波壁管内的脉动流动及其传质特性的实验和数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步,现代工业得到飞速发展,同时人们也面临着越来越严重的能源短缺和环境污染问题。如何降低工业装备的能量消耗、在现有基础上进一步提高热量质量传递设备的效率、进而减轻对环境的不良影响十分重要。另外,随着大量高粘度、具有生物活性的流体介质越来越多地出现在生物化工、制药以及生命医学等领域,也亟待找到一种在低剪切层流条件下的热质传递强化技术。提高传递设备的效率和促使设备单元的小型化与微型化,采用脉动流动技术是实现质量传递过程强化的重要途径。
     由于目前尚未搜索到有关伴随反向流的脉动流动对传质强化影响的研究报导,因此本文以波壁管为研究对象,采用电化学技术完成了波壁管内不同控制参数下的质量传递速率测量,并提出了伴有反向流的脉动流动的质量传递强化机理;采用铝粉法流动可视化技术与定时刻拍照技术相结合的手段完成了对伴随反向流的脉动流动的流动结构观察,研究了不稳定流动对传质强化的影响;利用FLUENT软件及其二次开发接口,对一些实验测量不能观测的物理量进行了数值分析,为研究波壁管的传质性能提供了一种新思路。
     为了观测波壁管内伴随反向流的脉动流动特性,设计加工并组建了波壁管、脉动装置和可视化及图片记录系统装置等以满足研究需要。通过测量定常流场下的流体力学性能,得到了波壁管内不同流动状态的临界雷诺数等标志量;等功耗条件下波壁管与直壁圆管的比较结果表明,当流动进入过渡流流域后,波壁管具有更好的质量传递性能。
     系统研究了控制参数对伴有反向流的脉动流场下的质量传递强化的影响,并发现,在一定的脉动流振动分率范围内,质量传递强化效果随振动分率的增加而增强;最有效的质量传递强化发生在净流动进入过渡流流域之前的中等雷诺数下;与最大传递强化效果对应的最佳振动频率随净流动雷诺数的增加而减小,且几乎与流量的振动分率无关。据此提出了伴随反向流的脉动流场下的质量传递强化机理,即当入口速度和波长的比值接近脉动振动频率时会产生最有效的质量传递强化效果,并据此得到了确定最佳操作条件的依据和方法。
     为建立传质强化与不稳定流动之间的联系,对伴有反向流的脉动流动进行了可视化研究,结果发现,一个脉动周期内同时存在稳定和不稳定两种流动现象,而不稳定流动状态持续的时间越长,无序混合越强烈,对应的质量传递强化效果就越好。这表明不稳定的流动结构对质量传递强化的贡献最大。
     作为实验研究的验证和补充,数值模拟给出了系列分析结果。数值结果不仅与现有的实验结果吻合,同时说明了数值结果和实验结果的合理性,而且得到了实验测量很难观测的物理量,如流动分离、涡强度、浓度分布等。结果发现,脉动流动比定常流动更早发生流动分离;涡强峰值总是出现在惯性控制的中等振动频率下;浓度边界层的分布与质量传递强化过程相对应。研究结果表明,脉动流动技术是实现传质强化的有效手段之一,同时涡强度与浓度分布均可反映质量传递过程,为探究其它管内的传递性能提供了新思路和新方法。
With the advancement of science and technology,modern industry is developed rapidly, then the energy source shortage and environment pollution are getting more and more serious. It is extremely important to reduce power consumption,improve heat and mass transfer rate and lessen the blight of surroundings.Furthermore,a higher heat and mass transfer enhancement technique without turbulent flow need to be found urgently because numerous high viscous and biology active liquid mediums come forth in biochemical,pharmacy and biomedical field.The high(?)r efficiency and miniaturization of transfer devices as well as pulsatile flow are main means for achieving above aims.
     To date,there is no experimental study on pulsatile flow with backward flow.Utilizing electrochemical technology,the mass transfer characteristics for pulsatile flow with backward flow under different controls parameters in a three dimensional wavy-walled tube are discussed,and transfer enhancement mechanism is brought out.The flow structures are observed using aluminum dust method and timing flow visualization technology,thus the relationship between unsteady flow and mass transfer enhancement is explored.Subsequently, some physical quantities,which cannot measured through present experiment system,are simulated with soft FLUENT and its second development interface,therefor a significant reference is obtained for the exploiture of higher transport devices and practical engineering applications.
     To investigate the characteristics of pulsatile flow with backward flow,a experimental system is designed and constructed,including a wavy-walled tube,pulsatile device, visualization equipment and so on.Then critical Reynolds numbers and flow structure characteristics are found and described.Moreover,mass transfer performance under equal pumping power condition is explored for wavy-walled and straight-walled tubes.The result indicates that the wavy-walled tube has a higher transfer performance after entering transitional flow regime.
     The effect of controls parameters on mass transfer enhancement under pulsatile flow with backward flow condition is investigated.It is found that transfer enhancement is increased with increasing oscillatory fraction within a limited fraction range,the optimal transfer enhancement is occurred in moderate Reynolds number.On the other hand,the optimal oscillatory frequency value,corresponding to the optimal transfer enhancement,is decreased with increasing Reynolds number,which independent on oscillatory fraction. Furthermore,mass transfer enhancement mechanism for pulsatile flow with backward flow in a wavy-walled tube is pointed out,that is the most effective transfer enhancement is obtained when the ratio of imposed inlet velocity and wavelengh is close to the forced oscillatory frequency.Hereby the basis and method of optimal operation condition for pulsatile flow are confirmed.
     In order to establish relationship between flow structure and mass transfer enhancement, flow structures for pulsatile flow with backward flow are observed through flow visualization technology.It is found that steady and unsteady flow structures are all exist during one pulsatile cycle,and the unsteady flow structures lasts more long time,chaotic mixing is stronger,mass transfer enhancement effect is better.Therefore,unsteady flow contributes great to mass transfer enhancement in the wavy-walled tube.
     As a validation and supplement of experimental study,some analysis results are obtained through numerical simulation.The numerical and experimental results are in agreement,and showing their rationality.Moreover some physical quantities are simulated,which cannot measured through present experiment system.It is found that flow separation is occurred at smaller Reynolds number with pulsatile flow than steady flow,and the peak value of vortex intensity is always appeared in moderate oscillatory frequency during deceleration phase with inertia domination.At the same time,the distribution of concentration boundary layer with different forced oscillatory frequency is agreement with the variation of mass transfer enhancement.The numerical results show that pulsatile flow is one of effectual methods for transfer enhancement,besides,both vortex intensity and concentration distribution can be used to reflect the variation of mass transfer process,which provides a new idea and method for other tubes' study.
引文
[1]李建强.流体力学在工程建设中的应用[J].华东交通大学学报,2001,18(3):66-67.
    [2]刘起霞,邹剑峰,王海霞.实际工程中的流体力学[J].力学与实践,2006,28:90-92.
    [3]周光垌.流体力学发展的五个时期[J].力学与实践,2001,23(3):71-75.
    [4]尹锡勋.节能技术及其发展方向[J].节能,1997,6:3-6.
    [5]崔海亭,彭培英.强化传热新技术及其应用[M].北京:化学工业出版社,2006.
    [6]Shah R K,Heikal M R,Thonon B,et al.Progress in the numerical analysis of compact heat exchanger surfaces[J].Advances in heat transfer,2001,34:363-343.
    [7]姚仲鹏,王新国.车辆冷却传热[M].北京:北京理工大学出版社,2001.
    [8]王义春,杨英俊,姚仲鹏.整体式无接触热阻散热器传热元件的研究[J].车用发动机,2002,6:41-45.
    [9]Bellhouse B J,Bellhouse F H,Curl C M,et al.A high efficiency membrane oxygenator and pulsatile pumping system and its application to animal trials[J].Trans.Amer.Soc.Artif.Int.Organs.,1973,19:72-79.
    [10]赵艳红.化工生产中热量传递和质量传递相似性的分析[J].煤炭技术,2006,25(3):7-8.
    [11]姚玉英.化工原理[M].天津:天津大学出版社,1999.
    [12]韩光泽,华贲,魏耀东.传递过程强化的新途径一场协同[J].自然杂志,24(3):273-276.
    [13]华贲.工艺过程用能分析及综合[M].北京:烃加工出版社,1989.
    [14]Nishimura T,Ohori Y,Kawamura Y.Flow characteristics in a channel with symmetric wavy wall for steady flow[J].J.Chem.Eng.Japan,1984,17:466-471.
    [15]Nishimura T,Kajimoto Y,Kawamura Y.Mass transfer enhancement in channels with a wavy wall[J].J.Chem.Eng.Japan,1986,19:142-144.
    [16]Nishimura T,Murakami S,Arakawa S,et al.Flow observations and mass transfer characteristics in symmetrical wavy-walled channels at moderate Reynolds numbers for steady flow[J].Int.J.Heat Mass Transfer,1990,33(5):835-845.
    [17]Sobey I J,Drazin P G.Bifurcations of two-dimensional channel flows[J].J.Fluid Mech.,1986,171:263-287.
    [18]Gradeck M,Lebouche M.Wall shear measurements inside corrugated channels using the electrochemical technique[J].Experiments in fluids,1998,24(1):17-26.
    [19]徐佳莹,王秋旺,杨小玉,等.周期性渐扩-渐缩通道层流流动与换热特性研究[J].计算物理,2001,18(3):225-229.
    [20]石磊,李增耀,陶文铨.大涡模拟在平板通道湍流流场计算中的应用[J].中国工程热物理学会2003年学术会议,2003:870-873.
    [21]李光熙,陶文铨,宇波,等.平板通道内充分发展湍流直接数值模拟[J].中国工程热物理年会2003学术会议论文,2003:874-877.
    [22]李卓,俞坚,马重芳.小通道单相流体突扩和突缩局部阻力特性[J].化工学报,2007,58(5):1127-1131.
    [23]李卓,唐桂华,陶文铨.微通道中极性流体流动特性的研究[J].西安交通大学学报,2007,41(3):274-278.
    [24]Amano R S.A Numerical Study of Laminar and Turbulent Heat Transfer in a Periodiclly Corrugated Wall Channel[J].J.of Heat Transfer,1985,107:564-569.
    [25]All M M,Ramadhyani S.Experiments on Convective Heat Transfer in a Corrugated Channels[J].Experimental Heat Transfer,1992,5:175-193.
    [26]许伟,闵敬春.波纹通道内流动和换热的数值模拟[J].中国工程热物理学会2003年学术会议,2003:825-828.
    [27]Nishimura T,Ohori Y,Kajimoto Y,et al.Mass transfer characteristics in a channel with symmetric wavy wall for steady flow[J].J.Chem.Eng.Japan,1985,18:550-555.
    [28]Ghaddar N K,Korczak K Z,Mikic B B,et al.Numerical investigation of incompressible flow in grooved channels-Part 1.Stability and self-sustained oscillations[J].J.Fluid Mech.,1986,163:99-127.
    [29]Ghaddar N K,Magen M,Mikic B B,et al.Numerical investigation of incompressible flow in grooved channels-Part 2.Resonance and oscillatory heat-transfer enhancement [J].J.Fluid Mech.,1986,188:541-567.
    [30]Wang G,Vanka S P.Convective heat transfer in periodic wavy passages[J].Int.J.Heat Mass Transfer,1995,38:3219-3230.
    [31]Guzman A M,Amon C H.Transition to chaos in converging-diverging channel flows,Ruelle-Takens-Newhouse scenario[J].Phys.Fliuds,1994,6:1994-2002.
    [32]Guzman A M,Amon C H.Dynamical flow characterization of transitional and chaotic regimes in converging-diverging channels[J].J.Fluid Mech.,1996,321:25-27.
    [33]Blancher S,Creff R.Forced convective heat transfer for a self sustained oscillatory flow in a converging-diverging channel[C].Heat Transfer 1998,Proceeding of 11th IHTC,1998,3:81-85.
    [34]Blancher S,Creff R,LeQuere P.Effect of Tollmien-Schlichting wave on convective heat transfer in a wavy channel -Part I.Linear analysis[J].Int.J.Heat and Fluid Flow,1998,19:39-48.
    [35]Nishimura T,Nakagiri H,Kunitsugu K.Flow patterns and wall shear stresses in grooved channels at intermediate Reynolds numbers[J].Trans.JSME,Ser B,1996,62:2106-2112.
    [36]Nishimura T,Kunitsugu K,Nakagiri H.Fluid mixing and local mass transfer characteristics in a grooved channel for self-sustained oscillatory flow[J].Trans.JSME,Ser B,1997,63:1707-1712.
    [37]Nishimura T,Kunitsugu K.Three-dimensionality of grooved channel flows at intermediate Reynolds numbers[J].Experiments in Fluids,2001,31:34-44.
    [38]过增元,黄素逸.场协同原理与强化传热新技术[M].北京:中国电力出版社,2004.
    [39]李革,张丽,董晓巍.场协同原理在强化换热器传热中的应用与分析[J].制冷与空调,2008,8(1):30-32.
    [40]Nishimura T,Matsune S.Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile flow at low Reynolds numbers[J].Int.J.Heat and Fluid Flow,1998,19:583-593.
    [41]杨卫卫,何雅玲,徐超,等.平直通道中层流脉动流动的数值模拟[J].西安交通大学学报,2004,38(9):925-928.
    [42]杨卫卫,何雅玲,陶文铨,等.凹槽通道中脉动流动强化传质的数值研究[J].西安交通大学学报,2004,38(11):1119-1122.
    [43]Nishimura T,Bian Y N,Kunitsugu K.Mass transfer enhancement in a wavy-walled tube by imposed fluid oscillation[J].American Institute of Chemical Engineers,2004,50(4):762-770.
    [44]Sobey I J.On flow through furrowed channels-Part 1.Calculated flow patterns[J].J.Fluid Mech.,1980,96:1-26.
    [45]Sobey I J.The occurrence of separation in oscillatory flow[J].J.Fluid Mech.,1983,134:247-257.
    [46]Nishimura T,Taromoto A,Kawamura Y.Flow and mass transfer characteristics in wavy channels for oscillatory flow[J].Int.J.Heat Mass Transfer,1987,30:1007-1015.
    [47]Nishimura T,Murakami S,awamura Y.Mass transfer in a symmetric sinusoidal wavy-walled channel for oscillatory flow[J].Chem.Engng Sci.,1993,48:1793-1800.
    [48]Nishimura T.Oscillatory flow and mass transfer within asymmetric and symmetric channels with sinusoidal wavy walls[J].Heat and Mass Transfer,1995,30:269-278.
    [49]Patera A T,Mikic B B.Exploiting hydrodynamic instabilities.Resonant heat transfer enhancement[J].Int.J.Heat Mass Transfer,1986,29:l127-1138.
    [50]Greiner M.An experimental investigation of resonant heat transfer enhancement in grooved channels[J].Int.J.Heat Mass Transfer,1991,34(6):1383-1391.
    [51]Nishimura T,Oka N,Yoshinaka Y,et al.Influence of imposed oscillatory frequency on mass transfer enhancement of grooved channels for pulsatile flow[J].Int.J.Heat Mass Transfer,2000,43:2365-2374.
    [52]Nishimura T,Kojima N.Mass transfer enhancement in a symmetric sinusoidal wavy-walled channel for pulsatile flow[J].Int.J.Heat Mass Transfer,1995,38:1719-1731.
    [53]Nishimura T,Matsune S.Mass transfer enhancement in a sinusoidal wavy channel for pulsatile flow[J].Heat and Mass Transfer,1996,32:65-72.
    [54]Wygnanski I J,Champagne F H.On transition in a pipe.Part 1.The origin of puffs and slugs and the flow in a turbulent slug[J].J.Fluid Mech.,1973,59:281-335.
    [55]Darbyshire A G,Mullin T.Transition to turbulence in constant-mass-flux pipe flow[J].J.Fluid Mech.,1995,289:83-114.
    [56]Shah H,Ma B,Zhang Z,et al.Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow[J].J.Fluid Mech.,1999,387:39-60.
    [57]Van B,Doorne C W H,Zhang A,et al.On spatial evolution of wall-imposed periodic disturbances in pipe Poiseuille flow at Re=3000.Part 1Subcritical dosturbances[J].J.Fluid Mech.,1999,398:181-224.
    [58]陈健,崔桂香,许春晓,等.空间发展圆管转捩的直接数值模拟[J].力学学报,2003,35(1):6-13.
    [59]Grassmann P P,Tuma M.Application of the electrolytic method-Ⅱ.Mass transfer within a tube for steady,oscillatory and pulsatile flows[J].Int.J.Heat Mass Transfer,1979,22:799-804.
    [60]崔海亭.高效异形强化管的研究现状及发展方向[J].石油机械,1999,27(7):48-50.
    [61]张军.螺旋槽纹管管内流动和换热的数值模拟[D].北京:北京理工大学,1996.
    [62]Cui H T,Yuan X G,Yao Z P.Experimental investigation of heat transfer and pressure drop characterristics of w-type spirally fluted tubes[J].Experimental Heat Transfer,2003,16(3):159-169.
    [63]Bergles A E.Heat transfer enhancement-the encouragement and accommodation of high heat fluxes[J].ASME journal of Heat Transfer,1997,119(2):8-19.
    [64]李向明,叶国兴,邓颂九.高效换热元件-螺旋槽管的研究及应用[J].化工学报,1982,4:359-367.
    [65]吴慧英,帅志明,周强泰.凝结换热器采用螺旋槽管的强化传热研究[J].化工学报,1997,(5):626-630.
    [66]黄渭堂,阎昌琪.螺纹槽管冷凝器若干应用问题的探讨[J].哈尔滨工程大学学报,1998,19(4):82-88.
    [67]崔海亭,姚仲鹏,杨英俊.螺旋槽管传热与流体动力学特性研究[J].热能动力工程,2001,16(2):151-153.
    [68]崔海亭,袁修干,姚仲鹏.异形凹槽螺旋槽管传热及流动阻力的实验研究[J].中国电机工程学报,2003,23(6):217-220.
    [69]韩占忠,姚仲鹏,张军,等.单头螺旋槽纹管管内流动和换热的数值模拟[J].北京理工大学学报,2001,21(3):292-295.
    [70]Zimparov V.Enhancement of heat transfer by a combination of a single-start spirally corrugated tubes with a twisted tape[J].Experimental Thermal and Fluid Science,2002,25:535-546.
    [71]Zimparov V.Enhancement of heat transfer by a combination of a three-start spirally corrugated tubes with a twisted tape[J].J.of Heat and Mass Transfer,2001,44:551-574.
    [72]Chen X D,Nguang S K,Bergles A E.Characterization of the effect of corrugation angles on hydrodynamic and heat transfer performance of Four-start spiral tubes[J].J.of Heat Transfer,2001,123(12):1149-1158.
    [73]裘益民.空心环网板及缩放管强化传热技术在烧碱蒸发器中的应用[J].中国氯碱,2002,9:36.
    [74]张忠伟,刘新换,徐宗仁.强化缩放管换热器组在酒精生产中的应用[J].辽宁食品与发酵,1996,(2):40-44.
    [75]汪卫东,赵景波.空心环缩放管式换热器在金隆铜业公司的应用[J].硫酸工业,2002,2:40-42.
    [76]肖春华,桂业伟,李树民,等.周期性扩缩管充分发展层流流动和传热的数值模拟及场协同分析[J].中国工程热物理学会2003年学术会议,2003:74-78.
    [77]陈颖,邓先和,丁小江.强化缩放管内湍流对流换热[J].化工学报,2004,55(9):1528-1531.
    [78]罗小平,邓先和,邓颂九.缩放管阻力系数的预测[J].华南理工大学学报,1997,25(10):67-72.
    [79]张亚君,欧阳荣,邓先和.强化传热管内的自然对流沸腾换热[J].华南理工大学学报,2004,33(1):41-43.
    [80]高志伟.波纹管强化传热机理及应用[J].东北电力技术,2000,12:47-48.
    [81]谭羽非.不锈钢波纹管强化传热机理分析及在换热器中的应用[J].节能技术,2002,20(11):3-5.
    [82]万国荣,魏春华.波纹管换热器在氨冷凝系统中的应用[J].化工设备与防腐蚀,2002,5(1):27-29.
    [83]谭羽非,陈家新.新型不锈钢波纹管性能及强化传热的实验研究[J].热能动力工程,2003,18(1):47-51.
    [84]陈家新,谭羽非.压缩机中间冷却器采用不锈钢波纹管的试验研究[J].热能动力工程,2001,16(6):635-637.
    [85]金志浩,金文,刘洁,等.波纹换热管管内强化传热实验研究[J].节能,2005,1:6-8.
    [86]宋艳茹,徐井海,张粹.波纹管式换热器高效节能[J].化工科技市场,2004,(3):29-30.
    [87]思勤,夏清,刘兵,等.高效波纹管换热器工业化试验[J].化学工程,1994,21(1):23-27.
    [88]唐文科.波纹管在大温差换热器上的应用[J].石油化工设备,1998,27(2):32-35.
    [89]Deiber J A,Schowalter W R.Flow through tubes with sinusoidal axial variations in diameter[J].AIChE Journal,1979,25:638-644.
    [90]Ralph M E.Steady flow structures and pressure drops in wavy-walled tubes[J].J.Fluids Eng.,1987,109:255-261.
    [91]Mahmud S,Sadrul Islam A,Feroz C.Flow and heat transfer characteristics inside a wavy tube[J].Heat and Mass Transfer,2003,39:387-393.
    [92]Russ G,Beer H.Heat transfer and flow field in a pipe with sinusoidal wavy surface-Ⅰ.Numerical investigation[J].Int.J.Heat Mass Transfer,1997,40:1061-1070.
    [93]Russ G,Beer H.Heat transfer and flow field in a pipe with sinusoidal wavy surface-Ⅱ.Experimental investigation[J].Int.J.Heat Mass Transfer,1997,40:1071-1081.
    [94]Nishimura T,Bian Y N,Matsumoto Y,et al.Fluid flow and mass transfer characteristics in a sinusoidal wavy-walled tube at moderate Reynolds numbers for steady flow[J].Heat and Mass Transfer,2003,39:239-248.
    [95]Mackley M R,Stonestreet P.Heat transfer and associated energy dissipation for oscillatory flow in baffled tubes[J].Chem.Eng.Sci.,1995,50:2211-2224.
    [96]Lee B S,Kang I S,Lim H C.Chaotic mixing and mass transfer enhancement by pulsatile laminar flow in anaxisymmetric wavy channel[J].Int.J.Heat Mass Transfer,1999,42:2571-2581.
    [97]Bian Y N,Nishimura T,Kunitsugu K.Mass transfer enhancement in a wavy-wall tube by imposed fluid oscillation[J].Fluid mechanics and transport phenomena,2003,50:762-770.
    [98]王振东.关于流体力学方法论问题[J].力学与实践,2004,26(2):83-85.
    [99]杨树人,汪志明,何光渝,等.工程流体力学[M].北京:石油工业出版社,2006.
    [100]安丰宝,王秀成,韩治林.强制湍流传热技术[M].济南:山东大学出版社,2003.
    [101]张兆顺.崔桂香.流体力学[M].北京:清华大学出版社,1999.
    [102]大连理工大学编.化工原理(上册)[M].北京:高等教育出版社,2002.
    [103]邝生鲁,陈芬儿,梁啟(同启)勇.应用电化学[M].武汉:华中理工大学出版社,1994.
    [104]吴辉煌.应用电化学基础[M].厦门:厦门大学出版社,2006.
    [105]魏伟胜,蔡志鹏,钱占民,等.研究两相流流动特性的测量系统[J].气动实验与测量控制,1992,6(1):64-69.
    [106]Mizushina T.The electrochemical method in transport phenomena[M].New York and London:Academic Press Inc.,1971:87-159.
    [107]卞永宁.表面冷却器的喷洒性能及传热研究[D].北京:北京化工大学,1996.
    [108]孙宇.定常流场下波壁流路内的流体流动及质量传递特性[D].大连:大连理工大学,2005.
    [109]Yongning Bian.Fluid flow and mass transfer in a wavy-walled tube for steady and pulsatile flows[D],Japan,2002.
    [110]杨有庆,魏启鲲.流动显示技术浅谈[M].力学与实践,1982,1:20-26.
    [111]藤(山鳥)昭,相澤益男,井上徹著,陈震,姚建年译,蔡生民校审.电化学测定方法[M].北京:北京大学出版社,1995.
    [112]沙定国.误差分析与测量不确定度评定[M].北京:国计量出版社,2003.
    [113]刘智敏.实验室认可中的不确度和统计分析[M].北京:中国标准出版社,2007.
    [114]Leal L G.Laminar flow and convective transport process[M].Boston:Butterworth-Heinemann.1992:105-113.
    [115]Jeong Y,Kang I S.Pulsatile flow in stenosed blood vessels[J].Korean J.of Chem. Eng.,1995,12:540-550.
    [116]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2005.