埃博霉素高产菌株选育、发酵条件优化及抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
埃博霉素与紫杉醇一样具有促微管聚合作用从而抑制肿瘤细胞的增殖,并且与紫杉醇相比,埃博霉素具有毒性更小,水溶性更好,对耐药性细胞作用更强之优点,因而引起医药界广泛关注。本文进行了埃博霉素菌种的改良和发酵工艺的优化研究,同时对改良菌株发酵液提取物的抗肿瘤活性进行了研究。
     菌种改良方面分别采用紫外诱变,紫外-氯化锂诱变,硫酸二乙酯(DES)诱变,亚硝酸-紫外复合诱变,原生质体紫外-氯化锂诱变对埃博霉素原始菌株进行诱变,然后分别采用原始菌株的碳氮源(葡萄糖和硝酸钾)抗性培养基、埃博霉素合成前体物质(丙酸钠和乙酸钠)抗性培养基和埃博霉素结构类似物(红霉素)抗性培养基对诱变株进行筛选,得到一株遗传稳定的埃博霉素高产菌株——纤维堆囊菌UNH127,其埃博霉素(EPOs)总产量是原始菌株的28.2倍。
     本文对该诱变株的发酵条件进行了探索,首先对其发酵培养基进行优化,在筛选合适的碳氮源种类的基础上,应用均匀设计方法结合逐步回归方法建立多元高次回归数学模型,优化纤维堆囊菌UNH127的发酵培养基,EPOs总产量达到2.36 mg/L,比优化前提高了778%。采用中心组合设计方法优化埃博霉素合成前体物质培养基方案,EPOs产量提高了22%,在此基础上采用中心组合响应面分析方法优化纤维堆囊菌UNH127的摇瓶发酵条件,EPOs产量达到3.18 mg/L,EPOs总产量提高了10%。同时采用HPLC法分析了纤维堆囊菌发酵液中组分,并考察了纤维堆囊菌发酵液粗提物的抗乳腺癌细胞MCF-7的活性和Hela细胞的活性,采用线性回归分析方法建立HPLC法分析纤维堆囊菌发酵液中组分与其抗癌细胞活性间的相关模型,并采用t检验的方法分析各组分的抗癌活性,为筛选纤维堆囊菌发酵液中活性代谢产物提供了实验依据。
Epothilones are macrolides antibiotics that were candidate drug as inhibitors of the tubulin system as Taxol mimetics. The epothilones, like Taxol and other taxoids, could stabilize microtubules, leading to inhibit the cell cycle and eventually to apoptosis at the concentration of 10-120 ng/ml. The epothilones is regarded as antitumor drugs because of low toxic, water soluble and high activity against cell lines resistant to Taxol. Though the epothilones could be got by chemical synthesis, it is not widely acceptable because of condition, expensive cost, longer synthesis route, lower productivity and environment pollution. The epothilones are usually produced by biosynthesis way while there are many reports on fermentation, however, the low productivity and genetic instability restrain its industrialization. There are two ways to improve the productivity, one is to improve the strain and the other is to optimize the fermentation process.
     In this study, the analysis and purification ways were optimized. The content of epothilones in the fermentation broth of Sorangium cellulosum was analyzed with HPLC. The factors were optimized with uniform design combined with neural network. Based on the neural network model, the optimal HPLC conditions were obtained genetic algorithm as follow, acetonitrile volume fraction 29.2% , column temperature 34℃and pH of mobile phase 4.23. The effectivity of the epothilone A and B increased significantly after the optimization.
     The desorption conditions of epothilone were optimized by response surface methodology and the optimal conditions were that the ratio of solvent to broth was 10.5, desorption time was 11.5 hours and desorption was 3 times.
     Sorangium cellulosum ATCC15384 was mutated by UV, UV-LiCl, DES, UV-HNO2 and protoplast-UV- LiCl. Then , the mutants were screened with medium containing high concentration carbon and nitrogen source, precursor of epothilone or epothilone mimetics. The Sorangium cellulosum UNH127 with high genetic stability was obtained, whose productivity increased 28.2 times as that of the original strain.
     The medium to culture Sorangium cellulosum UNH127 was optimized with uniform design combined with stepwise regression and the multiple regression model was got. The optimal medium was as follow, KNO3 8, soybean peptide 17.6, beef extract 6.46, yeast extract 1.0, CaCl2 0.25, K2HPO41, NaCl 1 and FeCl3 0.02 (g/L). The predicted max EPOs productivity is 2.48mg/L, and the actual EPOs productivity is 2.36mg/L through validation experiment, which is 7.78 time of that before optimization.
     The central composite design was employed to optimize the medium containing the precursor of epothilone. The optimal medium is as follow, the sodium propionate concentration 0.48g/L, cysteine concentration 0.06g/L and the opportunity to add cysteine 1.6 h. The predicted optimal productivity is 2.91mg/L, while the actual productivity is 2.88mg/L, which is 22% higher than that without the precursor.
     The central composite design was employed to optimize the fermentation conditions in flask. The optimal conditions were as follow, temperature 31℃, rotational speed 160 r/min, inculum 9.24%, medium volumn 117ml, pH 6.6, strain age 22.6h and fermentation time 4 days. The predicted optimal productivity of EPOs is 3.22mg/L while the actual productivity is 3.18mg/L, which increase 10%.
     The anti-tumor activity of Sorangium cellulosum UNH127 fermentation broth was studied. The components of fermentation broth were analyzed by HPLC, and the activity to inhibit the breast cancer cell and hela cell were studied. The linear regression model was got to describe the relationship between components of Sorangium cellulosum UNH127 fermentation broth and anti-tumor activity. The significance was analyzed with t test, which is an important base to screen the active metabolites.
引文
[1] G. H?fle, N. Bedorf, K. Gerth, et al. Epothilone, Deren Herstellungsverfahren Sowie sie Enthaltende mittel:German patent disclosure DE 4138042(A1),1993-05-27.http://v3.espacenet.com/results?DB=EPODOC&sf=a&PN=DE4138042&CY=ep&PGS=10&ST=advanced&LG=en.
    [2] H?fle G, Bedorf N, Steinmetz H, et al. Epothilone A and B-novel 16-Membered Macrolides with Cytotoxic Activity : Isolation, Crystal Struture, and conformation in solution[J]. Angew. Chem. Int. Ed., 1996, 35(13):1567-1569.
    [3] John M ann. Drug Development:Myxobacterial bounty [J]. Nature, 1997, 385:117.
    [4] M.Trivedi, I.Budihardjo, K.Loureiro, et al. Epothilones:a novel class of microtubule-stabilizing drugs for the treatment of cancer[J]. Future Medicine, 2008, 4(4):483-500.
    [5] Gerth. K, N. Bedorf, G. H?fle, et al. Epothilones A and B: Antifungal and cyto- toxic compounds from Sorangium cellulosum ( Myxobacteria ) : production, physico-chemical and biological properties[J]. J. Antibiotics, 1996, 49(6): 560-563.
    [6] Dworkin. M. Recent advances in the social and developmental biology of the myxibacteria[J]. Microbiol. Rev, 1996, 60 (1):70-102.
    [7] Lee KW, Briggs JM. Comparative molecular field analysis (coMFA) study of epothilones-tubulin depolymerization inhibitors:pharmacophore development using 3D QSAR methods[J]. J Comput Aided Mol Des, 2001, 15(1):41-55.
    [8] Kowalski RJ, Giannakakakou P, Hamel E1 Activities of the microtubulestabilizing agents epothilone A and B with purified tubulin and in cells rasistant to paclitaxel(Taxol)[J]. J Bio Chem, 1997, 272(4):2534-2541.
    [9] Nicolaou KC, Ritzen A, Namoto K. Recent developments in the chemistry, biology and medicine of epothilones[J]. J Chem Soc Chem Commun, 2001,7(17):1523-1535.
    [10]Nicolaou KC, Namoto K, Ritzen A, et al. Chemical synthesis and biological evaluation of cis-and trans-12,13-Cyclopropyl and 12,13-clobutyl epothilones and related pyridine side chain analogues[J]. J Amer Chem Soc, 2001, 123(38): 9313-9323.
    [11]Johnson J, Kim SH , Bifano M, et al. synthesis, structure proof, and biological activity of epothilone cyclopropanes[J]. Org Lett, 2000, 2(11):1537-1540.
    [12]Lee F Y, Borzilleri R, Fairchild C R. A novel epothilone analog with amode of action similar to paclitaxel but possessing superior antitumor efficacy[J]. Clin Cancer Res, 2001, 7(5):1429-1437.
    [13]Su D S, Balog A, Meng D F, et al. Structure-Activity relationships of the epothilones and the first in vivo comparison with Paclitaxel[J]. Angew Chem Int Ed, 1997, 36(19): 2093-2096.
    [14]Daniel M. Bollag, Patricia A. McQueney, Jian Zhu et al. Epothilones, a New Class of Microtubulestabilizing A gents with a Taxol-like Mechanism of Action[J]. Cancer Research, 1995,(55):2325-2333.
    [15]Nicolaou K C, Winssinger N, Pastor J, et al. Synthesis of epothilones A and B in solid and solution phase[J]. Nature, 1997, 387(6630):268-272.
    [16]Meng D, Sorensen E J, Danishefsky S J, et al. Studies toward a Synthesis of Epothilone A: Use of Hydropyran Templates for the Management of Acyclic Stereochemical Relationships[J]. J. Org. Chem., 1996, 61(23):7998-8001.
    [17]Balog A, Bestinato P, Danishefsky S J, et al. Stereoselective syntheses and evaluation of compounds in the 8-desmethylepothilone A series: Some surprising observations regarding their chemical and biological properties[J]. Tetrahedron Letter, 1997, 38(26):4529-4532.
    [18]Meng D, Su D S, Balog A, et al. Remote Effects in Macrolide Formation through Ring-Forming Olefin Metathesis:An Application to the Synthesis of Fully Active Epothilone Congeners[J]. J. Am. Chem. Soc., 1997, 119(11):2733-2734.
    [19]Muler J, Mantoulidis A. Synthesis of the C(1)-C(9) segment of the cytotoxic macrolides epothilon A and B[J]. Tetrahedron Letter, 1996, 37(51):9179-9182.
    [20]Mulzer J, Prantz K. Total synthesis of epothilones A-F[J]. Fortschr Chem Org Naturst. 2009,90:55-133.
    [21]Nicolaou K C, Roschangar F, Vourloumis D. Chemical Biology of Epothilones [J].Angew Chem Int Ed, 1998, 37 (15):2014-2045.
    [22]Subhash C S, Sun J, Miller G P, et al. Catalytic antibodyroute to the naturally occurring epothilones: total synthesis of epothilones A-F[J]. J Chem Eur, 2001, 7(8):1691-1702.
    [23]Nicolaou K C, He Y, Vourloumis D, et al. An Approach to Epothilones Based on Olefin Metathesis[J]. Angew. Chem. Int. Ed., 1996, 35(20):2399-2401.
    [24]Gabroal T, Wessjohann L. The chromium—Reformatsky reaction : Asymmetric synthesis of the aldol fragment of the cytotoxic epothilons from 3-(2-bromoacyl)-2-oxazolidinones[J]. Tetrahedron Letter, 1997, 38(8):1363-1366.
    [25]Claus E, Pahl A, Peter G, et al. Synthesis of the C1---C9 segment of epothilons[J]. Tetrahedron Letter, 1997, 38(8):1359-1362.
    [26]Liu Zhi Yu, Wang Rui Fang, Shen Yue Hai. Synthesis of the C_(11-16)+C_(27) Segment of Epothilone A[J]. Chinese Chemical Letters, 1998, 9(1):35-38.
    [27]刘志煜,黄初升,陈泽成等.埃坡霉素A和C的全合成[J].厦门大学学报(自然科学版), 1999, 38:34-35.
    [28]Balog A, Christina H, Savin K, et al. A Novel Aldol Condensation with 2-Methyl-4-pentenal and Its Application to an Improved Total Synthesis of Epothilone B[J]. Angew. Chem. Int. Ed., 1998, 37(19):2675-2678.
    [29]Meng D, Bertinato P, Balog A, et al. Total Syntheses of Epothilones A and B [J]. J. Am. Chem. Soc., 1997, 119:10073-10092.
    [30]Nicolaou K C, He Y, Vourloumis D, et al. The olefin metathesis approach to epothilone A and its analogues[J]. J. Am. Chem. Soc., 1997, 119:7960-7967.
    [31]Nicolaou K C, Ninkovic S, Sarabia F. Total syntheses of epothilones A and B via a macrolactonization-based strategy[M]. Journal of the American Chemical Society, 1997, 119:7974-7978.
    [32]Keck GE,Giles RL,Cee VJ,et al. Total Synthesis of Epothilones B and D:Stannane Equivalents for beta-Keto Ester Dianions[J]. The Journal of Organic Chemistry, 2008, 73(24):9675-9691.
    [33]Reschangar F, King N P, Finlay M R V, et al. Designed Epothilones: Combinatorial Synthesis, Tubulin Assembly Properties, and Cytotoxic Action against Taxol-Resistant Tumor Cells[J]. Angew. Chem. Int. Ed., 1997, 36(19): 2097-2103.
    [34]Chou T C, Zhang X G, Balog A, et al. Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B[J]. Proc Natl Acad Sci USA, 1998, 95(16):9642-9645.
    [35]Rama M.Hindupur, Bijoy P, et al. Total synthesis of epothilone A[J]. Tetrahedron Letter, 2001, 42:7341-7344.
    [36]Tang L, Shah S, Chung L, et al. Cloning and heterologous expression of the epothilone gene cluster[J]. Science, 2000, 287(5453):640.
    [37]Bryan J, Sanjay S, Rainer Z, et al. Isolation and Characterization of Epothilone Biosynthetic Gene Cluster from Sorangium cellulosum[J]. gene, 2000,249(1-2): 153-160.
    [38]黎志凤, Etienne Nguimbi,李越中,刘巍峰.埃博霉素(Epothilones)的PKS/NRPS杂合基因簇[J].生物工程学报,2003, 19(5): 511-515.
    [39]Gerth K, Steinmetz H, H?fle G, et al. Studies on the biosynthesis of epothilones: the biosynthetic origin of the carbon skeleton[J]. J Antibiot, 2000, 53(12): 1373-1377.
    [40]Cane D E, Walsh C T, Khosla C. Harnessing the biosynthetic code: combinations , permutations, and mutations[J]. Science, 1998, 282(5386):63-68.
    [41]Molnar I, Schupp T, Ono M, et al. The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90[J]. Chem Biol, 2000, 7(2):97-109.
    [42]李越中,刘红,胡玮等.埃博霉素(Epothilones)生物合成及生物合成改造[C].中国生物工程学会第四次会员代表大会暨学术讨论会, 2005,123.
    [43]Sarah C M, John R C, Liu Y Q, et al. Heterologous Production of Epothilone C and D in Escherichia coli[J]. Biochemistry, 2006, 45:1321-1330.
    [44]Li T, Loleta C, John R C, et al. Generation of New Epothilones by Genetic Engineering of a Polyketide Synthase in Myxococcus Xanthus[J]. J. Antibiot, 2005, 58(3):178-184.
    [45]Fu. J, Wenzel SC, Perlova O, et al. Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition[J]. Nucleic Acids Res., 2008, 36(17):1-14.
    [46]Sunil S C, Hugo G M, John R C, et al. Activating Hybrid Modular Interfaces in Synthetic Polyketide Synthases byb cassette Replacement of Ketosynthase Domains[J]. Chemistry & Biology, 2006,13:469-474.
    [47]李越中,刘红,胡玮,等.埃博霉素生物合成及生物合成改造[J].西北农业学报, 1996,5(3):31-34.
    [48]Gerth K, Washausen P, H?fle G et al. The jerangolids: a family of new antifungal compounds from Sorangium cellulosum(myxobacteria). Production,physicochemical and biological properties of jerangolid-A[J]. J Antibiot, 1996,49(1):71-75.
    [49]李越中, Klaus G, Hans R.纤维堆囊菌Soce90菌株发酵合成新型抗癌物质Epothilones的营养控制[J].中国抗生素杂志, 1998, 23(6):420-424.
    [50]Mthlradt PF, Sasse F. Epothilone B stabilizes microtubuli of macrophages like taxol without howing taxol-like endotoxin activity[J]. Cancer Res, 1997, 57: 3344.
    [51]李越中,李健,周璐,等.我国粘细菌资源的分离与鉴定[J].微生物学报, 2000, 40(6):652-655.
    [52]王海英,张利平.粘细菌:一类重要的微生物资源[J].微生物学通报, 2003, 30(2): 115-116.
    [53]Wolfang Dawid. Biology and global distribution of myxobacteria in soils[J]. FEMS Microbiology Reviews, 2000, 24:403-427.
    [54]Nguimbi, E., Y.Z.Li, B.L.Gao, et al. 16S-23S ribosomal DNA intergenic spacer regions in cellulolytic myxobacteria and differentiation of closely related strain[J]. Syst.Appl.Microbiol, 2003, 26:262-268.
    [55]Julien, B. and S.Shah. Heterologous exterologous expression of epothilone biosynthetic genes in Myxococcus xanthus[J]. Antimicrob. Agents Chemother, 2002, 46(9):2772-2778.
    [56]李淑彬,杨劲松,刘阳等.抗真菌抗生素高产菌株的推理选育及发酵调控研究[J].中山大学学报(自然科学版), 2001, 40(4):13-16.
    [57]金志华.螺旋霉素产生菌的推理选育[J].生物工程学报,1995,11(3):295-296.
    [58]赵作棋,孙萍,曹冬莲,等.青霉素高产菌株的推理选育[J].中国医药工业杂志,1999, 30(10):437-438.
    [59]周梅先,董钧峰.抗生素菌株选育的研究进展[J].生物学通报, 2006, 41(8):3-4.
    [60]张彭湃.微生物菌种选育技术的发展与研究进展[J].生物学教学,2005,30(9):3-5.
    [61]季宇彬,朱兴杰,徐昶儒,李文兰.微生物诱变育种方法的研究进展[C].中国毒理学会环境与生态毒理学专业委员会成立大会会议论文集,2008.
    [62]陈立梅,汪旭,李启云,等.链霉素诱变育种方法综述[J].吉林农业科学, 2006, 31(2):62-66.
    [63]骆健美.纳他霉素高产菌株选育、发酵条件优化、发酵动力学及溶解度的研究[D],浙江大学博士学位论文, 2005.
    [64]谢志鹏.发酵法产生米多霉素的菌种选育、培养条件优化和动力学研究[D],浙江大学博士学位论文, 2005.
    [65]刘连碧,柔红霉素高产菌种选育及其生物转化的研究[D].上海医药工业研究院博士学位论文, 1997.
    [66]陶金莉,沈亚领,魏东芝,等.产灵菌素沙雷氏菌的诱变育种[J].微生物学通报, 2004, 31(2):45-49.
    [67]柴红霉,姚春馨,李树红,等.苯丙氨酸基因工程受体菌的选育[J].西南农业学报, 2005, 18(4):469-472.
    [68]安伟,樊智翔,马海林等. EMS诱变技术及其在创造玉米新种质中的应用[J].山西农业科学,2008,36(12):37-39.
    [69]罗立新,陆一鸣,潘力. NTG诱变选育埃博霉素高产菌株的研究[J].现代食品科技, 2006,23(3):1-3.
    [70]孙文红,高玉荣.紫外诱变选育红曲红色素高产菌株的研究[J].酿酒,2008,35(1):75-78.
    [71]朱会霞,孙金旭.紫外诱变筛选Nisin高产菌株的研究[J].酿酒科技,2008,(11):26-28.
    [72]周欣,吕淑霞,代义,等.紫外诱变选育木聚糖高产菌株及产酶条件初步研究[J].生物技术,2009,19(1):71-74.
    [73]刘仁春,吴晓英,范一文,林影.紫外诱变选育脂肪酶高产菌株及其酶学性质的研究[J].生物技术,2008,18(1):26-29.
    [74]赵琼,杨谦.细菌纤维素高产菌株的紫外诱变育种研究[J].食品与发酵工业,2007,33(7):26-28.
    [75]孙伟,刘爱英,梁宗琦.利用紫外线和氯化锂诱变筛选高产Monacolin K的红曲突变株[J].华中农业大学学报,2004,23(1):168-170.
    [76]吴英敏,王德良,张彦青,等.激光-氯化锂复合诱变选育絮凝性适中的啤酒酵母[J].酿酒,2007,34(2):81-83.
    [77]邱雁临,梁亮,汪亮.紫外线与氯化锂复合诱变选育L-组氨酸产生菌[J].现代食品科技,2008,24(3):217-219.
    [78]王惠,童应凯,吴兆亮,胡金刚.亚硝酸诱变选育黄霉素高产菌的研究[J].生物技术, 2006,27(8):17-19.
    [79]陈志刚,巴吐尔,罗红霞,刘新华.硫酸二乙酯诱变保加利亚乳杆菌最佳条件的优化[J].农产品加工,2008,12:65-67.
    [80]汪世华,王维平,吴思方,杨燕凌. L-谷氨酰胺高产菌株的硫酸二乙酯诱变育种[J].冷冻于速冻食品工业,2001,7(1):4-5.
    [81]肖怀秋,兰立新,李玉珍.亚硝酸与紫外线复合诱变原生质体选育产酶菌株[J].生物技术,2006,16(5):40-41.
    [82]朱芬,陈军,师亮等.灵芝三萜高产菌株原生质体紫外诱变选育[J].南京农业大学学报,2008,31(1):37-41.
    [83]李荷迪,金志华,张海光,金花.纳他霉素产生菌原生质体的制备、再生及紫外诱变[J].工业微生物,2008,(3):43-46.
    [84]阳飞,张华山,李荣斌,顾亚婧.原生质体紫外诱变选育多糖高产菌株[J].中国酿造, 2008,(22):25-29.
    [85]胡婷婷,邱雁临.原生质体紫外诱变选育纤维素酶高产菌株[J].化学与生物工程,2008,25(8):58-60.
    [86]张庆庆,晋青波,危勤涛.原生质体紫外诱变脂肪酶高产菌株[J].食品工业科技,2008,29(4):155-157.
    [87]霍乃蕊,韩克光.细胞融合技术的发展及应用[J].激光生物学报, 2006, 15(2): 209-213.
    [88]朱河水,刘记强,杨国宇,等.原生质体融合技术的应用[J].安徽农业科学, 2007, 35(5):1312-1326.
    [89]谭文辉,李燕萍,许杨.微生物原生质体制备及再生的影响因素[J].现代食品科技, 2006, 22(3):263-265.
    [90]王娟娟,贾彦军.微生物原生质体融合方法的综述[J].畜牧兽医科技信息, 2005, (10):17-19.
    [91]王春平,韦强,鲍国连,等.微生物原生质体融合技术研究进展[J].动物医学进展, 2008,29(5):64-67.
    [92]王亚利,洪厚胜,张庆文,刘军.基因工程技术在醋酸菌改良中的应用[J].食品研究与开发,2008,29(3):190-194.
    [93]罗楚平,陈志谊,刘永峰,刘邮洲.利用基因工程改良枯草芽孢杆菌[J].江苏农业学报,2008,24(2):204-209.
    [94]李慧,夏焕章.提高抗生素有效组分产量的生物学方法[J].药物生物技术,2002,9(3):183-186.
    [95]梁景乐.纳他霉素高产菌株空间选育、工艺优化及工业放大研究[D].浙江大学博士学位论文,2007.
    [96]金志华,宋友礼,黄纯农.螺旋霉素产生菌螺旋霉素链霉菌遗传育种[J].中国医药工业杂志,1992,23(4):181-185.
    [97]罗镜青,李友荣.耐碳源分解代谢产物调节的螺旋霉素产生菌的理性化筛选[J].中国抗生素杂志,1989,14(4):243-246.
    [98]李友荣,罗镜青,刘立新,傲建平.螺旋霉素的生物合成Ⅱ.螺旋霉素产生菌的理性化筛选[J].华东化工学院学报,1988,14(6):643-649.
    [99]余龙江.发酵工程原理与技术应用[M].北京:化学工业出版社, 2006.
    [100] George R. Contributions to the problem of approximation of non-linear data with linear PLS in an absorption spectroscopic context[J]. Chemometrics and Intelligent Laboratory Systems, 1999, 47:99-106.
    [101] Baffi G, Martin EB, Morris AJ. Non-linear Projection to Latent Structures Revisited:the Quadratic PLS Algorithm[J]. Computers and Chemical Engineering, 1999, 23(3):395-411.
    [102] Wold S. A comparison of modeling nonlinear systems with PLS and ANN[J]. Chemometrics and Laboratory Systems,1999, 14:71-84.
    [103]蒋稼欢.天然抗癌药物Epothilones研究进展[J].天然产物研究与开发, 1998, 11(3):77-81.
    [104]顾勤兰,尤启冬,王进欣.抗肿瘤药物埃博霉素的研究进展[J].江苏药学与临床研究, 2004, 12(3):20-21.
    [105]周文华,杨辉荣,危恒毅,岳庆磊.高效抗癌新药--埃博霉素的研究进展[J].化工进展, 2003, 22(7):694-699.
    [106]郭东星,仇丽霞,张满栋.均匀设计方法及其应用[J].数理医药学杂志,2005,(1):69-71.
    [107]吴小平,孙洁胤.均匀设计在药学中的应用[J].浙江省医学科学院学报,2007,71:38-40.
    [108]赵珊珊.用HPLC法测定发酵液中的生物素含量[J].武汉生物工程学院学报,2007,3(3):133-136.
    [109]林坚涛,吴铁,廖艳,等.高效液相色谱法测定复方丹参提取液中丹参素含量[J].中南药学,2007,5(1):22-24.
    [110]周德庆,胡宝龙,祖若夫,等.微生物学教程[M].北京:高等教育出版社, 2006.
    [111]许益清. L-组氨酸产生菌的选育及发酵条件优化[D].江南大学硕士学位论文,2005.
    [112]陈玮玮,朱宏阳,徐虹.ε-聚赖氨酸高产菌株选育及分批发酵的研究[J].工业微生物,2007,37(2):28-30.
    [113]宋大新,范长胜,徐德强.微生物学试验技术教程[M].上海,复旦大学出版社,1993.
    [114]陈婕,邱宏端,林娟,等.光合细菌与嗜热脂肪芽孢杆菌原生质体制备的条件研究[J].2007,35(2):318-320.
    [115] Scott A. F., Hiroko T., Courtney M. S, Rika R., et al. Control of Secondary Metabolite Congener Distribution via Modulation of the Dissolved Oxygen Tension [J]. Biotechnol Pro., 2002, 18:913-920.
    [116]张彩琴.纤维堆囊菌Soce90发酵埃博霉素B的研究[D].重庆大学学位论文,2006.
    [117]罗立新,汪薇,陆一鸣,等.纤维堆囊菌发酵产生埃博霉素条件的优化[J].华南理工大学学报(自然科学版), 2006, 34(5):48-52.
    [118] Frykman S., Tsuruta H., Lau J., Regentin R. Ou S., et al. Modulation of epothilone analog production through media design[J]. Journal of Industrial Microbiology & Biotechonology, 2002, 28:17-20.
    [119]韩莉莉,卢育新,王赫,等.培养基组成对纤维堆壤菌产埃博霉素的影响[J].微生物学杂志,2008,28(6):103-106.