BMP-2、VEGF基因修饰组织工程骨的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于外伤、感染、肿瘤等因素使骨丧失了一些骨质,形成较大的间隙,称为骨缺损。在临床治疗上,骨缺损一直是常见的、难以治疗的疾病。目前主要采用自体骨,异体骨,人工合成替代物来进行修复,但这些方法都存在不足之处,难以满足临床上治疗的需要。随着组织工程学的发展,为治疗骨缺损提供了一条全新的道路。其基本方法是将体外培养的高浓度的功能相关的活细胞接种于天然的或人工合成的、具有良好的生物相容性和可降解性的支架材料上,在生物反应器或其它体外构建环境中形成细胞/支架复合物,然后将这种复合物移植到动物体内组织缺损部位,最终完成组织缺损的修复和再造。在骨组织工程学的研究中,种子细胞、支架材料、细胞因子是三大要素。体外构建的组织工程骨是细胞与材料的复合体,自身无营养来源,植入体内后,依靠血液-细胞间液为种子细胞提供营养及氧气。若植入区血供不良或植入物血管化过程较长,附着在支架上的种子细胞可因缺乏营养而出现代谢紊乱,细胞增殖、分化及分泌功能受损甚至死亡,使得骨沉积作用不能有效替代降解的生物材料。近年来,组织工程骨的血运构建问题的重要性日益彰显,复合细胞的支架植入体内后,必须建立血运循环后,才能存活并行使其功能,因此,血运重建已被认为是骨组织工程的第四要素。
     本研究的目的是通过基因工程,细胞工程和组织工程学,构建一种能够具有这四大要素的组织工程骨,具有更高的成骨、成血管能力,以满足修复大段骨缺损的需要。利用贴壁法分离鼠的骨髓间充质干细胞,通过镜下观察细胞形态、流式细胞仪检测细胞周期、MTT法检测其生长特性、检测表面标记物、多方向诱导分化鉴定所分离细胞。构建BMP-2、VEGF基因及双基因的重组质粒,以骨髓间充质干细胞为靶细胞,进行基因转染。通过ELLISA、免疫组化等方法,证实目的基因能够在靶细胞中高表达。将骨髓间充质干细胞及转染细胞与nano-HA/PLGA支架材料复合,观察细胞与支架材料复合情况。本研究为进一步构建在体内具有成骨、成血管能力的组织工程骨提供了理论及实验数据。
Bone defect is sclerotin loss for the reasons of trauma、infection and tumor.In osteology clinic,Bone defect is the common and hard treated disease. Autogeneic bone transplantation,artifical synthesis surrogate transplantation as well as vascular anatomizes bone transplantation are the traditional strategies used at present.Following the development of tissue engineering,a new way to heal the bone defect is found.The basic method is to culture in vivo the living cells into the scaffolds,formating a compound of cells and scaffolds. Then,the compound is transplanted to the position of bone defect,to repair and reconstructi the defect.Seed cells、scaffolds and cell factors are the three critical elements of the tissue engineering bone.The compound of cells and scaffolds constructed in vitro has to get the nutrition and oxygen by blood and intracellular fluid after implantation. Poor blood supply of planting areas or long revascularization would result in nutrition deficiency of the seed cells grow on the scaffold,which leads to disorders in cell metabolism,proliferation,differentiation and secretion, at last, devitalizing of the cells. the transplanted bone would just act as a pure bone transduction material and lost the osteogenesis ability. In recent,the important of revascularization of tissue engineering bone is thought highly. Fast revascularization of combination after tissue engineering bone transplantation is the premise for keeping the vitality and activity.For this reason, the revascularization has been considered as the quartus element of tissue engineering bone.
     BMSCs(bone mesenchymal stem cells)is one of good seed cells of tissue engineering bone,have the potential ability of ossific differentiation.In the specified environment, BMSCs can be induce to the osteoblast,encourage the reparative process of bone defect.For this reason,BMSCs are generally used on the field of bone tissue engineering.The utilization of many differentiation factors and inducing factor in region has the effect of promoting the osteanagenesis.The compound of BMSCs and scaffolds is not good at repairing the bone defect. The utilization of cell factors in region has the shortages such as short time leng、repeate administration、too espensive.In the view of endogenous bone growth factor,the gene treatment is gradually used on the field of bone tissue engineering,unfolding the enormous potentiality.Now we can introduce the gene of code cell factors into BMSCs,complex the scaffolds ,implant the compound to the bone defect.The cell will keep on producing the cell factors in region.With the autocrine and paracrine,the factors induce BMSCs to bone formation,promote the reparation of bone defect.
     In the numerous bone growth factors, bone morphogenetic protein(BMP) is one of the most important,it is regarded as the most fortis osteoinductive factor.VEGF is not only to promote the hyperplasy of endothelial cell and vasculogenesis,but also evident osteogenesis. Therefore,BMP-2 and VEGF gene transfer into BMSCs,and use the cells to construct the tissue engineering bone,this method will promote the osteogenesis,and accelerate the vascular production in region at the same time.It is the better to meet the demand of the clinical.The nanometer materials is the new biomaterial appeared recently.The nano-HA is regarded as a kind of ideal scaffold,because the structure of nano-HA is similar with nature bone.The nano-HA can not use as scaffold alonely for it’s high fragility.The compound of nano-HA and high molecular polymer improve the high fragility of nano-HA,and compensate the descend of PH that cause by the degradation of high molecular polymer, conduce to prevent aseprtic inflammation.
     This research approach the relation of BMP-2 and VEGF,and osteoplastic effect.We hope to find a way that can construct a kind of tissue engineering bone which have the ability of ossify and accomplish vessel.
     This experiment was composed of four portions.The main method、consequence and conclusion decribed as follows:
     1.Isolation,culture and identification of rabbit BMSCs(bone mesenchymal stem cells).
     Isolation,culture of rabbit BMSCs is get from the tibia of wistar rat 5 days after birth according adherent.The BMSCs were certified by observation of morphology,determination of generation cycle,detection of surface marker.The cells have the favourable reproductive activity. With the appreciation,the cells can be induced to poly-directions.
     2.Consturction of eukaryotic expression vector
     The plasmids of pEGFP-N1/VEGF, pEGFP-N1/BMP-2 and pEGFP-N1/VEGF-BMP2 were constructed with gene recombinant technique by extraction of RNA. Through the sequencing ,compared with Genebank, identited by restriction enzyme,we certificated that the plasmid was right.
     3.Expression of BMSCs after cells transfected BMP-2、VEGF gene in Vitro
     These gene plasmids(pEGFP-N1/BMP-2、pEGFP-N1/VEGF、pEGFP-N1/BMP2-VEGF) were transfected into BMSCs by liposome in Vitro, fluorescence microscope observe eells culture after BMSCs transfected.The expression of purpose gene mRNA was detected by RT-PCR.The protein of cells transfected was detected by ELISA.
     4.Construction of the gene modified tissue engineering bone in vitro
     The nano-HA/PLGA scaffold was co-cultured with BMSCs and cells transfected.The compt tissue engineering bone was constructed.Cells was able to culture well with scaffold,conformed by digestion and canning electron microscope(SEM). The status that inorganic sedimentum was found in the scaffolds defferent degree. Bone salts deposited on the scoffild by the effect of cells.Compt tissue engineering bone was constructed invitro.
引文
[1]Crane GM,Ishaug SL,Mikos AG.Bone tissue engineening.Nature Medicine,1995, 1(12):1322.
    [2]Lane JM, Tomin E,Bostran MP.Biosynthetic bone grafting[J].Clin Orthop, 1999;367(suppl):s107-117
    [3]Tobin NG,Richard LM,Stephen JK,et al.In vitro characterization and biomechanical optimization of a biodegradable partoculate composite bone cement[J]. Biomed Mater Res,1998;22:1071.
    [4]郑昌琼,冉均国.无机生物材料.成都科技大学出版社,1996.
    [5]俞耀庭,张兴栋.生物医学材料学.天津大学出版社,2000.
    [6]Borden M, Attawia M, Laurencin CT, et al. The sintered microsphere matrix for bone tissue engineering: in vitro osteoconductivity studies[J]. BiomedMater Res, 2002,61:421-429.
    [7]Badylak SF.The extracellular matrix as a scaffold for tissue reconstruction[J]. Semin Cell Dev Biol,2002,13(5):377-383.
    [8]Bohner M. Caleium orthophosphates in medicine: from ceramics to Calcium phosphate cements.Injury.2000;31(supp4):SD37-SD47.
    [9]赵金忠,曾炳芳.带血运骨膜移植和骨填充物修复挠骨长段缺损的研究.中国修复重建外科杂志.2003;17(1):9-12.
    [10]Cuneyt AT, Korkusz F, Timucin M, et al.An investigation of the chemical synthesis and high-temperature sintering behavior of calcium hydroyapatite(HA) and tricalcium phosphate(TCP) bioceramics[J].ater ci mater med,1997,8:916.
    [11]Hinz P,Wolf E,Schwesinger G,Hartelt E,Ekkernkamp A.A new resorbable bone void flller in trauma:early clinical experience and histologic evaluation. Orthopedics.2002:25(suppl):S597-S600.
    [12]Szpalski M,Gunzburg R. Applications of calcium phosphate-based Cancellous bone void filters ni trauma surgery. 0rthopedics. 2002: 25(suppl): S601-S609.
    [13]Medaows GR.Adjunctive use of ultra-porous beta-tricalium Phosphate bone voidfiller in spinal arthrodesis.Orthopedics.2002:25(suppl):S579-S584.
    [14]Linovitz RJ,Peppers TA. Use of advanced formulation of Beta-tricalcium phosphate as a bone extender in interbody lumbar fusion.Orthopedics. 2002; 25(suppl):S585-S589.
    [15]Gunzbugr R,Szpalski M. Use of a novel beta-tricalcium Phosphate-based bone void filler as a graft extender in spinal fusion surgeries. Orthopedics. 2002;25(suppl):S591-S595.
    [16]Gu HQ,Xu GF.Biomedical materials[M],Tianjin: Tianjin Science and Translation Publishing Corporation,1993:403-418.
    [17]Kawanabe K, Iida H, Matsusue Y, et al.A-W glass ceramic as a bone substitute in cemented hip arthroplasty:15 hips followed 2-10 years Acta Orthop Scand. 1998 Jun;69(3):237-42.
    [18]Zhong JP, Greenspan DC. A microstructural examination of apa-tite induced by bioglass in vitro[J]. Mate Sci: M sterials in medi-cine, 2002,13: 321-322.
    [19]Buranapanitkit B, Srinilta V, Ingviga N, Oungbho K, Geater A, Ovatlarnporn C. The efficacy of a hydroxyapatite composite as a biodegradable antibiotic delivery system. Clin Orthop Rwlat Res.2004 Jul:(424):244-52.
    [20]YANG XQ,LI YB,WEI J,et al. Preparation and property study of medical HA/TiO2 Nano-composite[J]. China Journal of Modern Medicine,2003,13(5): 26-28.Chinese.
    [21]DORNER-REISEL A,KLENN V, IRMER G,et al. Nano and microstructure of short fibre reinforced and unreinforced hydroxyaptite[J].Biomed Tech (Berl), 2002, 47(1) Pt1: 397-400.
    [22]Webster TJ,Egrun C,Doermus RH,etal. Specific proteins mediate enhanced Osteoblast adhesion nanophase ceramics[J].Biomed Mater Res,2000,51(3):475-83.
    [23]Webster TJ , Siegel RW,Bizios R.Osteoblast adhesion on nanophase ceramics [J].Biomaterials,1999,20:1221-1227.
    [24]Khan YM, Katti DS, Laurencin CT, et al. Novel polymer-synthesized ceramic composite-based system for bone repair: An in vitro evaluation. [J] Biomed Mater Res,2004,69A:728-737.
    [25]Kikuchi M, Itoh S, Ichinose S, et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials[J].2001, 22: 1705-1711.
    [26]Lu HH, El-Amin SF, Scott KD, et al. Three-dimensional,bioactive, biodegradable, polymer-bioactive glass composite scaffolds with improved mechanical properties support collagen synthesis and mineralization of human osteoblast-like cells invitro. Biomed Mater Res[J]. 2003,64A:465-474
    [27]Zhang Y, NiM, Zhang M, et al. Calcium phosphate– chitosan composite scaffolds for bone tissue engineering. Tissue Eng[J].2003,9:337-345.
    [28]Liao SS, Cui FZ, Zhang W, et al. Hierarchically biomimetic bone scaffold materials: nano - HA / collagen /PLA composite.BiomedMater Res[J]. 2004, 69B: 158-165.
    [29]Ricco V, Della-Ragione F, Marrone G,et al. Cultures of human embryonic osteoblasts. Clin Orthop[J].1994,308:73-78.
    [30]Robey PG. Collagenase treated trabecular bone fragments: a rep ro-ducible source of cells in the osteoblastic lineage. Calcif Tissue Int.1995,56(S1):1-2.
    [31]Malekzadeh R , Hollinger JO,Buck D,et al. Isolation of human osteoblast differentiation in vitro a mp lification for tissue engineering. Periodontol[J]. 1998,69:1256-1262.
    [32]Nuttal ME,Patton AJ,Olivera DL,et al. Human trabeeular bone cells are able to express both Osteoblastic and adipocytic phenotype: impli- cations for osteopenic disorders.J Bone Miner Res[J].1998,13(3):371-382.
    [33]Nakahara H,Dennis JE,Brudee SP,etal.In vitro differentiation of bone and hypertrophic cartilage from perioseal-derived cells[J]. Ex- perimental cell Reseacrh ,1991,195:492-590.
    [34]Breitbart AS, Grande DA, Kessler R, et al. Tissue engineered bone repair of calvarial defects using cultured periostesl cells[J]. Plast Reconst Surg.1998,101:567-574.
    [35]Puelaeher WC,Vacanti PJ,Ferraro NF,etal. Femoral shaft reconstruction usingtissue-engineered growth of bone.Int J Oral Mxaillotac surge[J].1996,25(3):223.
    [36]Nakahara H,Goldberg VM,Caplan AI. Cultured-expanded periosteal-der- ived cells exibit osteochondrogenic potential in porous calcium phosphate ceramics in vivo. Clin Orthop,1992,267:291.
    [37]Koshihara Y,Horano M,Kwamaura M,et al. Mineralization ability of cultured human Osteoblast-like periosteal cells does not decline with aging[J].J Geronto,1991,46:201.
    [38]Pittenger MF, Mackay AM, Jaisdwal SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284(5411): 143-147.
    [39]Akita S,Fukui M,Nakagawa H.Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor[J],Wound Repair Regen.2004,12: 252-259.
    [40]Bruder SP,Jaiswal N,Haynesworth SE. Growth kinetics,self-renewal,and the osteogenic potential of purified human mesenchymal stem cells during extensive subculativation and following cryopreservation[J]. J Cell Bioehem,1997,64(2):278-94.
    [41]Burder SP, Foc BS. Tissue engineering of bone: cell based strategies[J]. Clin OrthP Relat Res,1999,367(51):68-83.
    [42]Falla N , Van Vlasselaer , Bierkens J , et al. Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine Bone marrow[J]. Blood,1993,82(12):3580-91.
    [43]Aubin JE. Osteoprogenit or cell frequency in rat bone marrow stromal populations: role for heterotypic cell-cell interaction in osteoblast differentiation[J]. J Cell Bioehem,1999,72(3):396-410.
    [44]Lieberman JR, Daluiski A, Stevenson S, et al. The effect of gene therapy with bone morphogenetic protein-2 producing bone marrow cells on the repair of segmental femoral defects in rats[J]. J Bone Joint SurgAm, 1999,81(7):905-917.
    [45]Sowa H,Kaji H,Hendy GN ,etal,Menin is required for BMP-2 and TGF-beta regulated osteoblastic differentiation through interaction with Smads and Runx2[J],J BiolChem.2004,18.
    [46]Fleming JE, Cornell CN, Muschler GF. Bone cells and matrices in orthopedic tissue engineering[J]. Orthop Clin North Am 2003,34(3):357-61.
    [47]饶寒敏,徐荣辉,朱雅萍,等.成纤维细胞成骨潜能的体外培养研究.中华骨科杂志,1995,15(12):845-7.
    [48]Williams JT, Southerland SS,Souza J,et al. Cells isolated from adult Human skeletal muscle capable of differentiating into multiple mesodermal phenotype[J]. Am Surg,1999,65(1):22-6.
    [49]Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue:implications for cell-based therapies[J]. Tissue Eng 2001,92:211- 6.
    [50]Halvorsen YD,Franklin D,Bond AI,et al. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells[J].Tissue Eng,2001,7(6):729-41.
    [51]Thomson JA,Itskovitz-Eldor J,Shpairo SS,et al. Embryonic stem Cell lines derived from human blastocysts. Science,1998,282 (5391):1145-1147.
    [52]Buttery L,Bourne S,Xynos J,et al. Differentiation of osteoblasts And in vitro bone formation from murine embryonic stem cells[J].Tissue Engineering,2001,7(l):89-99.
    [53]Phillips BW, Belmonte N , Vernochet C, et al. Compactin enhances osteogenesis in murine embryonic stem cells[J]. Biochem Biophys Res Commun ,2001, 284(2):478-484.
    [54]Bielby RC, Boccaccini AR , Polak JM , et al. In vitro differentiation and in vivo mineralization of osteogenic cells derived from human embryonic stem cells[J]. Tissue Eng ,2004,10(9-10):1518-1525.
    [55]Sottile V , Thomson A , McWhir J. In vitro osteogenic differentiation of human ES cells[J]. Cloning Stem Cells ,2003,5(2):149-155.
    [56]Suda Y, Suzuki M , Ikawa Y, et al. Mouse embryonic stem cells exhibit indefinite proliferative potential[J]. J Cell Physiod, 1987, 133: 197-201 .
    [57]Reubinoff BE, Peva MF, Fong CY,et al. Embryonic stem cell lines from humanblastocysts: somatic differentiation in vitro[J]. Nat Biotechnology, 2000, 18(4): 399-404.
    [58]Collins K, Mammalian telomeres and telomerase[J]. Curr Opin Cell Biol,2000,12(3):378-83.
    [59]Cheng SL, Lou J, Wright NM, et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene[J]. Calcif Tissue Int 2001;68(2):87-94.
    [60]Shi S,Gronhtos S,Chen SQ,etal. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotech,2002,20(6):587-91.
    [61]Breitbart AS, Grande DA, Mason JM, et al. Gene-enhanced tissue enginee- ring: application for bone healing using cultured periosteal cells transduced retrovirally with the BMP-7 gene[J]. Ann Plast Surg. 1999,42(5):488-95.
    [62]Moutsatsos IK, Turgeman G, Zhou S, et al. Exogenously regulated stem cell mediated gene therapy for bone regeneration. Mol Ther 2001; 3(4): 449-61.
    [63]Urist MR. Bone formation by autoinduction. Science,1965,150(698): 893-899.
    [64]Wozney JM, Rosen V, Celeste AJ, et al. Novel regulators of bone formation:molecular clones and activities[J].Science.1988 16;242(4885):1528-34.
    [65]Kawasaki K,Aibara M,Honmo J,et al. Effects of recombinant Human bone morphogenetic protein一2 on differentiation of cells Isolated from human bone,muscle,and skin[J]. Bone,1998,23(3):223.
    [66]Cook SD, Salkeld SL, Brinker MR, et al. Use of an osteoinductive biomaterial(rhOP-1)in healing large segmental bone defects[J]. J Orthop trauma,1998,12(6):407-412.
    [67]Sellers RS, Zhang R, Glasson SS, et al. Repair of articular cartilage defects one year after treatment with recombinant human bone morphogenetic protein-2(rhBMP-2)[J].J Bone Joint Surg Am.2000 Feb;82(2):151-60.
    [68]Urist MR,Lietze A,Mizutnai H,etal.A bovine low molecular weight bone morphogenetic protein(BMP) fraction.Clin Orhtop Relat Res.1982 162: 219-232.
    [69]Turk AE. Enhanced healing of large cranial defects by an osteoinductive protein in rabbits. Plast Reconstr Surg.1993,92(4):593-600.
    [70]Mussano F, Ciccone G, Ceccarelli M, et al. Bone morphogenetic proteins and bone defects: a systematic review[J]. Spine, 2007, 32(7):824-830.
    [71]Okazaki H, Kurokawa T, Nakamura K, et al. Stimulation of bone formation by recombinant fibroblast growth factor-2 in callotasis bone lengthening of rabbits[J]. Calcif Tissue Int, 1999, 64(6): 542-546.
    [72]Goldring MB,Golding SR. Skeletal tissue response cytokines[J]. Clin Orthop,1990,258:245.
    [73]Kham SN,Bosrrom MP, Lane JM. Bone growth factors[J]. Orthop Clin North Am,2000,31(3):375.
    [74]Miura Y, Parvizi J, Fitzsimmons JS, et al. Brief exposure to high-dose transforming growth factor-betal enhances peiiosteal chondrogenesis in vitro: a preliminary report[J]. J Bone Joint Surg (Am), 2002, 84-A(5):793-799.
    [75]Rosen CJ. Insulin-like growth factor system and bone[J]. Current Opinion in Endocrinology & Diabetes, 2001, 8(6): 277-282.
    [76]Nash TJ, Howlett CR, Martin C, et al. Eff ect of platelet-derived growth factor on tibial orteotomies[J]. Bone, 1994, 15(2): 203-208.
    [77]Lee JY, Nam SH, Im SY, et al. Enhanced bone formation by controlled growth factor delivery from chitosan-based biomaterials[J]. J Control Release, 2002, 78(1-3): 187-197.
    [78]Mohan S,Baylink DJ. Bone growth Factor[J]. Clin Orthop,1991,263:30.
    [79]王松,张晛,陈国庆,等.骨质疏松骨折愈合中软骨细胞凋亡与血管内皮生长因子的表达.解剖学杂志, 2004, 27(2): 162-165.
    [80]Frelin C, Ladoux A, Dangelo G. Vascularendothelial growth factors and angiogenesis. Ann Endocrinol Paris, 2000, 61(1): 70-74.
    [81]Wang DS, Miura M, Demura H, et al. Anabolic effects of 1,25-dihydro- xyvitamin D3 on os teoblas ts are enhanced by vascular endothelial growth factor produced by os teoblasts and by growth factors produced by endothelial cells[J]. Endocrinology 1997;138(7):2953-2962.
    [82]Ferrara N, Davis -Smyth T. The biology of vascular endothelial growth factor. Endocr Rev 1997;18(1):4-25.
    [83]Spector JA , Mehrara BJ , Greenwald JA , et al. Os2teoblast expression of vascular endothelial growth factor is modulated by the extracell- ular microenvironment[J]. Am J Physiol Cell Physiol ,2001 ,280 (1) :C72.
    [84]Mayr-Wohlfart U , Waltenberger J , Hausser H , et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts[J]. Bone, 2002, 30(3):472-7.
    [85]Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A[J]. Endocrinology,2002,143(4):1545-1553.
    [86]Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implicat- ions for fracture healing[J]. Plast Reconstr Surg, 2002, 109(7): 2384-2397.
    [87]Peng H, Wright V, Usas A, et al. Synergis tic enhancement of bone formation and healing by s tem cell-expres sed VEGF and bone morph- ogenetic protein-4[J]. J Clin Inves t 2002;110(6):751-759.
    [88]Bouletreau PJ , Warren SM , Spector JA , et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells : implications for fracture healing[J]. Plastic and Reconstructive Surgery,2002, 109(7):2384.
    [89]Bab I, Gazit D, Muhlrad A, et al. Regenerating bone marrow produces a potent growth-promoting activity to osteogenic cells. Endocrinolo- gy, 1988, 123(1):345-352.
    [90]Bab I,Gazit D,Chorev M, et al. Histone H4-related osteogenic growth peptide(OGP):a novel circulating stimulator of osteoblastic activity[J] .ENBO J,1992,11(5):1867-1873.
    [91]Robinson D,Bab I,Nevo Z. Osteogenic growth peptide regulates proliferation andosteogenic maturation of human and rabbit bone marrow stromal cells[J]. J Bone Miner Res,1995,10:690.
    [82]Gabrin N, Gavish H, Muhlrad A, et al. Mitogenic G(i) protein-MAP kinase signaling cascade in MC3T3-E1 osteogenic cells: activation by C-terminal pentapeptide of osteogenic growth peptide [OGP(10-14)] and attenuation of activation by cAMP[J]. J Cell Biochem. 2001;81(4): 594-603.
    [93]王智兴,李群,张明,等.成骨生长肤对成骨细胞的分化和成骨作用[J].上海第二医科大学学报,2002,20(3):227.
    [94]Kneser U, Kaufmann PM, Fiegel HC, et al. J Biomed Mater Res,1999,(3):494-503.
    [95]Griffith LG, Naughton G. Tissue engineering-current challenges and expanding opportunities. Science, 2002,295(5557):1009-1014.
    [96]Niklason LE, Langer RS. Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol.1997;5(4):303-306.
    [97]Kofron MD,Zhang JX,Lieberman JR,et al.Genetically modified mesodermal derived cells for bone tissue engineering[J]. IEEE Eng Med Biol Mag. 2003; 22(5):57-64.
    [98]Cai S, Ma Q, Yu X, et al. Expression of human VEGF(121)cDNA in mouse bone marrow stromal cells[J]. Chin Med J(Engl).2002;115(6):914-918.
    [99]Stone D, Phaneuf M, Sivamurthy N, et al. A biologically active VEGF construct in vitro:implications for bioengineering-improved prosthe- tic vascular grafts[J].J Biomed Mater Res.2002;59(1):160-165.
    [100]Risau W. Mechanisms of angiogenesis. Nature.1997;386(6626):671-674.
    [101]Canneliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med. 2000:6(4):389-395.
    [102]杨志明,樊征夫,谢慧琪,等.组织工程化人工骨血管化研究[J].中华显微外科杂志, 2002, 25(2):119.
    [103]Kaigler D,Krebsbach PH,Polverini PJ, etal. Role of vascular endothelial growth factor in bone marrow stromal cell modulation of endothelial cells. Tissue Eng,2003Feb;9(l):95-103.
    [104]Frerich B, Kurtz-Hoffmann J, Lindemann N,et al.Tissue engineering of vascularized bone and soft tissue transplants. Mund Kiefer Gesichtschir. 2000, 4(Suppl 2):490-495.
    [105]Norrby K. Angiogenesis: new aspects relating to its initiation and control[J]. Nat Med, 1995, 1: 1024.
    [106]Henry TD. Therapentic angiogenesis. Br Med J. 1999;318(7197)1536-1539.
    [107]Horta BA, Crino JJ, Alencastro RB. Dynamical behavior of the vascular endothelial growth factor:biological implicationa.Proteins.2007; 67(3): 517- 525.
    [108]Murphy WL, Simmons CA, Kaigler D, et al.J Dent Res,2004, 83(3);204-210.
    [109]Sheridan MH,Shea LD,Peters MC,etal. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release,2000 Feb 14;64(1-3):91-102.
    [110]Saadeh PB,Mehrara BJ,Steinbrech DS,etal.Transforming growth factor-betal modulates the expression of vascular endothelial growth factor by osteoblasts. Am J Physiol,1999,277(4):C628-637.
    [111]杨志明.组织工程,北京,化学工业出版社,2002,97-98.
    [112]Goad DL,Rubin J,Wang H,et al. Enhanced expression of vascular endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. Endocrinology,1996,Jun; 137(6):2262-8.
    [113]Bouletreau PJ , Warren SM , Spector JA , et al. Factors in the fracture microenvironment induce primary osteoblast angiogenic cytokine production. Plast Reconstr Surg,2002 Jul;110(l):139-148.
    [114]Poussa M.The effect of the thickness of the cortical one on bone for mation by osteoperiosteal graft,A comparative study employing routine histological stains and triple fluorochrome labeling.Acta Orthop Scand, 1980, 51:29-35.
    [115]Philippe P,Franck Villars,Simone MP.Influences of vascularization and osteogenic cells on heterotopic bone formation within a madreporic ceramic in rats.Plast RecSurg,2003;111:1931-1941.
    [116]Kneser U, Polykandriotis E, Ohnolz J, et al. Engineering of vascular- ized transplantable bone tissues: induction of axial vascularization in an osteoconductive matrix using an arteriovenous loop. Tissue Eng,2006,12(7):1721-1731.
    [117]Polykandriotis E, Horch RE, Arkudas A, et al. Intrinsic versus extrinsic vascularization in tissue engineering. Adv Exp Med Biol, 2006, 585:311-326.
    [118]Cassal OC,Hofer SO,Morrison NA.Vascularisation of tissue engineered grafts:the regulation of angiogenesis in reconstructive surgery and in disease states.J Plast Surg(Br),2002;55:603-610.
    [119]Casabona F, Martin I, Muraglia A,et al. Prefabricated engineered bone flaps: an experimental model of tissue reconstruction in plastic surgery[J]. Plast Reconstr Surg,1998,101(3):577-581.
    [120]Frerich B, Zückmantel K, Hemprich A.Microvascular engineering in perfusion culture: immunohistochemistry and CLSM findings. Head Face Med,2006, 2(1):26-34.
    [121]Malda J, Frondoza CG. Microcarriers in the engineering of cartilage and bone. Trends Biotechnol, 2006, 24(7):299-304.
    [122]Stahl A, Wu X, Wenger A, et al. Endothelial progenitor cell sprouting in spheroid cultures is resistant to inhibition by osteoblasts: a model for bone replacement grafts. FEBS Lett, 2005, 579(24):5338-5342.
    [123]Brown RQ, Mount A, Burg KJ. Evaluation of polymer scaffolds to be used in a composite injectable system for intervertebral disc tissue engineering.J Biomed Mater Res A, 2005, 74(1): 32-39.
    [1]Pittenger MF, Mackay AM, Jaisdwal SC, et al. Multilineage potential of adult human mesenchymal stem cells[J].Science,1999,284(5411):143-147.
    [2]Maniatopoulos C ,Soderek J ,Melcher A H. Bone Formation in Vitro by St- romal Cell Obtained from Bone Marrow of Young Adults Rats[J]. Cell Tissue Res,1995,254(3):207.
    [3]Friedenstein AJ, Gorskaja JF, Kulagina NN. Fibroblast precursors in normal and irradiated mouse hematopoietic organs[J]. Exp Haematol, 1976, 4: 267- 274.
    [4]Akita S,Fukui M,Nakagawa H.Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor[J],Wound Repair Regen.2004,12: 252-259.
    [5]Mills BG,Singer FR,Weiner LP,etal. Long-term culture of cells from bone affected by Paget’s disease.Caleif Tissue Int.1979,nov,26,29(2):79.
    [6]Pittenger MF, Mackay AM,Beck SC,et al. Multilineage potential of adult human mesenchumal stem cells.Seienee,1999;284(5411):143.
    [7]Akino K, Mineta T, FukuiM, et al. Bone morphogenetic protein=2 regulates proliferation of human mesenchymal stem cells[J]. Wound Repair Regen, 2003, 11 (5) : 354-360.
    [8]Cheng SL,Lou J,Wright NM,et al. In vitro and in vivo induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene.Caleif Tissue Int.2001 Feb:68(2):87-94.
    [9]Moutsatsos IK,Turgeman G,Zhou S,et al. Exogenously regulated stem cell-mediated gene therapy for bone regeneration. Mol Ther. 2001 Apr: 3(4): 449- 61.
    [10] Dominici M, Le Blanc K , Mueller I ,et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy.2006,8(4)315-317.
    [11]Malekzadeh R,Hollinger JO,Buck D,et al.Isolation of human osteoblastic like cells and in vitro amplification for tissueengineering. Periodontology,1998,69(11):1256.
    [12]Kadiyala S,Young RG,ThiedeMA,et al. Culture expanded canine mesenchymal stem cells possess osteoehondrogenic potential in vivo and in vitro. Cell Transplant.1997 Mar-Apr;6(2):125-34.
    [13]Coelho MJ,Fernandes MH. Human bone cell cultures in biocompatibility testing. Part
    II: effect of ascorbic acid,beta-glycerophosphate and dexame- thasone on osteoblastic differentiation. Biomaterials. 2000 Jun: 21(11): 1095- 102.
    [14]Wash S.Jordan GR.Jefferiss C.High concentrations of dexamethasone suppress eth proliferation but not the differentiation or furhter maturation of human osteoblast precursors in vitro: relevnace to glucocorticoid induced osteoporosis.Rheumatology,2001,40(1):74.
    [15]Otsuka E , Yamaguchi M, Shigehisa H ,et al . Characterization of os- teoblastic differentiation of stromal cell line ST2 that is induced by ascorbic acid [J]. Am J Physiol, 1999;277(46):132-138.
    [16]魏宽海,裴国献,郑磊.地塞米松对体外培养的骨髓基质细胞成骨特性的影响.中国修复重建外科杂志,2001;15(4):232-234.
    [1]王松,张晛,陈国庆,等.骨质疏松骨折愈合中软骨细胞凋亡与血管内皮生长因子的表达.解剖学杂志, 2004, 27(2): 162-165.
    [2]Mayr-Wohlfart U , Waltenberger J , Hausser H , et al. Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts[J]. Bone, 2002, 30(3):472-7.
    [3]Tepper OM,Mehrara BJ. Gene therapy in plastic surgery. Plast. Reconsrt. Surg. 2002,109:716-733.
    [4]Evans GH,Ghivizznai SC,Robbins PD. Orthopaedic gene therapy. Lin Orthop Relat Res,2004,429:316-329.
    [5]Abe N, Lee YP, Sato M, et al. Biochem Biophys Res Commun, 2002, 29(3):523-527.
    [6]Musgrave DS,Bosch P,Lee JY,et al.Ex vivo gene therapy to produce bone using different cell types.Clin Orthop,2000,378:290-305.
    [7]Lieberman JR, Le LQ, Wu L, et al. Regional gene therapy with a BMP-2-producing murine stromal cell line induces heterotopic and orthotopic bone formation in rodents .J Orthop Res, 1998,16(3):330-339.
    [8]Mountain A. Gene therapy:the first decade[J].Trends Biotechnol,2000,18(3):119-128.
    [9]Wang JC,Kanim LE,Yoo S,et al.Effect of regional gene therapy with bone morphogenetic protein-2-producing bone marrow cells on spinal fusion in rats[J].J Bone Joint Surg Am,2003,85(5):905-91.
    [10]Lachgar S,Moukadiri H,Jonca F etal. Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells.J Invest Dermatol.1996:106(l):17-23.
    [11]Mori S,Akagi M,Kikuyama A.et al. Axial shortening during distraction osteogenesis leads to enhanced bone formation in a rabbit model through the HIF lalpha/vascular endothelial growth factor system.J Orthop Res, 2006: 24(4): 653- 663.
    [1]裴国献,金丹.骨组织工程学种子细胞研究进展.中华创伤骨科杂志,2003,5:55-58.
    [2]Kang R,Ghivizzani SC,Muzzonigro TS,et al. Orthopaedic applications of gene therapy.Clin Orthp,2000,375:324-337.
    [3]Noden D.M. Factors and mechnaisms influencing bone growth.New York:Alan.R.liss.1982:167.
    [4]王松,张晛,陈国庆,等.骨质疏松骨折愈合中软骨细胞凋亡与血管内皮生长因子的表达.解剖学杂志, 2004, 27(2): 162-165.
    [5]Senger DR,Brown LF,Claffey KP,et al.Vascular permeability factor tumor angiogenesis and stroma generation. Invasion Metastasis.1994-95: 14(l-6): 385-94.
    [6]Ferrara N,Houck K,Jakeman L,et al.Molecular and biological properties of the vascular endothelial growth factor family proteins.Endocrine Reviews, 1992; 13(1)18-20.
    [7]Mandriota SJ,Seghezzi G,Vassalli TD,et al.Vascular endothelial growth factor increase urokinase receptor expression in vascular endothelial cells.J Biol Chem,1995;270(17):9707.
    [8]Van der zee R,Murohara T,Luo Z,et al. Vascular endothelial growth factor/vascular permeability factor augments nitric oxide release from quiescent rabbit and human vascular endothelium.Circulation 1997: 95(4):1030-1037.
    [9]Hidaka C,Ibarra C,Hannafin JA,et al. Formation of vascularized meniscal tissue by combining gene therapy with tissue engineering. Tissue Eng. 2002; 8(l): 93-105.
    [10]Sheridan MH,Shea LD,Peters MC,etal. Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release,2000 Feb 14;64(1-3):91-102.
    [11]Muprhy WL,SimmonsCA,KaiglerD,et al.Bone regeneration via a mineral substrate and induced angiogenesis.J Dent Res.2004:83(3):204-210.
    [12]Hiltunen MO,Ruuskanen M,Huuskomen J,et al.Adenovirus mediated VEGF-A gene transfer induces bone fomation in vivo.FASEB J,2003;17(9):1147.
    [13]Street J,Bao M,De Guzman L,et al.Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover.Proc Natl Acad Sci USA,2002;99(15):965-966.
    [14]Deckers MM, van Bezooijen RL, van der Horst G, et al. Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A[J].Endocrinology,2002,143(4):1545-1553.
    [15]Bouletreau PJ, Warren SM, Spector JA, et al. Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing[J]. Plast Reconstr Surg, 2002, 109(7): 2384-2397.
    [16]Peng H, Wright V, Usas A,et al. Synergistic enhancement of bone formation and healing by stem cell-expressed VEGF and bone morphogenetic protein-4. J Clin Invest,2002,110:751-759.
    [17]Jin YJ,Lien WH,Jsa WC,et al.Distinct regulation of genes by bFGF and VEGF-A in endothelial cells[J].Angiogenesis,2001;4(4):313-321.
    [18]Marie PJ,Connes D,Hott M,et al.Comparative effects of a novel vitamin D analogne Mc-903 and 1.25-dihydroxy vitamin D3 on alkaline phospha- tasea activity,osteocalcin and DNA synthesis by human osteblastic cell in culture. Bone, 1990;1(3):171-179.
    [19]Alborzi A,Nac-KG, Lackin CA,et al.Endochondral and intramenbranous fetal bone development: osteoblastic cell proliforation and expressing of alkaline phosphatase,mtwist and histone H4.J Crnaifac Genet Dev Biol.1996;16(2):94.
    [1]Kim B-S,Mooney DJ.Development of biocompatible synthetic extracellular matrices for tissue engineering.Trends in Biotechnology .1998:16(5):224.
    [2]孟纯阳,安洪,蒋电明,李玉宝,网孔纳米轻基磷灰石/聚酞胺人工骨修复兔挠骨缺损,中华创伤杂志,200,521(3):187 -191.
    [3]王学江,李玉宝.轻基磷灰石纳米针晶与聚酞胺仿生复合生物材料研究.高技术通迅,2001,5:l-5.
    [4]Kano S,Yamazaki A,Otsuka R,et al. Application of Hydroxyapatite-sol as Drug Carier.Biomed Mater Eng,1994,4:283-290.
    [5]Rokusek D,Davitt C,Bandyopadhyay A,Bose S,Hosick HL, Interaction of human osteoblasts with bioinert and bioaetive ceramic substrates,J Biomed Mater Res A.2005:75(3):588-594.
    [6]Zhong JP, Greenspan DC. A microstructural examination of apatite induced by bioglass in vitro[J]. Mate Sci: M sterials in medicine, 2002,13: 321-322.
    [7]Webster TJ,Egrun C,Doermus RH,etal. Specific proteins mediate enhanced Osteoblast adhesion nanophase ceramics[J].Biomed Mater Res,2000,51(3):475-83.
    [8]Webster TJ , Siegel RW,Bizios R.Osteoblast adhesion on nanophase cera- mics[J].Biomaterials,1999,20:1221-1227.
    [9]Kim SS,Sun Park M,Jeon O,et al,Poly(lactide-co-glyeolide)/h- ydorx- yapatite composite scaffolds for bone tissue engineering,Biomaterials. 2006, 27(8):1399-1409.
    [10]Vacanti CA,Vacanti JP.Bone and cartilage reconstruction with tissue engineering approaches.Otolaryn clin Nor Am,1994,27:263-276.
    [11]Ishaug-Riley SL,Crane-Kruger GM,Yaszemski MJ,et al. Three dimensional culture of rat calvarial osteoblasts in porous biodegradable polymers. Bioma- terials,1998,19:1405-1412.
    [12]杨志明主编.组织工程[M].第一版.北京:化学工业出版社,2002.251-252.
    [13]Laurencon CT,Lane JM.Poly(lactic acid) and Poly(glycolic acid). Orthopaedic surgery applications in bone formation and repair. Americal Academy of Orthopaedic Surgeons Symposium,Park Ridge,II,1994:325-339.
    [14]Damien CJ,Ricci JL,Iristel P,et al.Formation of calcium-phosphate rich layer onabsorbable calcium carbonate bone graft substitutes.Calif Tissue Int,1994,55:151-156.
    [15]Shea LD,Wang D,Francesehi RT,et al.Engineered bone development from a pre-osteoblast cell line on three-dimensional scaffolds. Tissue Eng 2000,6:605-617.