用户名: 密码: 验证码:
一类欠驱动系统输出跟踪控制问题的理论和方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综合运用非线性控制的基本方法,讨论了一类欠驱动系统的输出跟踪控制问题。
     在反步法框架下,选择联系函数及其导数为对应直接驱动自由度的待镇定系统动态,研究了一类欠驱动系统的非线性输出跟踪控制问题。采用过参数化的递归设计,讨论了一类具有结构化不确定性的欠驱动系统非线性自适应输出跟踪控制问题。再针对可能存在的非结构化不确定性,研究了一类欠驱动系统的非线性鲁棒输出跟踪控制问题。
     建立了板球系统各个环节的模型,分析了其运动行为和结构特性。引入了非线性系统“主要动态”的概念。确定了板球系统中的“主要动态”。
     研究了板球系统的镇定控制问题。构造了非线性摩擦力观测器,结合精确反馈线性化和最优控制理论提出了考虑摩擦补偿的镇定控制方法。又在系统初始值大范围变化及控制量受饱和约束的条件下,提出了自调整待设计参数的反步镇定控制方法。实验结果表明两种镇定控制方法都提高了板球系统的控制精度。
     结合板球系统实验平台BPVS-JLU-Ⅱ,研究了板球系统输出跟踪控制问题。在球参数已知的条件下,以滑模变结构控制、反馈线性化结合极点配置两种方法分别构造了位置控制器。当球半径、质量和转动惯量未知时,采用Lyapunov直接方法与自适应反步法分别构造了非线性自适应位置控制器。在跟踪速度为6mm/s、18 mm/s、30 mm/s三种条件下,采用反步法、自适应反步法、滑模变结构、反馈线性化、模糊控制完成了轨迹跟踪控制实验。实验结果表明,与其它的一些控制方法相比,应用本文提出的非线性控制或者非线性自适应控制方法,较好地完成了跟踪控制任务,提高了板球系统的控制精度。
     研究得到教育部高等学校博士学科点专项科研基金资助(项目名称:高速运动条件下板球系统镇定与高精度轨迹控制研究,项目编号:20060183006),并受到吉林大学“985工程”研究生创新基金的资助(项目名称:复杂环境下欠驱动机电系统的自主运动规划与控制,项目编号20080212)。
Underactuated systems have several irreplaceable advantages in saving energy, reducing costs, reducing cost and improving system reliability compared with fully actuated systems. Underactuated systems are used in fields of aviation, aerospace, marine exploration and etc. As underactuated systems have fewer actuators than degrees of freedoms, control problem of underactuated systems is challenging. Control problem of underactuated systems has been studied intensively by many researchers.
     Output tracking control problem of a class of underactuated systems is investigated in this paper with nonlinear control methods. The plant for control is ball and plate system. This research is supported by College Doctor Special Scientific Research Fund of China under Grant 20060183006. Name of the project is 'stabilization and trajectory tracking control of the ball and plate system under high speed'. Main topics of this paper are summarized as below.
     1. Nonlinear control problem is studied for a class of underactuated systems. The underactuated system has one underactuated degree and one fully actuated degree. The underactuated system can not be written into the upper triangular system. If system dynamics to be stabilized is chosen to be state variables as the common backstepping design, it is very difficulty to obtain a stable closed loop system. Concept of contacting function is introduced to solve the problem. Contacting function and its first derivative are selected as the dynamics to be stabilized in the backstepping design. Control Lyapunov functions are constructed step by step, and nonlinear output tracking controller is built recursively.
     2. As some parameters of the underactuated system may be unknown, uncertain system parameters are added into mathematical model of the underactuated systems above. Nonlinear adaptive control problem of a class of underactuated systems is discussed. And backstepping design procedures are used to stabilize the dynamics of underactuated degree of freedom and fully actuated degree of freedom. Adaptive update laws for the uncertain parameters are also constructed. Uncertain parameters are estimated by overparametrization method.
     3. As unknown disturbances are inevitable in engineering systems, unstructured uncertainty of the underactuated system is considered. And nonlinear robust output tracking control problem for a class of underactuated systems is investigated. A Priori bounded functions are introduced to reduce the influence of unknown disturbances. Nonlinear robust output tracking controller is constructed recursively for the underactuated system.
     4. Motion and structure characteristics of the ball and plate system are investigated. Model of the ball and plate system are built including dynamics of ball moving on the plate, stepper motor, transmission sets and friction between the ball and plate. Controllability and observability of the ball and plate system is investigated with geometric theory of nonlinear system. Dynamics discussed in the analysis of controllability and observability is the dynamics of ball moving on the plate.
     5. Contacts between dynamics of the underactuated systems and motions of the underactuated systems are discussed. Concept of main dynamics is introduced. Relationships between main dynamics and motions of the underactuated systems are studied. And system main dynamics of the ball and plate system is illustrated.
     6. After mathematical model of the ball and plate system is established, stabilization control problem of the ball and plate system is discussed. The stabilization control problem is investigated on the experimental platform BPVS-JLU-Ⅱ. Frictions between the ball and the plate are estimated by nonlinear state observer in augmented state space. And then stabilization controller with friction compensation is built with theory of feedback linearization and optimal control. Further, when initial conditions of the ball and plate system vary in a wide range and control inputs are limited by saturation, backstepping design with automatic tuning parameters is proposed for the stabilization control problem. Fuzzy logic is constructed to tune the design parameters automatically in the backstepping control. Parameters of the fuzzy logic are optimized by genetic algorithm under restricted conditions introduced by control saturations.
     7. Nonlinear output tracking control problem is studied on the experimental platform BPVS-JLU-Ⅱ. When ball parameters are known, position controller is constructed with variable structure control method first. And then feedback linearization method is used to avoid chattering phenomenon. Adaptive control problem is further investigated for the ball and plate system with structured uncertainty. When radius, mass and inertia of the ball is not specific, nonlinear adaptive controller based on Lyapunov direct method is built first. As the transmission sets of ball and plate system is influenced by backlash nonlinearities, adaptive backstepping design is employed to avoid chattering phenomenon of the nonlinear adaptive controller using Lyapunov direct method. Circle tracking experiments were established on the experimental platform BPVS-JLU-Ⅱwith expected tracking velocity 6 mm/s, 18 mm/s, 30 mm/s respectively. Five control schemes are used to construct the position controller including backstepping, adaptive backstepping, variable structure control, feedback linearization and fuzzy control. Relationship between expected tracking velocity and control precision of the ball and plate system was discussed for different control schemes. Some experimental phenomenon of the ball and the plate in the tracking control was analyzed. Trajectory tracking experiments established on the ball and plate system experimental platform BPVS-JLU-Ⅱhave indicated that when nonlinear model of the ball and plate system is considered and position controller is constructed with backstepping or adaptive backstepping design, trajectory tracking control could be done with higher control precision compared with other control schemes.
引文
[1]KHALIL H.Nonlinear Systems(3rd edition)[M].Upper Saddle River,NJ:Prentice Hall,1996.
    [2]KRSTIC M,KANELLAKOPOULOS I,KOKOTOVIC P.Nonlinear and adaptive control design[M].NewYork:Wiley Interscience,1995.
    [3]ISIDORI A.Nonlinear Control Systems(3rd edition).Berlin:Springer,1995.
    [4]JAIN A,RODRIGUEZ G.An analysis of the kinematics and dynamics of under-actuated manipulators[J].IEEE Transactions on Robotics and Automation,1993,9(4):411-422.
    [5]SPONG M.Underactuated mechanical systems.Control Problems in Robotics and Automation,Lecture Notes in Control and Information Sciences 230[M].London:Spinger-Verlag,1997.
    [6]REYHANOGLU M,VAN DER SCHAFT A,MCCLAMROCH N,KOLMANOVSKY I.Dynamics and control of a class of underactuated mechanical systems[J].IEEE Transactions on Automatie Control,1999,44(9):1663-1671.
    [7]OLFATI-SABER R.Normal forms for underactuated mechanical systems with symmetry[J].IEEE Transactions on Automatie Control,2002,47(2):305-308.
    [8]BULLO F.Stabilization of relative equilibria for underactuated systems on Riemannian manifolds[J].Automatiea,2000,36(12):1819-1834.
    [9]BULLO F,LEONARD N,LEWIS A.Controllability and motion algorithms for underactuated Lagrangian systems on Lie groups[J].IEEE Transactions on Automatic Control,2000,45(8):1437-1454.
    [10]BLOCH A,REYHANOGLU M,MCCLAMROCH N.Control and stabilization of nonholonomie dynamic systems[J].IEEE Transactions on Automatic Control,1992,37(11):1746-1757.
    [11]高丙团,陈宏钧,张晓华.欠驱动机械系统的非线性控制综述[J].电机与控制学报,2006,10(5):541-546.
    [12]陈炜,余跃庆,张绪平.欠驱动机器人研究综述[J].机械设计与研究,2005,21(4):22-26.
    [13]ZHAO J,SPONG M.Hybrid control for global stabilization of the cart-pendulum system[J].Automatiea,2001,37(12):1941-1951.
    [14]SPONG M.The swing up control problem for the Acrobat[J].IEEE Control Systems Magazine,1995,15:49-55.
    [15]赖旭芝,吴敏,佘锦华.欠驱动两杆机器人的统一控制策略和全局稳定性分析[J].自动化学报,2008,34(1):55-63.
    [16]刘殿通,郭卫平,易建强.一类欠驱动机械系统的动态及其稳定控制[J].自动化学报,2006,32(3):422-427.
    [17]MAZENC F,PETTERSEN K,NIJMEIJER H.Global uniform asymptotic stabilization of an underactuated surface vessel[J].IEEE Transactions on Automatic Control,2002,47(10):1759-1762.
    [18]DO K,JIANG Z,PAN J,NIJMEIJER H.A global output-feedback controller for stabilization and tracking of underactuated OD1N:A spherical underwater vehicle[J].Automatica,2004,40(1):117-124.
    [19]FANTONI I,R.LOZANO R,MAZENC F,PETTERSEN K.Stabilization of a nonlinear underactuated hovercraft[J].International Journal of Robust Nonlinear Control,2000,10(8):645-654.
    [20]JIANG Z.Global tracking control of underactuated ships by Lyapunov's direct method[J].Automatica,2002,38(2):301-309.
    [21]WEBB D,SIMONETTI P,JONES C.SLOCUM:An underwater glider propelled by environmental energy[J].Journal of Oceanic Engineering,2001,26(4):447-452.
    [22]CHEVALLEREAU C,ABBA G,AOUSTIN Y,PLESTAN F,WESTERVELT E,CANUDAS-DE-WIT C,GRIZZLE J.RABBIT:A Test bed for Advanced Control Theory [J].IEEE Control Systems Magazine,2003,23(5):57-79.
    [23]PETTERSEN K,MAZENC F,NIJMEIJER H.Global Uniform Asymptotic Stabilization of an Underactuated Surface Vessel:Experimental Results[J].IEEE Transactions on Control Systems Technology,2004,12(6):891-903.
    [24]VAN DER SCHAFT A.Hamiltonian dynamics with external forces and observations[J].Math.System Theory,1982,15:145-168.
    [25]VAN DER SCHAFT A.Stabilization of Hamiltonian systems[J].Nonlinear Analysis,Theory,Methods and Application,1986,10:1021-1035.
    [26]VAN DER SCHAFT A.L2-Gain and Passivity Techniques in Nonlinear Control[M].Berlin,Germany:Springer-Verlag,1999.
    [27]朱仕明.动力学[M].武汉:华中理工大学出版社,2000.
    [28]王玉振.广义Hamilton控制系统理论-实现、控制与应用[M].北京:科学出版社,2007.
    [29]SU C,STEPANENKO Y.Adaptive Variable Structure Set-Point Control of Underactuated Robots[J].IEEE Transactions on Automatic Control,1999,44(11):2090-2093.
    [30]KOLESNICHENKO O,SHIRIAEV A.Partial stabilization of underactuated Euler-Lagrange systems via a class of feedback transformations[J].Systems and Control Letters,2002,45(2):121-132.
    [31]WANG W,YI J,ZHAO D,LIU D.Design of a stable sliding-mode controller for a class of second-order underactuated systems[J].IEE Proceedings of Control Theory and Applications,2004,151(6):683-690.
    [32]XU R,OZGUNER U.Sliding mode control of a class of underactuated systems[J].Automatica,2008,44(1):233-241.
    [33]ORTEGA R,VAN DER SCHAFT A,MASCHKE B,ESCOBAR G.Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems[J].Automatica,2002,38:585-596.
    [34]WOOLSEY C,REDDY C,BLOCH A,CHANG D,LEONARD N,MARSDEN J.Controlled Lagrangian systems with gyroscopic forcing and dissipation[J].European Journal of Control,2004,10(5):478-496.
    [35]BROCKETT R.Control theory and analytical mechanics[M].Brookline:Math Science.Press,1976.
    [36]BLOCH A,LEONARD N,MARSDEN J.Controlled Lagrangians and the stabilization of mechanical systems Ⅰ:The first matching theorem[J].IEEE Transactions on Automatic Control,2000,45(12):2253-2270.
    [37]BLOCH A,CHANG D,LEONARD N,MARSDEN J.Controlled Lagrangians and the stabilization of mechanical systems Ⅱ:Potential shaping[J].IEEE Transactions on Automatic Control,2001,46(10):1556- 1571.
    [38]ORTEGA R,SPONG M,GOMEZ-ESTERN F.Stabilization of underactuated mechanical systems via interconnection and damping assignment[J].IEEE Transactions on Automatic Control,2002,47(8):1281-1233.
    [39]AUCKLY D,KAPITANSKI L.On the λ -equations for matching control laws[J].SIAM Journal Control Optimization,2002,41(5):1372-1388.
    [40]ACOSTA J,ORTEGA R,ASTOLFI A,MAHINDRAKAR A.Intercounection and Damping Assignment Passivity-Based Control of Mechanical Systems with Underactuation Degree One[J].IEEE Transactions on Automatic Control,2005,50(12):1937-1955.
    [41]HAUSER J,SASTRY S,KOKOTOVIC P.Nonlinear control via approximate input-output linearization:The ball and beam example[J].IEEE Transactions on Automatic Control,1992,37(3):392-398.
    [42]TOMLIN C,SASTRY S.Switching through singularities[J].Systems and Control Letters,1998,35:145-154.
    [43]HIRSCHORN R.Incremental sliding mode control of the ball and beam[J].IEEE Transactions on Automatic Control,2002,47(10):1696-1670.
    [44]KER C,LIN C,WANG R.A ball and beam tracking and balance control using magnetic suspension actuators[J].International Journal of Control,2007,80(5):695-705.
    [45]ANDREEV F,AUCKLY D,GOSAVI S,KAPITANSKI L,KELKARA,WHITE W.Matching,linear systems,and the ball and beam[J].Automatica,2002,38:2147-2152.
    [46]EATON P,PROKHOROV D,WUNSCH D.Neurocontroller alternatives for 'fuzzy'ball-and-beam systems with nonuniform nonlinear friction[J].IEEE Transaction Neural Network,2000,11(2):423-435.
    [47]ZHANG Y,WANG J.Recurrent neural networks for nonlinear output regulation[J].Automatica,2001,37(8):1161-1173.
    [48]ORDONEZ R,ZUMBERGE J,SPOONER J,PASSINO K.Adaptive fuzzy control:Experiments and comparative analysis[J].IEEE Transaction Fuzzy System,1997,5(2):167-188.
    [49]YUBAZAKI N,YI J,OTANI M,UNEMURA N,HIMOTA K.Trajectory tracking control of unconstrained objects based on the SIRMs dynamically connected fuzzy inference model[C]//IEEE.Proc.of IEEE International Conference on Fuzzy Systems.Piscataway:IEEE Inc,1997:609-614.
    [50]AWTAR S,BERNARD C,BOKLUND N,MASTER A,UEDA D,CRAIG K.Mechatronic design of a ball-on-plate balancing system[J].Mechatronics,2002,12(2):217-228.
    [51]PARK J,LEE Y.Robust visual servoing for motion control of the ball on a plate[J].Mechatronics,2003,13(7):723-738
    [52]FAN X,ZHANG N,TENG S.Trajectory planning and tracking of ball and plate system using hierarchical fuzzy control scheme[J].Fuzzy Sets and Systems,2003,14(2):297-312.
    [53]KER C,LIN C,WANG R.Tracking and balance control of ball and plate system[J].Journal of the Chinese institute of engineers,2007,30(3):459-470.
    [54]RAD A,CHAN P,W.LO.An online learning fuzzy controller[J].IEEE Transaction on Industrial Electronics,2003,50(5):1016-1021.
    [55]G.Carnevali and G.Buttazzo.A virtual laboratory environment for real-time experiments[C]//IFAC.Proceedings of the 5th IFAC International Symposium on Intelligent Components and Instruments for Control Applications.Aveiro:IFAC,2003:39-44.
    [56]KNUPLEZ A.CHOWDHURY A,SVECKO R.Modeling and control design for the ball and plate system[C]//IEEE.Proceedings of the IEEE International Conference on Industrial Technology 2003.Piscataway:IEEE Inc,2003:1064-1067.
    [57]Kenz.How I made a Ball and Plate Doohickey[EB/OL].[2009-04-07].http://www.eissq.com/BallandPlate/index.html
    [58]Milighetti G,Kuntze H.Multi-sensor robot control for Two-Arm humanoid skills[C]//ISR.Proceedings of the Joint Conference on Robotics,37th International Symposium on Robotics.Munich:ISR,2006:65-71.
    [59]李军,孙政顺.模糊控制在板球系统中的仿真研究[J],电机与控制学报,2001,5(4):270-273.
    [60]王赓,孙政顺.板球控制系统的PD型模糊控制算法研究[J].电气传动,2004,4:23-25.
    [61]胡琳静,赵世敏,孙政顺.基于模糊控制的板球控制系统实验装置[J].实验技术与管理,2005,22(4):16-20.
    [62]Googoltech Inc.Ball and plate system.[EB/OL].[2009-02-01].www.googoltech.com.cn/uploads/catalog/1477/B&P.pdf
    [63]深圳元创兴科技有限公司.视觉板球系统REBP450.[EB/OL].[2009-04-07].http://www.reinovo.com/3_zidong.asp?classid=1300&typeid=1302http //www.reinovo.com/2_zidong_01.asp?id=94&classid=1300&typeid=1302
    [64]TIAN Y,BAI M,SU J.A non-linear switching controller for ball and plate system[J].International Journal of Modeling,Identification and Control,2006,1(3):177-182.
    [65]BAI M,TIAN Y,SU J,ZHAO J.Mathematic model and fuzzy control of super articulated ball and plate system[C]//CHENG D et al.Proceedings of the 24th Chinese Control Conference.Guangzhou:South China University of China Express,2005:1147-1151.
    [66]BAI M,LU H,TIAN Y,SU J.Motion control of ball and plate system using supervisory fuzzy controller[C]//IEEE.Proceedings of the 6th World Congress on Intelligent Control and Automation.Piscataway:IEEE Inc,2006:8127-8131.
    [67]WANG H,TIAN Y,SUI Z,ZHANG,D1NG C.Tracking control of ball and plate system with a double feedback loop structure[C]//IEEE.Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation.Piscataway:IEEE Inc,2007:1114-1119.
    [68]WANG H,TIAN Y et al.Output regulation of ball and plate system with a nonlinear velocity observer[C]//IEEE.Proceedings of the 7th World Congress on Intelligent Control and Automation.Piscataway:IEEE Inc,2008,2164-2169.
    [69]WANG H,TIAN Y et al.Nonlinear Control for Output Regulation of Ball and Plate System [C]//CHENG D et al.Proceedings of the 27th Chinese Control Conference.Beijing:Beihang University Press,2008:382-387.
    [70]张雪菲,田彦涛,王红睿等.基于扩展卡尔曼滤波的板球系统摩擦力估计[C]//程代展等第26届中国控制会议论文集.北京:北京航空航天大学出版社,2007:375-379.
    [71]苏金涛.无约束运动体路径规划与高精度轨迹控制研究[D].长春:吉林大学通信工程学院,2006.
    [72]张雪菲.板球系统摩擦特性分析与补偿控制算法研究[D].长春:吉林大学通信工程学院,2006.
    [73]FRANCIS B.The linear multivariable regulator problem[J].SIAM Journal of Control and Optimizations,1977,19(3):486-505.
    [74]DAVISON E.The robust control of a servomechanism problem for linear time-invariant multivariable systems[J].I IEEE Transactions on Automatic Control,1976,21(1):25-34.
    [75]BYRNES C,ISIDORI A.Output regulation for nonlinear systems:an overview[J].International Journal of Robust and Nonlinear Control,2000,10:323-337.
    [76]ISIDORI A,BYRNES C.Output regulation of nonlinear systems[J].IEEE Transactions on Automatic Control,1990,35:131-140.
    [77]HUANG J,RUGH W.Stabilization on zero-error manifold and the nonlinear servomechanism problem[J].IEEE Transactions on Automatic Control,1992,37:1009-1013.
    [78]BYRNES C,PRISCOLI F,ISIDORI A,Kang W.Structurally stable output regulation of nonlinear systems[J].Automatica,1997,33:369-385.
    [79]HUANG J,LIN C.On a robust nonlinear servomechanism problem.IEEE Transactions on Automatic Control,1994,39:1510-1513.
    [80]HUANG J,RUGH W.An approximation method for the nonlinear servomechanism problem [J].IEEE Transacfions on Automatic Control,1992,37:1395-1398.
    [81]KANELLAKOPOULOS I,KOKOTOVIC P,MORSE A.Systematic design of adaptive controllers for feedback linearizable systems[J].IEEE Transactions on Automatic Control,1991,36(11):1241-1253.
    [82]JIANG Z,PLALY L.Iterative designs of adaptive controllers for systems with nonlinear integrators[C]//IEEE.Proceedings of the 30th IEEE Conference on Decision and Control.Piscataway:IEEE Inc,1991:2482-2487.
    [83]KRSTIC M,KANELLAKOPOULOS I,KOKOTOVIC P.Adaptive nonlinear control without overparametrization[J].System and Control Letters,1992,19:177-185.
    [84]ISIDORI A.Global almost disturbance decoupling with stability for non-minimum-phase single-input single-output nonlinear system[J].System and Control Letters,1996,28:115-122.
    [85]SU W,XIE L.Robust control of nonlinear feedback passive systems[J].Systems and Control Letters,1996,28(2):85-93.
    [86]LIN W,SHEN T.Robust passivity and feedback design for minimum phase nonlinear systems with structural uncertainty[J].Automatica,1999,35(1):35-48.
    [87]SU W,SOUZE C,XIE L.H∞ control for asymptotically stable nonlinear systems[J].IEEE Transactions on Automatic Control,1999,44(5):989-993.
    [88]HUANG S,JAMES M.L∞-Bounded robustness for nonlinear systems:analysis and synthesis[J].IEEE Transactions on Automatic Control,2003,48(11):1875-1891.
    [89]HUANG S,JAMES M,JIANG Z.L∞-bounded robust control of nonlinear cascade system[J].System and Control Letters,2005,54(3):215-224.
    [90]YANG Y,FENG G,REN J.A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems[J].IEEE Transactions on Systems,Man and Cybernetics(Part A),2004,34(3):406-420.
    [91]SASTRY S,ISIDORI A.Adaptive control of lineadzable systems[J].IEEE Transactions on Automatic Control,1989,34(11):1123-1131.
    [92]TAYLOR D,KOKOTOVIC P,MARINO R,KANNELLAKOPOULOS I.Adaptive regulation of nonlinear systems with unmodeled dynamics[J].IEEE Transactions on Automatic Control,1989,34(4):405-412.
    [93]KANNELLAKOPOULOS I,KOKOTOVIC P,MARINO R.An extended direct scheme for robust adaptive nonlinear control[J].Automatica,1991,27:247-255.
    [94]LIN W.Global robust stabilization of minimum-phase nonlinear systems with Uncertainty[J].Automatica,1997,33(3):453-462.
    [95]Polycarpou M,Ioannou P.A robust adaptive nonlinear control design[J].Automatica,1996,32(3):423-427.
    [96]JIANG Z,MAREELS I.A small-gain control method for nonlinear cascaded systems with dynamic uncertainties[J].IEEE Transactions on Automatic Control,1997,42(3):292-308.
    [97]JIANG Z,PRALY L.Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties[J].Automatica,1998,34(7):825-840.
    [98]JIANG Z.A combined backstepping and small-gain approach to adaptive output feedback control[J].Automatiea,1999,35(7):1131-1139.
    [99]王强德,井元伟,张嗣瀛.一类不确定非线性系统的鲁棒自适应ε-输出跟踪控制[J].控制与决策,2004,19(6):711-713.
    [100]顾庆.基于视觉信息的运动体位置提取算法和实验研究[D].长春:吉林大学通信工程学院,2008.
    [101]KENJO T,SUGAWARA A.Stepping motors and their microprocessor controls(2nd edition)[M].Oxford:Oxford University Press,2003.
    [102]刘宝廷,程树康.步进电动机及其驱动控制系统[M].哈尔滨:哈尔滨工业大学出版社,1997.
    [103]TAO G,KOKOTOVIC P.Continuous-time adaptive control of system with unknown backlash[J].IEEE Transactions on Automatic Control,1995,40(6):1083-1087.
    [104]HERMANN R,KRENER A.Nonlinear controllability and observability[J].IEEE Transactions on Automatic Control,1977,22(5):728-740.
    [105]洪奕光,程代展.非线性系统的分析与控制[M].北京:科学出版社,2005.
    [106]MANIKONDA V,KRISHNAPRASAD P.Controllability of a class of underactuated mechanical systems with symmetry[J].Automatica,2002,38:1837-1850.
    [107]史敬灼.步进电机伺服控制技术[M].北京:科学出版社,2006.
    [108]ARMSTRONG-H(?)LOUVRY B,DUPONT P,CANUDAS DEWIT C.A survey of models,analysis tools and compensation methods for the control of machines with friction [J].Automatica,1994,30(7):1083-1138.
    [109]CANUDAS DEWIT C,OLSSON H,ASTROM K,LISCHINSKY P.A new model for control of systems with friction[J].IEEE Transactions on Automatic Control,1995,40(3):419-425.
    [110]TAWARE A,TAO G,PRADHAN N,et al.Friction compensation for a sandwich dynamic system[J].Automatica,2003,39(3):481-488.
    [111]TOMEI P.Robust adaptive friction compensation for tracking control of robot manipulators [J].IEEE Transactions on Automatic Control,2000,45(6):2164-2169.
    [112]HACE A,JEZERNIK K,TERBUC M.VSS motion control for a laser-cutting machine [J].Control Engineering Practice,2001,9(1):67-77.
    [113]RAMASUBRAMANIAN A,RAY L.Comparison of EKBF-based and classical friction compensation[J].Journal of Dynamic Systems,Measurement and Control,Transactions of the ASME,2007,129(2):236-242.
    [114]KRAVARIS C,SOTIROPOULOS V,GEORGIOUA C,et al.Nonlinear observer design for state and disturbance estimation[J].Systems and Control Letters,2007,56:730-735.
    [115]Busawon K,Saif M.An observer for a class of disturbance driven nolinear system[J].Applied Mathematical Letters,1998,11(6):109-113.
    [116]GOLDBERG D.Genetic Algorithms in Search,Optimization and Machine Learning,Reading[M].MA:Addison-Wesley,1989.
    [117]MathWorks,Inc.Genetic Algorithm and Direct Search Toolbox User's Guide.[M/OL].[2009-03-01].http //www.eissq.com/BallandPlate/index.htmlwww.mathworks.com/access/helpdesk_r13/help/pd f_doc/gads/gads_tb.pdf
    [118]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [119]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995.
    [120]WAI R,LIN C,HSU C.Adaptive fuzzy sliding-mode control for electrical servo drive[J].Fuzzy Sets and Systems,2004,143(2):295-310.
    [121]CHENG C,CHIEN S.Adaptive sliding mode controller design based on T - S fuzzy system models[J].Automatica,2006,42(6):1005-1010.
    [122]MONSEES G,SCHERPEN J.Adaptive switching gain for a discrete-time sliding mode controller[J].International Journal of Control,2002,75(4):242-251
    [123]SESFIAGIRIA S,KHALIL H.Robust output feedback regulation of minimum-phase nonlinear systems using conditional integrators[J].Automatica,2005,41(1):43-54.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700