yor NY, 1996.
    IPCC. Special Report on"Carbon Dioxide Capture and Storage"Expert/Government Review 10-01-2005 to 07-03-2005 [EB/OL]. http://www. ipcc. ch/Last update 2005-03-15.
    Izaurralde R C, Williams J R, Mcgill W B, et al. Simulating soil C dynamics with EPIC: Model description and testing against long-term data. Ecological Modelling, 2006,192(3/4): 362-384.
    Janzen H H, Campbell C A, Gergorich E G, et al. Soil cabon dynamics in Canadian agroecosystems //Lal R J (ed.). Soil Processes and Carbon Cycles.Boca Raton: CRC Press, 1998:57-80.
    Jeffrery E Herrick, Michelle M Wander. Relationships between soil organic carbon and soil quality in cropped and rangeland soils: The importance of distribution, composition, and soil biological activity. In: Lal R, et al. eds. Soil Processes and the Carbon Cycle. Boca Raton: CRC Press, 1997:405-425.
    Jenkinson D S, Adams D E, Wild A. Model estimates of CO_2 emissions from soil in response to global warming. Nature, 1991,351(23): 304-306.
    Kirschbaum MUF. Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry, 2000,48: 21-51.
    KirschbaumMUF, Paul K I. Modelling C and N dynamics in forest soils with a modified version of the CENTURY model. Soil Biology&Biochemistry, 2002, 34: 341-354
    KuzyakovY. Effect of plant cultivation on the decomposition of soil organic matter//Rubio JL, eds. Man and Soil at the Third Millenium.Geoforma Ediciones Logrono, 2002, 1: 583-593.
    Lal R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degradation & Development, 2002, 13: 469-478.
    Lal R. Soil carbon sequestration impacts on global climate change and food security. Science, 2004, 304:1623-1627.
    Liang B C, Wang X L, Ma B L. Maize root induced change in soil organic carbon pools. Soil Science Society of America Journal, 2002, 66: 845-847.
    Liao Q L, Zhang X H, Li Z P, et al. Increase in soil organic carbon stock over the last two decades in China's Jiangsu Province. Global Change Biology, (2008) in press
    Lindewt P H, Lu J, Wu W. Trends in the soil chemistry of South China since the 1930s.Soil science 1996,161(6): 329-342.
    Luo Yiqi, Wan Shiqiang, Hui Dafeng, et al. Acclimatization of soil respiration towarming in a tall grass prairie. Nature, 2001,413:622-625.
    
    Mann L K. Changes in soil carbon storage after cultivation. Soil Scince, 1998,27:221-229.
    McCarl B A, Metting F B, Rice C. Soil carbon sequestration. Climatic Change, 2007, 80: 1-3.
    McCarl B A, Sands R D. Competitiveness of terrestrial greenhouse gas offsets: are they a bridge to the future? Climatic Change, 2007,80:109-126.
    McConkey B G, Liang B C, Campbell C A, et al. Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils. Soil and Tillage Research, 2003,74(1): 81-90.
    Melillo J M, Steudler P A, Aber J D, et al. Soil warming and carbon-cycle feedbacks to the climate system. Science, 2002,298: 2173-2176.
    Mestdagh I, Lootens P, Cleemput O V, et al. Soil organic carbon stocks in Flemish grasslands:Howaccurate are they? Grass and Forage Science, 2004, 59(4): 310-317.
    Mosier A R. Soil processes and global change. Biology and Fertility of Soils, 1998, 27: 221-229.
    Naklang K, Whitebread A, Lefroy R, et al .The management of rice straw, fertilizers and leaf litters in rice cropping systems in Northern Thailand: Soil carbon dynamics. Plant and Soil, 1999, 209:21-28.
    Nina Siu-Ngan Lam, Dale A Quattrochi. On the issues of scale, resolution and fractal analysis in the mapping sciences. The Professional Geographer, 1992, 44: 88-98.
    Ogle S M, Eireidt F J, Paustian K. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry, 2005,72(1):87-121.
    Pan G X, Li L Q, Zhang X H, et al. Carbon storage and sequestration in surface soil of Jiangsu. 17th WCSS. Transactions, Bangkok, Thailand, 2002: 2191.
    Pan G X, Li L Q, Wu L S, et al. Storage and sequestration potential of topsoil organic carbon in China's paddy soils. Global Change Biology, 2003,10: 79-92.
    Pan G, Cuo T. Pedogenic carbonates in aridic soils of China and significance for terrestrial carbon transfer. In: Lal R Kimble J, Eswaran H, eds. Global climate Change and Pedogenic Carbonates .New York: Lewis Publishers, 1999,135-148.
    Pan Gen-xing, Li Liang-qing Zhang Qi et al. Organic carbon stock in topsoil of Jiangsu Province, China,and the recent trend of carbon sequestration. Journal of Environmental science, 2005,17(1): 1-7.
    Parshotam A, Saggar S, Searle P L, et al. Carbon residence times obtained from labeled ryegrass decomposition in soils under contrasting environmental conditions. Soil Biology & Biochemistry,2000, 32: 75-83.
    Parton W J, Schimel D S, Cole C V, et al. Analysis of factors controlling soil organic matter levels in Great PlainsGrasslands.SoilScience Society ofAmerica Journal, 1987,51:1173-1179.
    Paul K I, Polglase P J, Nyakuengama J G, et al. Change in soil carbon following afforestation. Forest Ecology and Management, 2002,168:241-257.
    Paustian K, Six J, Elliot E T, et al. Management options for reducing CO_2 emission from agricultural soil.Biogeochemistry, 2000.48: 147-163.
    Pickett S T A, Cadenasso M L. Landscape ecology: Spatial heterogeneity in ecological systems.Science, 1995, 269: 331-334.
    Post W M, Peng T H, Emanuel W R et al. The global carbon cycle. American Scientist,1990,78:310-326.
    Post W M, Emanuel W R, Zinke P, et al. Soil carbon pools and world life zones. Nature, 1982, 298(8):156-159.
    Post W M, Kwon K C. Soil carbon sequestration and land-use change: processes and potential. Global Change Biology, 2000, 6(3): 317-327.
    
    Post W M, Emanuel W R, Zinke P L, et al. Soil carbon pools and life zones. Nature, 1982, 298:156-159.
    Price D T, Peng C H, Apps M J, et al. simulating effects of climate change on boreal ecosystem carbon pools in central Canada.Journal ofBiogeography, 1999, 26:1237-1248.
    Richman R W, Douglas Jr C L, Albrecht S L, et al. CQESTR: A model to estimate carbon sequestration in agricultural soils. Journal of Soil and Water Conservation, 2001, 56(3): 237-243.
    Schlesinger W H.An overview of the global carbon cycle. In: Lal R et al (eds). Soils and Global Change.Boca Raton: CRC Press.1995: 9-25.
    Six J, Elliot E T, Paustain K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems. Soil Science Society of America Journal, 1999. 63:1350-1358.
    Smith P, Andren O, Karlsson T, et al. Carbon sequestration potential in European croplands has been overestimated. Global Change Biology, 2005, 11(12): 2153-2163.
    Smith P, Chapman, Stephen J, et.al. Climate change cannot be entirely responsible for soil carbon loss observed in England and Wales, 1978-2003.Global Change Biology, 2007,13(12): 2605-2609.
    Smith P, Powlson D S, Smith J U et al. Meeting Europe's climate change commitments: quantitative estimates of the potential for carbon mitigation by agriculture. Global Change Biology, 2000, 6:525-539.
    Smith P, Martino D, Cai Z, et al. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosys. Environ. 2006. doi:10.10l6/j. agee. 2006. 06.006
    Smith P. An overview of the permanence of soil organic carbon stocks: influence of direct human-induced, indirect and natural effects. European Journal of Soil Science, 2005, 56:673-680.
    Smith Tristram O. West & Johan Six. Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity. Climatic Change 2007, 80: 25-41.
    Somebroek W G, Nachtergaele F O, Hebel A. Amounts, dynamics and sequestration of carbon in Tropic and Subtropical soils.Ambio, 1993, 22: 417-426.
    Song G H, Li L Q, Pan G X et al. Topsoil Organic carbon storage of China and its loss by cultivation.Biogeochemistry, 2005, 74: 47-62.
    Staben M L, Bezdicek D, Smith J L, et al. Assessment of soil quality in conservation reserve program and wheat-fallow soils. Soil Science Society of America Journal, 1997, 61:124-130.
    Starr G C, Lal R, Malone R, et al. Modeling soil carbon transported bywater erosion processes. Land Degradation & Development, 2000,11: 83-91.
    Tang H, Qiu J H, Ranst E V et al. Estimations of soil organic carbon storage in cropland of China based on DNDC model. Geoderma, 2006,134(1-2): 200-206.
    Thuille A, Buchmann N, Schulze E D. Carbon stocks and soil respiration rates during deforestation,grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy.Tree Physiology, 2000, 20:849-857.
    Van den Bygaart A J, Gregorich E G, Angers D A,et al. Uncertainty analysis of soil organic carbon stock change in Canadian cropland from 1991 to 2001. Global Change Biology, 2004,10(6): 983-994.
    Vleeshouwers L M, Verhagen A. Carbon emission and sequestration by agricultural land use: A model study for Europe. Global Change Biology, 2002, 8(6): 519-530.
    Wastson R T, Bolin B. Land use, land use change, and forestry. A special report of the IPCC.Cambridge,UK: Cambridge University press, 2000:189-217.
    Watson R T, Noble I R. Carbon and the science-policy nexus: the Kyoto challenge. In: Steffen W, Jager J,Carson D et al. Challenges of a Changing Earth. Proceedings of the Global Change Open Science Conference. Berlin: Springer, 2001: 57-64.
    West T O, Post W M Soil organic carbon sequestration by and crop rotation: A global data analysis. Soil Science Society of America Journal, 2002, 66:1930-1946.
    West T O,Six J.Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity.Climatic Change,2007,80:25-41.
    Xie Z B,Zhu J G,Liu G et al.Soil organic carbon stocks in China and changes from 1980s to 2000s.Global Change Biology.2007,13:1989-2007.
    Zdruli P,Eswaran H,Kimble J Organic carbon contents and rates of sequestration in soils of Albania.Soil Science Society of American Journal,1995,59:1684-1687.
    Zhang W,Yu Y Q,Sun W J et al.Simulation of soil organic carbon dynamics in Chinese rice paddies from 1980 to 2000.Pedosphere,2007,17(1):1-10.
    蔡祖聪.中国稻田甲烷排放研究进展.土壤,1999,5:266-269.
    曹宏杰,汪景宽,李双异等.水热梯度变化及不同施肥措施对东北地区土壤有机碳、氮影响.水土保持学报,2007,21(4):122-125,149.
    陈隆亨,曲耀光.河西地区水土资源及其合理开发利用.北京:科学出版社,1992.
    成杰民,潘根兴,郑金伟.太湖地区水稻土pH及重金属元素有效态含量变化影响因素初探.农业环境保护,2001,20(3):141-144.
    程先富,史学正,于东升等.兴国县森林土壤有机碳库及与环境因子的关系.地理研究,2004,23(2):211-217.
    丁元树,王人民,陈锦新.稻田年内水旱轮作对土壤微生物和速效养分的影响.浙江农业大学学报,1996,22(6):561-565.
    方精云,刘国华,徐嵩龄.中国陆地生态系统的碳循环及其全球意义.见:王庚辰,温玉璞主编.温室气体浓度和排放监测及相关过程.北京:中国环境科学出版社,1996:129-139.
    方华军,杨学明,张晓平.农田土壤有机碳动态研究进展.土壤通报,2003,34(6):562-568.
    甘海华,吴顺辉,,范秀丹.广东土壤有机碳储量及空间分布特征.应用生态学报,2003,14(9):1499-1502
    何大斌,何建州,何顺民.贵池区主要类型土壤养分动态分析及施肥建议.安徽农学通报,2002,8(2):55-56.
    何云峰,徐建民,侯惠珍,等.有机无机复合作用对红壤团聚体组成及腐殖质稳定性的影响.浙江农业学报,1998,10(4):197-200.
    胡宏祥,洪天求,樊丽莉.巢湖马鞍山土壤有机质和N、P变化研究.中国水土保持,2006,11:24-26
    湖南省农业厅.湖南土壤.北京:中国农业出版社,1989,7.
    黄耀,刘世梁,沈其荣,等.农田土壤有机碳动态模拟模型的建立.中国农业科学,2001,34(5):532-536.
    黄耀,孙文娟.近20年来中国大陆农田表士有机碳含量的变化趋势.科学通报.2006,51(7):750-763.
    江苏省土壤普查办公室.江苏土壤.北京:中国农业出版社.1995:232-257.
    姜勇,梁文举,闻大中.免耕对农田土壤生物学特性的影响.土壤通报,2004,(3):348-351.
    姜勇,庄秋丽,梁文举.农田生态系统土壤有机碳库及其影响因子.生态学杂志,2007,26(2):278-285.
    解宪丽,孙波,周慧珍,等.中国土壤有机碳密度和储量的估算与空间分布分析.土壤学报,2004,41(1):35-43.
    解宪丽,孙波,周慧珍,李忠佩.不同植被下中国土壤有机碳的储量与影响因子.土壤学报,2004,41(5):691-699.
    李长生.土壤碳储量减少:中国农业之隐患-中美农业生态系统碳循环对比研究.第四纪研究,2000,20(4):345-350.
    李恋卿,潘根兴,张平究,等.植被恢复对红壤表层土壤颗粒中有机碳和P b、C d分布的影响.生态学报,2001,21(11):1769-1774.
    李恋卿,潘根兴.江苏省农地土壤有机碳库及碳截存动态研究.中国农学通报,1999,15(6):41-45.
    李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响.植物生态学报,1998,22(4):300-302.
    李庆逵.中国水稻土.北京:科学出版社,1992.
    李甜甜,季宏兵,孙媛媛,等,我国土壤有机碳储量及影响因素研究进展.首都师范大学学报(自然科学版),2007,28(2):93-96.
    李新宇,唐海萍,赵云龙,等.怀来盆地不同土地利用方式对土壤质量的影响分析.水土保持学报,2004,18(6):103-107.
    李跃林,彭少麟,赵平,等.鹤山几种不同土地利用方式的土壤碳储量研究.山地学报,2002,20(5):548-552
    李忠,孙波,林心雄.我国东部土壤有机碳的密度及转化的控制因素.地理科学,2001,21(4):301-307.
    李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析.土壤学报,2002,39(3):351-360.
    李忠佩,张桃林,陈碧云,等.红壤稻田土壤有机质的积累过程特征分析.土壤学报,2003,40(3):344-352.
    梁文举,闻大中,李维光,等.开垦对农业生态系统土壤有机碳动态变化的影响.农业系统科学与综合研究,2000,16(4):241-244.
    林而达,李玉娥,郭李萍,等编著.中国农业土壤固氮潜力与气候变化.北京:科学出版社,2005,57.
    刘勋,赖庆旺,黄欠如.江西红壤地区土壤有机质循环及农业调控研究.江西农业学报,1999,11(增刊):14-23.
    鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,1999.
    鲁学军,周成虎,张洪岩,等.地理空间的尺度——结构分析模式探讨.地理科学进展,2004,23(2):107-114
    孟磊,丁维新,蔡祖聪,等.长期定位施肥对土壤有机碳储量和土壤呼吸影响.地球科学进展,
    2005.20(4):687-692.
    
    倪健,张新时.CO_2增浓和气候变化对陆地生态系统的影响.大自然探索,1998,17(1):1-6.
    潘根兴,李恋卿,龚伟,等.太湖地区几种水稻土的有机碳储存及其分布特性.科技通报,2000,16(6):421-432.
    潘根兴,曹建华,周运超.土壤碳及其在地球表层生态系统碳循环中的意义.第四纪研究,2000,20:325-334.
    潘根兴,李恋卿,张旭辉,等.中国土壤有机碳库量与农业土壤碳固定动态的若干问题.地球科学进展,2003,18(4).609-618.
    潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题.南京农业大学学报,2002,25(3):100-109.
    潘根兴,张旭辉,李恋卿.不同轮作制度对淮北白浆土团聚体及有机碳的积累和分布的影响.生态学杂志,2001,20(2):16-19.
    潘根兴,赵其国.我国农田土壤碳库演变研究全球变化和国家粮食安全.地球科学进展,2005,20(4):384-393.
    潘根兴,周萍,李恋卿,张旭辉.固碳土壤学的核心科学问题与研究进展.土壤学报,2007,44(2):327-337.
    潘根兴.地球表层系统土壤学.北京:地质出版社,2000.30-39.
    潘根兴.中国土壤有机碳、无机碳库量研究.科技通报,1999,15(5):330-332.
    彭少麟,赵平,任海,李志安.鹤山几种不同土地利用方式的土壤碳储量研究李跃林.山地学报,2002,20(5):548-552.
    全国土壤普查办公室.中国土壤普查数据.北京:中国农业出版社,1996.
    全国土壤普查办公室.中国土种志(1~6卷).北京:中国农业出版社,1993,1994 a,1994 b,1995 a,1995b,1996.
    邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究.水土保持学报,2005,19(3):24-28.
    沈宏,曹志洪,王志明.不同农田生态系统土壤碳库管理指数的研究.自然资源学报,1999,14(3):206-213.
    沈雨.内蒙古锡林河流域羊草草原生态系统碳素循环研究.植物学报,1998,40(10):951-961.
    苏永中,赵哈林.土壤有机碳储量影响因素及其环境效应的研究进展.中国沙漠,2002,22(3):220-228.
    田种存,高旭升,陈玉福,等.不同海拔高度下高山草原土土壤养分变化初探.青海农林科技,2006,3,69-71.
    童成立,吴金水,向万胜,等.长江中游稻田土壤有机碳计算机模拟.长江流域资源与环境, 2002,11(3):229-233.
    汪景宽,李双异,张旭东,等.20年来东北典型黑土地区土壤肥力质量变化.中国生态农业学报,2007,(1).19-24.
    王飞,李锐,杨勤科,等.水土流失研究中尺度效应及其机理分析.水土保持学报,2003,17:167-169.
    王根绪,程国栋.西北干旱区土壤资源特征与可持续发展.地球科学进展,1999,14(5):492-497.
    王吉智,马玉兰,金国柱.中国灌淤土.北京:科学出版社,1996.
    王绍强,周成虎.中国陆地土壤有机碳库的估算.地理研究,1999,18(4):349-355.
    王艳芬,陈佐忠,Larry T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响.植物生态学报,1998,22(6):545-551.
    王义祥,翁伯琦.福建省土壤有机碳密度和储量的估算.福建农业科学,2005,21(1):42-45.
    吴建国,张小全,徐德应.六盘山林区几种土地利用方式对土壤有机碳矿化影响的比较.植物生态学报,2304,(4):530-538.
    吴建国,张小全,徐德应.土地利用变化对土壤有机碳贮量的影响.应用生态学报,2004,15(4):593-599.
    吴金水,刘守龙,童成立.土壤有机质周转计算机模拟原理.土壤学报,2003,40(5):768-774.
    吴乐知,蔡祖聪.中国土壤有机质含量变异性与空间尺度的关系.地理科学进展,2006,21(6):965-972.
    吴乐知,蔡祖聪.农业开垦对中国土壤有机碳的影响.水土保持学报,2007,21(6):119-121
    谢云.中国粮食生产对气候资源波动响应的敏感性分析.资源科学,1999,21(6):13-18.
    徐德应.人类经营活动对森林土壤碳的影响.世界林业研究,1994,5:26-31.
    徐秋芳,姜培坤.不同森林植被下土壤水溶性有机碳研究.水土保持学报,2004,18(6):84-87.
    徐艳,张凤荣,汪景宽,等.20年来中国潮土区与黑土区土壤有机质变化的对比研究.土壤通报,2004,35(2):102-105.
    徐阳春,沈其荣,冉炜.长期免耕与使用有机肥对土壤微生物生物量碳、氮、磷的影响.土壤学报,2002,39(1):89-96.
    杨景成,韩兴国,黄建辉,等.土地利用变化对陆地生态系统碳贮量的影响.应用生态学报,2003,14(8):1385-1290.
    于贵瑞.全球变化与陆地生态系统碳循环和碳蓄积.北京:气象出版社.2003.
    于严严,郭正堂,吴海斌.1980-2000年中国耕作土壤有机碳的动态变化.海洋地质与第四纪地质,2006,26(6):123-130.
    于永强,黄耀,张稳,等.华东地区农田土壤有机碳时空格局动态模拟研究.地理与地理信息科学,2007,(1).97-100.
    俞海,黄季煜,Bozelle S.中国东部地区耕地土壤肥力变化趋势研究.地理研究,2003,22(3):380-388.
    张国盛,黄高宝,YIN Chan.农田土壤有机碳固定潜力研究进展.生态学报2005,25(2):351-357.
    张佳华,徐永福,徐祥德.利用生物地球化学模型研究草地生态系统土地变化对生态环境的影响.水土保持学报,2003,17(1):166-169.
    张琪,李恋卿,潘根兴,等.近20年宜兴市域水稻土有机碳动态及其驱动因素.第四纪研究,2004,24(2):236-242.
    张世熔,黄元仿,李保国,等.黄淮海冲积平原区土壤有机质时空变异特征.生态学报,2002,22(12):2041-2047.
    张旭辉,李恋卿,潘根兴.不同轮作制度对淮北白浆土团聚体及有机碳的积累和分布的影响.生态学杂志,2001,20(2):16-19.
    赵其国,骆永明.开展我国东南沿海经济快速发展地区资源与环境质量问题研究建议.土壤,2000,32(4):169-172,187.
    赵荣钦,秦明周,黄爱民.耕地土壤碳固存的措施与潜力.生态环境2004,13(1):81-84.
    中国土壤普查办公室.中国土壤.北京:中国农业出版社,1998.
    周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环.植物生态学报,2002,26(2):250-254.
    周广胜.全球碳循环.北京:气象出版社,2003.
    周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展.地球科学进展,2005.20(1):99-105.
    周世厥,牛海燕.安徽省土壤有机质含量分布及影响因素.农业环境与发展.1997,52(2):31-34
    周涛,史培军,王绍强.气候变化及人类活动对中国土壤有机碳储量的影响.地理学报,2003.58(5):727-734.
    周运超,潘根兴,李恋卿,等.太湖地区3种水稻土不同温度培养中有机碳库变化及其对升温的响应.环境科学,2003,24(1):46-51.
    左洪超,吕世华,胡隐樵.中国近50年气温及降水量的变化趋势分析.高原气象,2004,23(2):238-244.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700