肝素壳聚糖自组装表面修饰小口径涤纶人工血管的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人口老龄化和饮食结构的改变,动脉硬化闭塞性疾病的发病率逐年升高,临床上对中小口径人工血管的需求量很大。目前在临床上使用血管移植物主要有两类:1)自体血管移植物如内乳动脉、桡动脉和大隐静脉:但是来源有限;2)人工合成材料血管:目前临床上使用最广泛的血管替代物仍旧是人工血管。因此,通过对人工材料血管进行改性与修饰,进一步提高其远期通畅率成为研究重点。本实验通过对针织涤纶人工血管进行肝素和壳聚糖自组装表面修饰和生物相容性测试,并将该人工血管按照国标进行力学性能测试,最后将人工血管置换实验犬腹主动脉,术后行彩色多普勒超声和MRI血管造影(MR angiography,MRA)随访移植血管血流通畅度和吻合口内膜增生程度,并于术后分节点取出移植的血管行扫描电镜、组织学和免疫组织化学检测以了解置换的小口径血管移植物在体内的情况,来评价肝素壳聚糖表面修饰小口径人工血管的运用可行性。
     第一部分肝素壳聚糖层层自组装涤纶人工血管的制备及生物相容性测试
     目的:制备肝素壳聚糖表面修饰小口径涤纶人工血管,并对该表面修饰后的人工血管进行生物相容性测试。
     方法:采用层层自组装技术对涤纶人工血管进行肝素壳聚糖表面修饰。参照GB/T16886.4/ISO 10993—4,GB/T 16886.5/ISO 10993-5对修饰后的涤纶人工血管进行细胞粘附试验、MTS细胞毒性试验、LDH释放试验、急性毒性试验、短期皮下植入实验、直接接触溶血试验、间接接触溶血试验、血小板粘附试验。
     结果:利用层层自组装技术成功制备肝素壳聚糖表面修饰涤纶人工血管。扫描电镜显示其微观结构没有在表面处理中受到破坏。细胞粘附试验提示人脐静脉内皮细胞株ECV304和小鼠成纤维细胞株L929在修饰后涤纶人工血管表面粘附生长良好;MTS细胞毒性试验和LDH释放试验提示肝素壳聚糖层层自组装涤纶人工血管较阴性对照无明显差异(P>0.05);急性毒性试验实验组无小鼠死亡,较阴性对照组无明显差异:短期皮下植入实验提示修饰后人工血管周围组织炎症反应较未处理涤纶人工血管无明显区别;直接和间接接触溶血试验提示修饰后涤纶人工血管无明显破坏红细胞作用;血小板粘附提示肝素壳聚糖层层自组装人工血管抗血小板粘附、抗凝血性能优于未处理涤纶血管。
     结论:肝素壳聚糖层层自组装技术对涤纶人工血管进行表面处理切实可行,并且对涤纶人工血管的生物相容性未产生不良的影响。
     第二部分肝素壳聚糖自组装表面修饰小口径涤纶人工血管的力学性能测试
     目的:评估肝素壳聚糖自组装表面修饰对涤纶人工血管力学性能的影响。
     方法:根据中国医药行业标准YY0550—2004/IS0 7198:1998对其壁厚、自然状态下内径、加压后内径、轴向拉伸强度、最大缝持张力、吻合口爆破压、人工血管孔隙率、水渗透性进行测试。
     结果:肝素壳聚糖自组装表面修饰对涤纶人工血管力学性能符合人体使用标准。对比未修饰人工血管,肝素壳聚糖自组装表面修饰对涤纶人工血管壁厚、自然状态下内径、加压后内径、轴向拉伸强度、最大缝持张力、吻合口爆破压、人工血管孔隙率、水渗透性无显著差异。
     结论:肝素壳聚糖自组装表面修饰对涤纶人工血管力学性能无明显影响,肝素壳聚糖自组装表面修饰涤纶人工血管力学性能符合人体使用标准。
     第三部分肝素壳聚糖自组装表面修饰小口径涤纶人工血管的动物实验
     目的:肝素壳聚糖层层自组装表面修饰小口径涤纶人工血管在体内血流动力条件下血管壁组织结构重塑过程。
     方法:将肝素壳聚糖层层自组装表面修饰小口径涤纶人工血管置换6只实验犬自体腹主动脉,对照组为未经表面处理的同口径人工血管手术置换6只实验犬。于术后4w、8w、12w行影像学检查、组织学和免疫组织化学检测,以及扫描电镜检查以评价移植物血管在体内重塑情况。
     结果:6根肝素壳聚糖层层自组装表面修饰小口径涤纶人工血均通畅;对照组1只实验犬死亡,术后4w彩超和MRA提示1根人工血管阻塞。6根实验组通畅的血管在术后不同时点取出发现内表面菲薄、光滑。血管壁内表面覆盖一连续、鹅卵石样单层细胞,该细胞Ⅷ因子相关抗原抗体染色阳性。这种移植于体内的小口径血管移植物于术后4w时新生动脉壁厚度约为900μm,并于管壁中层可见较多血管SMC和外膜层主要为成纤维细胞,而且最早于术后4w时在血管壁中层就可见弹力纤维。
     结论:肝素壳聚糖层层自组装表面修饰中小口径涤纶人工血管在体内血流动力条件下能在体内完成内皮化,具有较高的近中期通畅率,并参与透壁性内皮化的进程。
     全文结论:
     1.肝素壳聚糖层层自组装能够用来对涤纶人工血管进行表面修饰。
     2.肝素壳聚糖层层自组装表面修饰的涤纶人工血管具有良好的生物相容性(细胞相容性、组织相容性和血液相容性)。
     3.肝素壳聚糖层层自组装表面修饰的涤纶人工血管的力学性能符合ISO和GB/T的标准。
     4.肝素壳聚糖层层自组装表面修饰的涤纶人工血管能够在体内完成内皮化进程,具有较高的近中期通畅率。
The requirements of Moderate-Caliber Dacron Vascular Graft have been manifolded throughout these years,due to the increasing morbidity and mortality of atherosclerotic diseases.The major vascular grafts applied in the clinical pracice have two kinds:1) autologous vessels,such as radial artery,internal mammary artery,and saphenous vein, which was restricted by the limited source;2) synthetic grafts,such as expanded polytetrafluorethylene(ePTFE) and Polyethylene terephthalate(Dacron or PET) grafts, which are the most widely used in the clinical use.Thus,surface modification of synthetic vascular grafts to improve the short-term and long-term patency is the one of the most pratical methods in the present situation.In this study,we get the moderate-caliber Dacron vascular graft surface modified via layer-by-layer assembly of heparin/chitosan,and study the biocompatibility and mechanical properties according to the GB standards.After that, we evaluate he modified vascular grafts in the animal experiments by the means of B-ultrasonograft,MRA,scanning electron microscope,histochemistry and immunohistology.
     PartⅠThe biocompatible tests of the heparin/chitosan modified Dacron vascular graft
     Objective:preparation and biocompatible evaluation of the heparin/chitosan modified Dacron vascular grafts.
     Methods:preparation of the heparin/chitosan modified Dacron vascular grafts by layer-by-layer assembly.Evaluation of the biocompatibility of the modified grafts according to the GB/T 16886.4 and ISO 10993-4,GB/T 16886.5 and ISO 10993-5,cell adhesion,MTS assay,LDH release assay,acute toxicity tests,subcutaneous implantation,direct hemolysis, indirect hemolysis,and boold platelet adhesion tests.
     Results:The micro-structure of the modified grafts maintained after the layer-by-layer assembly.Good cell adhesion of the modified Dacron grafts approved by the cell strain of ECV304 and fibroblast L929.The modified grafts were innoxious in the cytotoxity tests by the MTS assay and LDH release tests(P>0.05);No significant difference was found both in the acute toxicity test and the inflammation the modified grafts after subcutaneous implantation comparing to the negative control.The red blood cell destruction was found in the direct and indirect hemolytic tests.The anticoagulate effects of the modified grafts were better than the unmodified grafts.
     Conclusion:The Dacron vascular grafts could be modified by the layer-by-layer assembly of heparin/chitosan,and the modified grafts maintain good biocompatibility.
     PartⅡ
     Mechanical properties of the heparin/chitosan modified vascular graft
     Objective:Evaluation of the mechanical properties of the heparin/chitosan modified vascular graft.
     Methods:The wall thickness,inner diameter,diameter under pressure,axial extends intensity,max suture intension,anastomosis explodes pressure,porosity,integral water permeability was examined according to industry standards.(YY 0500-2004)
     Results:Mechanical properties of the heparin/chitosan modified vascular graft met the standards of the YY 0500-2004 in the wall thickness,inner diameter,diameter under pressure,axial extend intensity,max suture intension,anastomosis explode pressure, porosity,integral water permeability.
     Concluation:Mechanical properties of the heparin/chitosan modified vascular graft did not undermined in the layer-by-layer assembly,and met the national standards YY 0500-2004.
     PartⅢ
     The animal experiment of the heparin/chitosan modified Dacron vascular graft
     Objective:Evaluation of the heparin/chitosan modified Dacron vascular graft in the animal experiments.
     Methods:12 beagles were devided into 2 groups,in which modified vascular grafts and unmodified vascular grafts with the length of 6 cm,was implanted in the beageles abdominal aortic artery.Histology,immunohistochemistry,MRA and ultrasonography was examined 4 weeks and 12 weeks after operation.
     Results:Six heparin/chitosan modified vascular grafts maintain the patency after 4w and 12w;one of unmodified grafts in the control group clogged in the forth month.The histology showed that endothelialization of the modified grafts was completed in 4 weeks after operation.
     Conclusion:The endothelialization was not disturbed by the heparin/chitosan modified Dacron vascular grafts,and the well patency of short-term and medium-term was found in the modified grafts.
引文
[1]Moneta GL,Porter JM.Arterial substitutes in peripheral vascular surgery:a review[J].J Long Term Eff Med Implants.1995.5(1):47-67
    [2]Conte MS.The ideal small arterial substitute:a search for the Holy Grail[J]? FASEB J.1998,12(1):43-45.
    [3]Klinkert.P,Schepers A,Burger DH,et al.Vein versus polytetrafluoroethylene in above-knee femoropopliteal bypass grafting:five-year results of a randomized controlled trial[J].J Vasc Surg,2003,37(1):149-155.
    [4]El-Kayali AA.Polytertrafluroethylene use for above-knee femoropopliteal bypass in critical limb ischemia[J].Saudi Med.I.2003,24(6):669-671.
    [5]Chard RB,Johnson DC,Nunn GR,et al.Aorta-coronary bypass grafting with polytetrafluoroethylene conduits.Early and late outcomes in eight patients[J].J Throac Cardiovasc Surg,1987.94(1):132-134.
    [6]马婧媛,周曾同 组织工程构建血管化的研究进展 口腔材料器械杂志2007,16(3):160-162
    [7]卢伶俐,陈学明 人工血管内皮化的研究现状 国际外科学杂志2007,34(9):634-636.
    [8]M.Crombez,P Chevallier et al.Improving arterial prosthesis neo-endothelialization:Application of a proactive VEGF construct onto PTFE sufaces[J]Biomaterials,2005,26 7402-7409
    [9]D.J.Wilson,N.P.Rhodes,R.L.Williams,Surface modification of a segmented polyetherurethane using a low-powered gas plasma and its influence on activation of the coagulation system.Biomaterials.2003,24(28).5069-5081
    [10]P.Liu,Y.S.Chen,Surface sulfonation of polyvinyl chloride by plasma for antithrombogenicity,Plasma Sci.Tech.2004,6(3),2328-2332
    [11]刘鹏,陈亚芍等,聚氯乙烯表面共价键合肝素及抗凝血性的研究,功能高分子学报,2004,17(1),35-40
    [12]Y.S.Chen,P.Liu,Surface modification of Polyethylene by plasma pretreatment and UV induced graft polymerization for improvement of antithrobogenicity,J.Appl.Polym.Sci,2004,93(5),2014-2018
    [13]Y.Q.Wang,J.Yang,L.Yang,et al,Cell adhesion on gaseous plasma modified poly-(L-lactide) surface under shear stress field,Biomaterials,2003,24(21),3757-3764
    [14]Z.H.Cheng,S.H.Teoh,Surface modification of ultra thin poly(epsilon-caprolactone) films using acrylic acid and collagen,Biomaterials,2004,25(11),1991-2001
    [15]L.D.Etomaso,R.Gristina,G.S.Senesi,et al Stable plasma-deposited acrylic acid surface for cell culture applications,Biomaterials,2005,26(18),3831-3841.
    [16]Robert B.Rutherford Vascular Surgery sixth edition p728
    [17]Vicaretti M,Hawthorne W J,Ao PY,Fletcher JP:An increased concentration of rifampicin bonded to gelatin-sealed Dacron reduces the incidence of subsequent graft infections following a staphylococcal challenge.Cardiovasc Surg 6:268,1998.
    [18]Vicaretti M,Hawthorne W,Ao PY,Fletcher JP:Does in situ replacement of a staphylococcal infected vascular graft with a rifampicin impregnated gelatin sealed Dacron graft reduce the incidence of subsequent infection? Int Angiol 19:158,2000.
    [19]Rabea EI,Badawy MET,Stevens CV,et al.Chitosan as antimicrobial agent:applications and mode of action.Biomacromolecules 2003;4:1457-1465.
    [20]Baur JW,Rubner MF,Reynolds JR,et al.Forster energy transfer studies of polyelectrolyte heterostructures containing conjugated polymers:ameans to estimate layer interpenetration.Langmuir 1999;15:6460-6469.
    [21]Jinhong Fu,Jian Ji,Weiyong Yuan,et al.Construction of anti-adhesive and antibacterial multilayer films via layer-by-layer assembly of heparin and chitosan.Biomaterials[J]26(2005)6684-6692.
    [22]医疗器械生物学评价第四部分:与血液相互作用试验选择GB/T 16886.4-2003.
    [23]Biological evaluation of medical devices Part 4:Selection of tests for interactions with blood ISO 10993-4:2002,IDT.
    [24]医疗器械生物学评价第5部分:体外细胞毒性试验GB/T 16886.5-2003.
    [25]Biological evaluation of medical devices Part 5:Test for in vitro cytotoxicity.ISO 10993-5:1999,IDT.
    [26]Merzkirch C,Davies N,Zilla P.Engineering of vascular ingrowth matrices:areprotein domains an alternative to peptides?[J]Anat Rec,2001,263(4):379-387.
    [27]Song E,Yeon Kim S,Chun T,et al.Collagen scaffolds derived from a marine source and their biocompatibility[J].Biomaterials,2006,27(15):2951-2961.
    [28]M.C.Serrano,R.Pagani,M.Vallet-Regi et al.In vitro biocompatibility assessment of poly(ε-caprolactone) films using L929 mouse fibroblast.Biomaterials[J]2004,25:5603-5611.
    [29]Heyligers JM,Arts CH,Verhagen H J,et al.Improving small-diameter vasculargrafts:from the application of an endothelial cell lining to the construction of atissue-engineered blood vessel[J].Ann Vasc Surg,2005,19(3):448-456.
    [30]Naito Y,Imai Y,Shin'oka T,et al.Successful clinical application oftissue-engineered graft for extracardiac Fontan operation[J].J ThoracCardiovasc Surg,2003,125(2):419-420.
    [31]Herring M,Gardner A,Glover J.A single staged technique for seeding vasculargrafts with autogenous endothelium[J].Surgery,1978,84(4):498-504.
    [32]Stanley JC,Burkel WE,Ford JW,et al.Enhanced patency of small-diameter,externally supported Dacron iliofemoral grafts seeded with endothelial cells[J].Surgery,1982,92(6):994-1005.
    [33]Deutsch M,Meinhart J,Fischlein T,et al.Clinical autologous in vitro endothelialization of infrainguinal ePTFE grafts in 100 patients:a 9-year experience[J].Surgery,1999,126(5):847-855.
    [34]Peter Zilla,Deon Bezuidenhout,Paul Human Prosthetic vascular grafts:Wrong models,wrong questions and no healing.Biomaterials[J]2007,28:5009-5027.
    [35]Peter Zilla,Deon Bezuidenhout,Paul Human Prosthetic vascular grafts:Wrong models,wrong questions and no healing. Biomaterials 2007, 28:5009-5027.
    
    [36] Asahara T, Masuda H, Takahashi T, et al: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res 85:221,1999.
    
    [37] Crosby JR, Kaminski WE, Schatteman G, et al: Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87:728, 2000.
    
    [38] Orlic D, Kajstura J, Chimenti S, et al: Bone marrow cells regenerate infracted myocardium. Nature 410:701,2001.
    
    [39] 心血管植入物:人工血管 中华人民共和国医药行业标准 YY0500-2004.
    
    [40] Cardiovascualr implants-Tubular vascular prostheses ISO 7198:1998, IDT.
    
    [41] Suggs WD, Henriques HF, Depalma RG: Vein cuff interposition prevents juxta-anastomotic neointimal hyperplasia. Ann Surg 1988,207:717.
    
    [42] Stansby G, Berwanger C, Shukla N, et al: Endothelial seeding of compliant polyurethane vascular graft material. Br J Surg 1994, 81: 1286.
    
    [43] Miller JH, Foreman RK, Ferguson L, Faris I: Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg 1984, 54: 283.
    
    [44] Taylor RS, Loh A, McFarland RJ, et al: Improved technique for polytetrafluoroethylene bypass grafting: Long-term results using anastomotic vein patches. Br J Surg. 1992,79: 348.
    
    [45 Yeung KK, Mills JL Sr, Hughes JD, et al: Improved patency of infrainguinal polytetrafluoroethylene bypass grafts using a distal Taylor vein patch. Am J Surg. 2001,182:578.
    
    [46] Stonebridge PA, Prescott RJ, Ruckley CV: Randomized trial comparing infrainguinal polytetrafluoroethylene bypass grafting with and without vein interposition cuff at the distal anastomosis. The Joint Vascular Research Group. J Vasc Surg. 1997, 26: 543.
    
    [47] Kansal N, Pappas PJ, Gwertzman GA, et al: Patency and limb salvage for polytetrafluoroethylene bypasses with vein interposition cuffs. Ann Vasc Surg. 1999,13:386.
    
    [48] Neville RF, Tempesta B, Sidway AN: Tibial bypass for limb salvage using polytetrafluoroethylene and a distal vein patch. J Vasc Surg. 2001,33:266.
    
    [49] Rutherford Vascular Surgery, 6~(th) ed. P728.
    
    [50] Voorhees AB Jr, Jaretzki A, Blakemore AH: The use of tubes constructed of Vinyon N cloth in bridging arterial defects. Ann Surg 1952, 135: 332.
    
    [51] Davids L, Dower T, Zilla P. The lack of healing in conventional vascualar grafts. Tissue engineering of prosthetic vascular grafts. Austin R G Landes; 1999. p.3-44.
    
    [52] Wesolowski S, Fries C, Gennigar G, et al. Factors contributing to long-term failures in human vascular prosthetic grafts. Cardiovas Surg 1964;38:544-567.
    
    [53] Takebayashi J, Kamatani M, Namba S, et al. Early reparative process of implanted arterial prosthesis: a morphological and hematological study. J Surg Res 1974; 17(2): 102-110.
    
    [54] Ghidoni J, Liotta D, Hall C, et al. Healing of pseudointimas in velour-lined, impermeable arterial prostheses. Am J Pathol 1968:375-383.
    
    [55] Desai ND, Fremes SE. Radial artery conduit for coronary revascularization: asgood as an internal thoracic artery? [J] Curr Opin Cardiol, 2007,22(6):534-540.
    
    [56] Langer R, Vacanti JP. Tissue engineering [J]. Science. 1993; 260(5110):920 -926.
    
    [57] Hoerstrup SP, Cummings Mrcs I, Lachat M, et al. Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in a large animal model [J]. Circulation, 2006, 114(1 Suppl):1159-1166.
    
    [58] L'Heureux N, Dusserre N, Konig G, et al. Human tissue-engineered blood vessels for adult arterial revascularization [J]. Nat Med, 2006,12(3):361-365.
    
    [59] L'Heureux N, McAllister TN, de la Fuente LM. Tissue-engineered blood vessel for adult arterial revascularization [J]. N Engl J Med, 2007,357(14):1451-1453.
    
    [60]He H, Matsuda T. Newly designed compliant hierarchic hybrid vascular graftwrapped with microprocessed elastomeric film-Ⅱ: Morphogenesis andcompliance change upon implantation [J]. Cell Transplant, 2002, ll(l):75-87.
    
    [61] Thomas Chandy, Gladwin S. Das, Robert F. Wilson, et al. Use of plasma glow for surface-emgineering biomolecules to enhance bloodcompatibility of Dacron and PTFE vascular prosthesis. Biomaterials 2000;21:699-712.
    
    [62] Peter H.Lin, Ruth L. Bush, Qizhi Yao, et al. Evaluation of platelet Deposition and Neointimal Hyperplasia of Femoral Artery Bypass Model. Journal of Surgical Research.[J] 2004;l18:45-52.
    
    [63] Jan M. Heyligers, Hence J.M. Verhagen, Horis I. Rotmans, et al.Heparin immobilization reduces thrombogenicity of small-caliber expanded polytetrfluoroethylene grafts. Journal of vascular surgery. 43(3):587-591.
    
    [64] Marc Bosiers, Koen Deloose, Jurgen Verbist, et al. Heparin-bonded expanded polytetrafluoroethylene vascular graft for femoropopliteal and femorocrural bypass grafting: 1-year results. Journal of vascular surgery. [J] 43(2):313-319.
    
    [65] Edmond F. Ritter, Yong Bae Kim, Helmut P. Reischi, et al. Heparin coating of vascular prostheses reduces thromboemboli. Surgery [J] 1999; 122:888-892.
    
    [66] [Grassl ED, Oegema TR, Tranquillo RT. A fibrin-based arterial media equivalent[J]. J Biomed Mater Res A,2003,66(3):550-561.
    
    [67] Long JL, Tranquillo RT. Elastic fiber production in cardiovascular tissue-equivalents [J]. Matrix Biol, 2003, 22(4):339-350.
    
    [68] Tuan TL, Song A, Chang S, et al. In vitro fibroplasia: matrix contraction, cellgrowth, and collagen production of fibroblasts cultured in fibrin gels [J]. ExpCell Res, 1996, 223(1): 127-134.
    [1] CAMERON A, DAVIS KB,GREEN G, et al. Conronary bypass surgery with internal thoracic after grafts:effects on survival over a 15 years period [J].J Vasc Surg. 1987,5:46-52.
    
    [2] FOGLE MA,WITTEMORE AD, COUCH NP, et al.A comparision of in situ and revered saphemous vein grafts for infrainguinal reconstruction [J].J Vasc Surg, 1987,5:46-52.
    
    [3] MANN MJ, GIBBONS GH, KERNOFF RS,et al. Genetic engineering of vein grafts resistant to atherosclerosis [J]. Proc Natl Acad Sci USA. 1995, 92: 4502-4506
    
    [4] SUNG HW, CHENG WH, CHIU IS,et al. Study on Eposy compound fixation [J]. J Biomed Mater Research, 1996,33:177-186
    
    [5] LESECH G, PENNA G, BOUTTIER S, et al. Femorodistal bypass using cryopreserved venous allografted for limb salvage [J].Ann Vasc Surg.1997,11(3): 230-236.
    
    [6] ALEXANDER WC ,THOMAS RK, MICHEAL AR. Mechanism of arterial graft healing [J]. Am J Pathol, 1986,123(2): 220-230.
    
    [7] TAKAHISA M,YSHIDA N. Surface microarchitectual design inclinical application clinical applicationdical application:in vitro transmural endotheliatlization on microporous segmental polyurethane filums fabricated using on excimer laser [J]. J biomed Mater Resear, 1996, 31: 235-242.
    
    [8] SATOSHIN, HAJIMU K,SHICICHI S,et al. Small piabeter vascular protheses with incorporated biobsorbable matrices [J]ASAIO J, 1993, 39: 750-753.
    
    [9] Hiroyuki k, Takehisa M. Biocompatible coating grafts J[J]. Biomed Mater Resear, 1996,30:321-330.
    
    [10] ]Aruma N,Matthew AH, Elazer RE. Tissue engineered perivascular endothelial call implants legislate vascular infury [J]. Proc Nati Acad Sci, 1995,92: 8130-8143.
    
    [11] James CS, William EB, John WF, et al. Enhanced paterxy of small-diameter, externally supported Dacron iliofemoral grafts seeded with endothelial cells [J]. Surgery. 1982, 92(6): 996-1005.
    
    [12] Jenson N, DirhDnent G, Hersian M, et al. Endothelial cell seeded Dacron aortobifurcotted graft:platelet deposition and long term follow-up [J]. Surgery. 1994, 35: 425-429.
    
    [13] Takehisa M, Takane K, Hiroo I, et al. A hybrid artifical vascular graft based upon and organ preconstruction medel [J]. Trans Am Soc Artif Intern Organs, 1998, 34: 640-643.
    
    [14] Voorhees AB Jr, Jaretzki A, Blakemore AH: The use of tubes constructed of Vinyon N cloth in bridging arterial defects. Ann Surg 1952,135: 332.
    
    [15] Stansby G, Berwanger C, Shukla N, et al: Endothelial seeding of compliant polyurethane vascular graft material. Br J Surg 1994, 81: 1286.
    
    [16] Miller JH, Foreman RK, Ferguson L, Faris I: Interposition vein cuff for anastomosis of prosthesis to small artery. Aust N Z J Surg 1984, 54: 283.
    
    [17] Taylor RS, Loh A, McFarland RJ, et al: Improved technique for polytetrafluoroethylene bypass grafting: Long-term results using anastomotic vein patches. Br J Surg. 1992,79: 348.
    
    [18] Yeung KK, Mills JL Sr, Hughes JD, et al: Improved patency of infrainguinal polytetrafluoroethylene bypass grafts using a distal Taylor vein patch. Am J Surg. 2001, 182:578.
    
    [19] Stonebridge PA, Prescott RJ, Ruckley CV: Randomized trial comparing infrainguinal polytetrafluoroethylene bypass grafting with and without vein interposition cuff at the distal anastomosis. The Joint Vascular Research Group. J Vasc Surg. 1997, 26: 543.
    
    [20] Kansal N, Pappas PJ, Gwertzman GA, et al: Patency and limb salvage for polytetrafluoroethylene bypasses with vein interposition cuffs. Ann Vasc Surg. 1999, 13:386.
    
    [21] Neville RF, Tempesta B, Sidway AN: Tibial bypass for limb salvage using polytetrafluoroethylene and a distal vein patch. J Vasc Surg. 2001,33:266.
    
    [22] Suggs WD, Henriques HF, Depalma RG: Vein cuff interposition prevents juxta-anastomotic neointimal hyperplasia. Ann Surg 1988,207:717.
    
    [23] Greenwald SE, Berry CL: Improving vascular grafts: The importance of mechanical and haemodynamic properties. J Pathol. 2000,190:292.
    
    [24] Gozna ER, Mason WF, Marble AE, et al: Necessity for elastic properties in synthetic arterial grafts. Can J Surg. 1974,17:176.
    
    [25] Friedman DW, Orland PJ, Greco RS: Biomaterials: An historical perspective. In Greco RS (ed): Implantation Biology: The Host Response and Biomedical Devices. Boca Raton, Fla, CRC Press, 1994,p1.
    
    [26] Hess F: History of (micro) vascular surgery and the development of small-caliber blood vessel prostheses. Microsurgery. 1985, 6: 59.
    
    [27] Greisler HP: Characteristics and healing of vascular grafts. In Callow AD, Ernst CB (eds): Vascular Surgery: Theory and Practice. Stamford, Conn, Appleton & Lange. 1995, p 1181.
    
    [28] Davids L, Dower T, Zilla P: The lack of healing in conventional vascular grafts. In Zilla P, Greisler HP (eds): Tissue Engineering of Vascular Prosthetic Grafts. Austin, Tex, RG Landes Company. 1999, p3.
    
    [29] Jonas RA, Ziemer G, Schoen FJ, et al: A new sealant for knitted Dacron prostheses: Minimal cross-linked gelatin. J Vase Surg. 1988, 7:414.
    
    [30] Scott SM, Gaddy LR, Sahmel R, Hoffman H: A collagen coated vascular prosthesis. J Cardiovasc Surg (Torino) 1987, 28:498.
    
    [31]Cziperle DJ, Joyce KA, Tattersall CW, et al: Albumin impregnated vascular grafts: Albumin resorption and tissue reactions. J Cardiovasc Surg. 1992,33: 407.
    
    [32] Nunn DB: Structural failure of Dacron arterial grafts. Semin Vasc Surg. 1999,12: 83.
    
    [33] Wilson SE, Drug R, Muller G, Wilson L: Late disruption of Dacron aortic grafts. Ann Vase Surg. 1997,11:383.
    
    [34] Jonas RA, Ziemer G, Schoen FJ, et al: A new sealant for knitted Dacron prostheses: Minimal cross-linked gelatin. J Vase Surg. 1988,7:414.
    
    [35] De Mo1 Van Otterloo JC, Van Bockel JH, Ponfoort ED, et al: Systemic effects of collagen-impregnated aortoiliac Dacron vascular prostheses on platelet activation and fibrin formation. J Vasc Surg. 1991,14:59.
    
    [36] Prager M, Polterauer P, Bohmig HJ, et al: Collagen versus gelatin-coated Dacron versus stretch polytetrafluoroethylene in abdominal aortic bifurcation graft surgery: Results of a seven-year prospective, randomized multicenter trial. Surgery 130:408, 2001.
    
    [37] Greisler HP: Characteristics and healing of vascular grafts. In Callow AD, Ernst CB (eds): Vascular Surgery: Theory and Practice. Stamford, Conn, Appleton & Lange, 1995, p 1181.
    
    [38] Davids L, Dower T, Zilla P: The lack of healing in conventional vascular grafts. In Zilla P, Greisler HP (eds): Tissue Engineering of Vascular Prosthetic Grafts. Austin, Tex, RG Landes Company, 1999, p3.
    
    [39] Sottiurai VS, Yao JS, Flinn WR, Bason RC: Intimal hyperplasia and neointima: An ultrastructural analysis of thrombosed grafts in humans. Surgery. 1983,93: 809.
    
    [40] Bellon JM, Bujan J, Contreras LA, et al: Similarity in behavior of polytetrafluoroethylene (ePTFE) prostheses implanted into different interfaces. J Biomed Mater Res. 1996, 31: 1,.
    
    [41] Clowes AW, Gown AM, Hanson SR, Reidy MA: Mechanisms of arterial graft failure: 1. Role of cellular proliferation in early healing of PTFE prostheses. Am J Pathol. 1985,118: 43.
    
    [42] Lenz BJ, Veldenz HC, Dennis JW, et al: A three-year follow-up on standard versus thin wall ePTFE grafts for hemodialysis. J Vasc Surg. 1998,28: 464,.
    
    [43] Akers DL, Du YH, Kempczinski RF: The effect of carbon coating and porosity on early patency of expanded polytetrafluoroethylene grafts: An experimental study. J Vasc Surg. 1993,18:10.
    
    [44] Tsuchida H, Cameron BL, Marcus CS, Wilson SE: Modified polytetrafluoroethylene: Indium 111-labeled platelet deposition on carbon-lined and high porosity polytetrafluoroethylene grafts. J Vasc Surg. 1992,16: 643.
    
    [45] Bacourt F: Prospective randomized study of carbon-impregnated polytetrafluoroethylene grafts for below-knee popliteal and distal bypass: Results at 2 years. Ann Vasc Surg. 1997,11:569.
    
    [46] Groegler FM, Kapfer X, Meichelboeck W: Does carbon improve PTFE bypass material? 20th World Congress of the International Union of Angiology, New York, April 2002.
    
    [47] Boretos JW, Pierce WS: Segmented polyurethane: A new elastomer for biomedical applications. Science. 1967,158:1481.
    
    [48] Hess F, Jerusalem C, Steeghs S, et al: Development and long-term fate of a cellular lining in fibrous polyurethane vascular prostheses implanted in the dog carotid and femoral artery. J Cardiovasc Surg. 1992, 33:358.
    
    [49] Marois Y, Paris E, Zhang Z, et al: Vascugraft microporous polyesterurethane arterial prosthesis as a thoraco-abdominal bypass in dogs. Biomaterials. 1996,17:1289.
    
    [50] Zhang Z, Marois Y, Guidoin RG, et al: Vascugraft polyurethane arterial prosthesis as femoro-popliteal and femoro-peroneal bypasses in humans: Pathological, structural and chemical analyses of four excised grafts. Biomaterials. 1997, 18:113.
    
    [51] Santerre JP, Labow RS, Duguay DG, et al: Biodegradation evaluation of polyether and polyester-urethanes with oxidative and hydrolytic enzymes. J Biomed Mater Res. 1994,28:1187.
    
    [52] Eberhart A, Zhang Z, Guidoin R, et al: A new generation of polyurethane vascular prostheses: Rara avis or ignis fatuus? J Biomed Mater Res. 1999,48:546.
    
    [53] Glickman MH, Stokes GK, Ross JR, et al: Multicenter evaluation of a polytetrafluoroethylene vascular access graft as compared with the expanded polytetrafluoroethylene vascular access graft in hemodialysis applications. J Vasc Surg. 2001, 34: 465.
    
    [54] Allen RD, Yuill E, Nankivell BJ, Francis DM: Australian multicentre evaluation of a new polyurethane vascular access graft. ANZ J Surg. 1996, 66: 738.
    
    [55] Tanzi MC, Fare S, Petrini P: In vitro stability of polyether and polycarbonate urethanes. J Biomater Appl. 2000, 14:325.
    
    [56] Salacinski HJ, Odlyha M, Hamilton G, Seifalian AM: Thermo-mechanical analysis of a compliant poly(carbonate-urea)urethane after exposure to hydrolytic, oxidative, peroxidative and biological solutions. Biomaterials. 2002, 23: 2231.
    
    [57] Salacinski HJ, Tai NR, Carson RJ, et al: In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress. J Biomed Mater Res. 2002 , 59: 207.
    
    [58] Edwards A, Carson RJ, Szycher M, Bowald S: In vitro and in vivo biodurability of a compliant microporous vascular graft. J Biomater Appl. 1998, 13: 23.
    
    [59] Salacinski HJ, Tiwari A, Carson RJ, et al: In vivo biocompatibility and biostability of a novel compliant microporous poly(carbonate-urea)urethane vascular graft. Cardiovasc Pathol. 2002, 11: 24.
    
    [60] Phaneuf MD, Dempsey DJ, Bide MJ, et al: Bioengineering of a novel small diameter polyurethane vascular graft with covalently bound recombinant hurudin. ASIAO J 44:M653, 1998.
    [61] Phaneuf MD, Dempsey DJ, Bide MJ, et al: Bioengineering of a novel small diameter polyurethane vascular graft with covalently bound recombinant hurudin. ASIAO J 44:M653,1998.
    
    [62] Bowald S, Busch C, Eriksson I: Arterial regeneration following polyglactin 910 suture mesh grafting. Surgery. 1979, 86:722.
    
    [63] Yue X, van der Lei B, Schakenraad JM, et al: Smooth muscle cell seeding in biodegradable grafts in rats: A new method to enhance the process of arterial wall regeneration. Surgery. 1988,103:206.
    
    [64] Moore WS, Cafferata HT, Hall AD, Blaisdell FW: In defense of grafts across the inguinal ligaments: An evaluation of early and late results of aorto-femoral bypass grafts. Ann Surg. 1968, 168:207.
    
    [65] Lind RE, Wright CB, Lynch TG, et al: Aortofemoral bypass grafting. Microvel Am Surg. 1982,48:89.
    
    [66] Veith FJ, Gupta SK, Ascer E, et al: Six-year prospective multicenter randomized comparison of autologous saphenous vein and expanded polytetrafluoroethylene grafts in infrainguinal arterial reconstructions. J Vasc Surg 1986,3:104.
    
    [67] AbuRahma AF, Robinson PA, Holt SM: Prospective controlled study of polytetrafluoroethylene versus saphenous vein in claudicant patients with bilateral above knee femoropopliteal bypasses. Surgery. 1999, 126:594.
    
    [68] Johnson WC, Lee KK: A comparative evaluation of polytetrafluoroethylene, umbilical vein, and saphenous vein bypass grafts for femoral-popliteal above-knee revascularization: A prospective randomized Department of Veterans Affairs cooperative study. J Vasc Surg. 2000,32:268.
    
    [69] Klinkert P, Schepers A, Burger DH, et al: Vein versus polytetrafluoroethylene in above-knee femoropopliteal bypass grafting: Five-year results of a randomized controlled trial. J Vasc Surg 37:149,2003.
    
    [70] Leikweg WG, Greenfield LJ: Vascular prostheses graft infections: Collected experiences and results of treatment. Surgery. 1997, 81: 335.
    
    [71] Szilagyi DE, Smith RF, Elliot JP, Vrandecic MP: Infection in arterial reconstruction with synthetic vascular graft. Ann Surg. 1972,176: 321.
    
    [72] Goldstone J, Moore WS: Infections in vascular prostheses. Am J Surg. 1974,128: 225.
    
    [73] Ghiselli R, Giacometti A, Goffi L, et al: Prophylaxis against Staphylococcus aureus vascular graft infection with mupirocin-soaked, collagen-sealed dacron. J Surg Res. 2001, 99:316.
    
    [74] Ghiselli R, Giacometti A, Goffi L, et al: Efficacy of rifampicin-levofloxacin as a prophylactic agent in preventing Staphylococcus epidermidis graft infection. Eur J Vasc Endovasc Surg. 2000, 20:508.
    
    [75] Ghiselli R, Giacometti A, Cirioni O, et al: Quinupristin/dalfopristin bonding in combination with intraperitoneal antibiotics prevent infection of knitted polyester graft material in a subcutaneous rat pouch model infected with resistant Staphylococcus epidermidis. Eur J Vasc Endovasc Surg. 2002 , 24:203.
    
    [76] Strachan CJ, Newsom SW, Ashton TR: The clinical use of an antibiotic-bonded graft. Eur J Vasc Surg. 1991,5:627.
    
    [77] Goeau-Brissonniere O, Mercier F, Nicolas MH, et al: Treatment of vascular graft infection by in situ replacement with a rifampicin-bonded gelatin sealed Dacron graft. J Vasc Surg. 1994, 19:739.
    
    [78] Vicaretti M, Hawthorne WJ, Ao PY, Fletcher JP: An increased concentration of rifampicin bonded to gelatin-sealed Dacron reduces the incidence of subsequent graft infections following a staphylococcal challenge. Cardiovasc Surg. 1998, 6:268.
    [79] Vicaretti M, Hawthorne W, Ao PY, Fletcher JP: Does in situ replacement of a staphylococcal infected vascular graft with a rifampicin impregnated gelatin sealed Dacron graft reduce the incidence of subsequent infection? Int Angiol. 2000,19:158.
    
    [80] Vicaretti M, Hawthorne W, Ao PY, Fletcher JP: Does in situ replacement of a staphylococcal infected vascular graft with a rifampicin impregnated gelatin sealed Dacron graft reduce the incidence of subsequent infection? Int Angiol. 2000,19:158.
    
    [81] D'Addato M, Curti T, Freyrie A: Prophylaxis of graft infection with rifampicin-bonded Gelseal graft: 2-year follow-up of a prospective clinical trial. Italian Investigators Group. Cardiovasc Surg. 1996,4:200.
    
    [82] Pratesi C, Russo D, Dorigo W, Chiti E: Antibiotic prophylaxis in clean surgery: Vascular surgery. J Chemother. 2001,13:123.
    
    [83] Earnshaw JJ, Whitman B, Heather BP: Two-year results of a randomized controlled trial of rifampicin-bonded extra-anatomic Dacron grafts. Br J Surg. 2000, 87:758.
    
    [84] Lambert AW, Fox AD, Williams DJ, et al: Experience with heparin-bounded collagen-coated grafts for infrainguinal bypass. Cardiovasc Surg. 1999,7:491.
    
    [85] Devine C, Hons B, McCollum C: Heparin-bounded Dacron or polytetrafluoroethylene for femoropopliteal bypass grafting: A multicenter trial. J Vasc Surg. 2001,33:533.
    
    [86] Begovac PC, Thomson RC, Fisher JL, et al: Improvements in Gore-tex vascular graft performance by Carmeda Bioactive Surface heparin immobilization. Eur J Vasc Endovasc Surg. 2003,25:432.
    [1]任杰,杨爽.生物医用材料--聚乳酸的表面改性研究进展 北京生物医学工程[J]2004,23(4):299-302.
    [2]潘长江,王进,孙鸿等,等离子体表面改性涤纶材料的血浆蛋白吸附与血小板黏附行为研究 生物医学工程杂志[J]2004:2(14):536-540.
    [3]Alves CM,Yang Y,Marton D,et al.Plasma surface modification ofpoly(D,L-lactic acid) as a tool to enhance protein adsorption and the attachment of different cell types.J Biomed Mater Res B Appl Biomater.[J]2008,21;87B(1):59-66.
    [4]Silva SS,Luna SM,Gomes ME,et al.Plasma surface modification of chitosan membranes:characterization and preliminary cell response studies.Macromol Biosci.[J]2008,11;8(6):568-76.
    [5]Ren TB,Weigel T,Groth T,Lendlein A.Microwave plasma surface modification of silicone elastomer with allylamine for improvement of biocompatibility.J Biomed Mater Res A.[J]2008,86(1):209-19.
    [6]Zhang W,Chu PK,Ji J,et al.Plasma surface modification ofpoly vinyl chloride for improvement of antibacterial properties.Biomaterials.[J]2006,27(1):44-51.
    [7]D.J.Wilson,N.P.Rhodes,R.L.Williams,Surface modification of a segmented poly etherurethane using a low-powered gas plasma and its influence on the activation of the coagulation system.Biomaterials[J]2003,24(28):5069-5081.
    [8]V.N.Vasilets,G.Hermel,U.Konig,et al.Microwave CO2 plasma-initiated vapour phase graft polumerization of acrylic onto polytetrafluoroethylene for immobilization of human thrombomodulinm.Biomaterials[J]1997,18(17):1139-1145.
    [9]P.Liu,Y.S.Chen,Surface sulfonation of polyvinyl chloride by plasma for antithrombogenicity.Plasma Sci.Tech.[J]2004,6(3):2328-2332.
    [10].J.W.Gu,X.L.Yang,H.S.Zhu,Surface sulfonation of silk fibroin film by plasma treatment and in vitro antithrombogenicity study.Mater.Sci.Eng.[J]2002,C20(1-2):199-202.
    [11]刘鹏,陈亚芍,张丽惠,聚四氟乙烯表面共价键结合肝素及抗凝血性的研究.功能高分子学报[J]2004,17(1):35-40.
    [12]Y.S.Chen,ELiu.Surface modification of polyethylene by plasma pretreatment and UV induced graft polymerization for improvement of antithrombogenicity.J.Appl.Polym.Sci.[J]2004,93(5):2014-2018.
    [13]Y.Q.Wang,X.Qu,J.Lu,et al.Characterization of surface proporty of poly(lactide-co-glycolide) after oxygen plasma treatment.Biomaterials.[J]2004,25(19):4777-4783.
    [14]Y.Q.Wang,J.Wang,J.L.Yang,et al.Cell adhesion on gaseous plasma modified poly-(L-lactide)surface under shear stress field.Biomaterials[J]2003,24(21):3757-3764.
    [15]Z.H.Cheng,S.H.Teoh,Surface modification of ultra thin poly(epsilon-caprolactone) films using acrylic acid and collagen.Biomaterials[J]2004,25(11):1991-2001.
    [16]Z.Ding,J.N.Chen,S.Y.Gao,et al.lmmobilization of Chitosan onto poly-L-lactic acid film surface by plasma graft polymerization to control the morphology of fibroblast and liver cells.Biomaterialsm[J]2004,25(6):1059-1067.
    [17]L.D.Etomaso,R.Gristina,G.S.Senesi,et al.Stable plasma-deposited acrylic acid surfaces for cell culture applications.Biomaterials[J]2005,26(18):3831-3841.
    [18]E.P.J.M.Everaert,D.B.G.Van,D.M.H.C.Van,et al.In vitro and in vivo microbial adhesion and growth on argon plasma-treated silicone rubber voice protheses.J.Mater.Sci.Mater.in Med.[J]1998,9(3):147-157,
    [19]J.Wang,N,Huang,C.J.Pan,et al.Bacterial repellence from polyethylene terephthalate surface modified by acetylene plasma immersion ionimplantation-deposition.Surf.Coat.Tech.[J]2004,186(12):299-304.
    [20]王琴梅,潘仕荣.异氰酸酯法制聚氨酯表面接枝聚甲基丙烯酸羟乙酯.生物医学工程学杂志[J]1999,16(增刊):92-93.
    [21]Hamilton L M,Green A,Edge S,et al.The surface modification of polyerthylene by solution-phase photochemical grafting using short irration times.J.App.Poly Sci.[J]1994,152:413-419.
    [22]吴刚,万昌秀,赵强等.紫外辐照在PET膜表面接枝氨基酸的研究 四川大学学报[J]2000,37:565-571.
    [23]Guan J J,Gao C Y,Feng L X,et al.Surface photo-grafting of polyurethane with 2-hydroxyethyl acrylate for promotion of human endothelia cell adhesion and growth,J Bio Sci Poly Edi[J]2000,11:523-536.
    [24]高长有,袁骏,管建均等明胶在聚氨酯表面的固定化及其对内皮细胞生长的促进作用 高等学校化学学报[J]2002,23:1210-1212.
    [25]Ma Z W,Gao C Y,Ji J,et al.Surface modification of poly-L-lactic acid(PLLA) membrane by grafting acrylamine:an effective way to improve cytocompatibility for chondrocyte.J Bio Sci Poly Edi.[J]2003,14:13-25.
    [26]Hong Y,Gao C Y,Guan J J.et al.Influence of Quanternized Polyurethane Membrane Surfaces on Human Endothelial Cell Attachment and Growth.J Bio Comp Poly[J]2003,18:191-228.
    [27]Gao C Y,Hu X H,Hong Y,et al.Photo grafting of poly(hydroxylethyl acrylate) onto porous PU scaffolds to improve their endothelial cell compatibility.J Biomater Sci Polym Ed.[J]2003,14:937-950.
    [28]Zhu Y B,Gao C Y,Guan J J,et al.Promoting the cytocompatibility polyurethane scaffolds via surface photo-grafting polymerization of acrylamine.J Mat Sci,Mat Med[J]2004,15:283-289.
    [29]李昌荣,王向晖,郑志宏等.功能材料与器件学报[J]2002,8(1):63-68.
    [30]Kimura M,Takai M,Ishihara K.Tissue-compatible and adhesive polyion complex hydrogels composed of amphiphilic phospholipid polymers.J Biomater Sci Polym Ed.[J]2007;18(5):623-40.
    [31]Patel JD,Iwasaki Y,Ishihara K,Anderson JM.Phospholipid polymer surfaces reduce bacteria and leukocyte adhesion under dynamic flow conditions.J Biomed Mater Res A.[J]2005;73(3):359-66.
    [32]Iwasaki Y,Tojo Y,Kurosaki T,Nakabayashi N.Reduced adhesion of blood cells to biodegradable polymers by introducing phosphorylcholine moieties.J Biomed Mater Res A.[J]2003;65(2):164-169.
    [33]Bosiers M,Deloose K,Verbist Jet al.Heparin-bonded expanded polytetrafluoroethylene vascular graft for femoropopliteal and femorocrural bypass grafting:12year results.J Vasc Surg,[J]2006,43(2):318-319.