提高CuW合金耐电弧烧蚀性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CuW合金具有良好的耐电弧侵蚀性、抗熔焊性能和高强度等优点,被广泛地用作各种高压断路器中的触头材料。随着电力系统不断发展,目前的CuW合金不能满足断路器向着大容量、高电压、低过压、小型化、智能化对触头材料综合性能的要求。本文采用熔渗法,分别制备了掺杂稀土氧化物的CuW合金、纳米CuW合金,研究了不同制备方法对CuW材料显微组织、静态性能及电击穿性能的影响。本实验条件下的结果表明:
     1.球磨混料4h已经使纳米级CuO粉末均匀的分布在W基体上;CuO的最佳还原方式为还原W-CuO混合粉末;最佳还原温度是800℃;在烧结温度为900℃时,W骨架基本形成;当CuO粉含量达到7-11wt%时,渗铜效果最好。纳米CuW合金晶粒细化且有大量的晶界的存在,电击穿发生晶界上,耐电压强度有所提高;
     2.采用液一固掺杂法在钨骨架中添加的CeO_2分布均匀,添加量在0.2-1wt%,随着添加量的增加,粉末冶金法制备的CuW合金的硬度升高,而电导率变化不大;添加CeO_2的CuW合金,电击穿发生在CeO_2及其边缘;此时铜相的飞溅较小,击穿坑较浅;
     3.在击穿过程中,传统的CuW合金电击穿往往发生在富铜区域,铜液的喷溅较严重,且击穿坑较大;
     4.添加CeO_2相的CuW合金和纳米CuW合金的平均截流值较小,平均电弧寿命长。
Due to excellent properties in arc erosion resistance, fusion resistance and breakdown strength CuW alloys are widely used as contact materials in various high voltage breakers. With increasing development of the power system, they can not meet the requirements of increasingly stringent combination of higher voltage, larger capacity, lower over-voltage and intellience. The Cu-W alloy with CeO_2 addition and nano-CuW alloy were prepared by milling along with infiltration technique, the effect of different powder preparation techniques on the final microstructure, static properties and vacuum breakdown performance was studied. The following conclusions can be drawn from this investigation:
     1. Nano-scale CuO particles can be obtained by milling. However, the powders aggregate seriously with increasing milling time. CuO particles can be uniformly dispersed into W matrix after mixing for 4h. The optimum reduction mode for CuO is to reduce the mixture of W and CuO powders and the optimum temperature is 800℃. The W skleton almost forms when sintered at 900℃. It can obtain the best infiltration effect when the content of CuO powders is 7-11wt%. For the nano-CuW alloy, the electrical breakdown usually happen on the grain boundary and the breakdown strength increases slightly due to the finer grains and large numbers of grain boundary.
     2. The 0. 2~1wt% CeO_2 additive can be distributed uniformly in the tungston skelton by liquid- solid doping method. With increasing CeO_2, the hardness of the CuW alloy prepared by powder metallurgy increases, but the electrical conductivity does not change almostly. For the CuW alloy with CeO_2 addition , the electric breakdown appear on the CeO_2 particles and their surrounding ares. The molten copper has less splash and the breakdown pits are more shallow.
     3. During the breakdown process, the electric breakdown districts of CuW alloy usually appear on the Cu-rich region, and have serious splash, and the formation of lager breakdown pits.
     4. The CuW alloy with CeO_2 addition and nano- CuW alloy have small chopping current and long arc life.
引文
[1] 王季梅,刘志远.尽快开发大容量真空式发电机断路器的必要性[J].电气技术,2005,5: 34-36
    
    [2] 施卫华,阮宁晖,王进.高压开关电器的发展及应用[J].昆明冶金高等专科学校学报,2005, 21(5):45-51
    
    [3] 王季梅.论开发750kV超高压真空断路器的必要性[M].电力设备,2004,5(9):1-5
    
    [4] Boxman R L, Goldsmith S, Greenwood A. Twenty-five years of progress in vacuum arc researchand utilization[J]. IEEE Trans Plasma Sci, 1997, 25(6): 174-86
    
    [5] Boxman RL. State of the Theory of Vacuum Arcs [J]. IEEE Trans Plasma Sci, 2001, 29(5):759-75
    
    [6] 李辛庚,傅敏.真空电触头材料现状及展望[J].中国电力,2001,34(8):39-42
    
    [7] 乔景春,辛荣生.真空断路器用CuCr触头材料[J].郑州大学学报(自然科学版),1995, 27(3):79-82
    
    [8] Slade P G. Advances in material development for high power vacuum interrupter contacts [J]. IEEE Trans Comp Packag Manufact Technol, 1994, 17(1): 96-106
    
    [9] Alex P G. Metallic materials specification handbook (third edition) [M]. New York: E&FN Spon. LTD, 2003
    
    [10] 范志康,梁淑华,肖鹏.高压电触头材料[M].北京:机械工业出版社,2004
    
    [11] 钱宝光,耿浩然,郭忠全等.电触头材料的研究进展与应用[J].机械工程材料,2004,3: 7-9
    
    [12] 李震彪,张逸成.真空触头材料的性能分析比较[J].电工合金,2002,1:14-18
    
    [13] 李震彪,张冠生,秦庆生.电触头材料抗静熔焊能力的研究[J].中国电机工程学报,1994, 14(1):34-39
    
    [14] 李震彪,张冠生,戚颖.电触头材料及其不同配对时抗动熔焊能力的研究[J].电工合金, 1994,1:1-5
    
    [15] 李震彪,李先平.电触头材料的熔焊强度分析[J].高压电器,1996,4:19-23
    
    [16] 陈伟,邝用庚,周武平.中国高温用钨铜复合材料的研究现状[J].稀有金属材料与工程, 2004,33(1):11-14
    
    [17] 李云平,曲选辉,段柏华.W-Cu(Mo-Cu)复合材料的最新研究状况[J].硬质合金,2001, 18(4):232-236
    
    [18] Young Do Kim, Nang Lyeom Oh, Sung-Tag Oh, In-Hyung Moon. Thermal conductivity of W-Cu composites at various temperatures [J]. Materials Letters, 2001, 51: 420-42
    
    [19] 王志法,刘正春.W-Cu电子封装材料的气密性[J].中国有色金属学报,1999,9(2):323-326
    
    [20] 邝用庚,牟科强,徐桂兰等.改善钨渗铜喉衬的高温尺寸稳定性研究[J].稀有金属材料与 工程,1997,26(5):30-34
    
    [21] T. Bregel, W. Krauss-Vogt, R. Michal etc. On the application of W/Cu materials in the fields of power engineering and plasma technology [J]. IEEE Trans. Comp. Hybrids Manufact. Technol, 1991, 14(3): 8-13
    
    [22] 雷纯鹏,程继贵,夏永红.新型钨铜复合材料的制备和性能研究的新进展[J].金属功能材 料,2003,25:24-27
    
    [23] 雷景轩,马学鸣,于海峰等.机械合金化制备电触头材料进展[J].材料科学与工程,2002, 3(20):457-460
    
    [24] 姜国圣,王志法,刘正春.高钨钨-铜复合材料的研究现状[J].粉末冶金材料科学与工程, 1999,4(1):30-33
    
    [25] 蔡一湘,刘伯武.钨铜复合材料致密化问题和方法[J].粉末冶金技术,1998,17(2):138-144
    
    [26] 李震彪,张逸成.真空触头材料的性能分析比较[J].低压电器,1998,3(9):15-25.
    
    [27] 谌启明.含钨电触头材料及其工艺与应用探讨[J].稀有金属与硬质合金,1999,2:55-57
    
    [28] 李辛庚,傅敏.真空电触头材料技术开发现状及展望[J].中国电力,2001,34(8):39-42
    
    [29] 黄培云.粉末冶金原理[M].北京:冶金工业出版社,1981
    
    [30] 范景莲,严德剑,黄伯云,刘军,汪澄龙.国内外钨铜复合材料的研究现状[J].粉末冶金工 业,2003,13(2):9-14
    
    [31] Eui-Sik Yoon, Jai-Sung Lee, Sung-Tag Oh, Byoung-Kee Kim. Microstructure and sintering behaviour of W-Cu nanocomposite powder produced by thermo-chemical process [J]. InternationalJournal of Refractory Metals & Hard Materials.2002, 20: 201-206
    
    [32] 程继贵,吴玉程,夏永红,蒋阳,雷纯鹏.纳米W-Cu粉末的热机械化学法制备及其烧结性 能研究[J].金属功能材料.2005,12(2):12-15
    
    [33] 杨明川,宋贞桢,卢柯.W-20%Cu纳米复合粉的制备[J].金属学报,2004,40(6):639-642
    
    [34] Jin-Chun Kim, Sung-Soo Ryu, Young Do Kim, In-Hyung Moon. Densification behavior of mechanically alloyed W-Cu composite powders by the double rearrangement process [J]. Scripta Materialia,1998,39(6):669-676
    
    [35] 贾燕民,丁秉钧.制备弥散强化铜的新工艺[J].稀有金属材料与工程,2004,29(2):141-143
    
    [36] 陈君平,韩钰.高能球磨中的机械合金机理[J].机械,2004,31(3):52-54
    
    [37] 张立德,牟季美.纳米材料和纳米结构[M].上海科学技术出版社,2002
    
    [38] 陈伟,周武平,邝用庚等.粉末粒度对于高温钨渗铜材料骨架性能的影响[J].粉末冶金工 业,2004,14(2):17-20
    
    [39] 蔡一湘,刘伯武.钨铜复合材料致密化问题和方法[J].粉末冶金技术,1998,17(2):138-144
    
    [40] 张先胜,冉广.机械合金化的反应机制研究进展[J].金属热处理,2003,28(6):30-31
    
    [41] 陈金德,邢建东.材料成形技术基础[M].冶金工业出版社,2000,9(5):279-285
    
    [42] 范志康,梁淑华,削鸱.CuW假两相合金的熔渗参数[J].中国有色金属学报,11(1),2001: 102-104
    
    [43] 上海市机械制造工艺研究所主编.金相分析技术[M].上海:上海科学技术文献出版社, 1987
    
    [44] 赵玮宾.机械合金化法制备CuWCr复合材料的研究[D].西安:西安理工大学,2007
    
    [45] 齐宝森,王成国,姚新.高能球磨金属铬、铝粉末的特征[J].稀有金属,2000,24(5):325- 329
    
    [46] 景怀宁,秦光荣,康志君.高能球磨法制备吸气材料用超细锆粉[J].粉末冶金技术,2002, 20(2):94-96
    
    [47] 王盘鑫.粉末冶金工艺学[M].上海科学普及出版社,1987
    
    [48] 陈文革.粉末混合质量的评定及影响因素[J].电工合金,1998(1):28-30
    
    [49] 陈文革.粉末混合中物料的运动分析[J].电工合金,2001(1):27-29
    
    [50] Sanjay M, Hao Shen, M ichae. Structural and optical properties of highly Nd-doped yttrium alum inum garnet ceram ics from a lklxide and glycolate precursors [J]. Journal of American Ceram ic Society, 2006,89(6): 2027-2033
    
    [51] 姚长江.团聚颗粒在锻烧a-A l_2O_3相变及晶粒长大过程中的作用和影响[M].北京:年纳 微粉体制爷与技术应用侧讨,2002
    
    [52] H.H.豪斯纳.粉末冶金手册[M].北京:冶金工业出版社.1982
    
    [53] R M German. Theprocedings of litn [J]. Internation Plansee Semimar, 1985,1.143-161
    
    [54] 吴小刚.纳米钨铜复合材料制备工艺研究[D].西华大学硕士学位论文,2006
    
    [55] M.J. Homan, Y.W. Mai, R.H. Dauskardt, J. Ager, R.O. Ritchie. Grain size effects on cyclic fatigue and crack growth behaviour of partially stabilized zirconia [J]. Mater. Sci,1995,20: 3291-3299
    
    [56] H.Y. Lee, W.Reeihemann, B.L. Mordike. Grain growth and phase changes during sintering of nanocrystalline zirconnia [J]. Journal of Powder Metallurny, 1992,96(4): 849-854
    
    [57] 曲在纲.粉末冶金摩擦材料[M].北京:冶金工业出版社,1997
    
    [58] 杨晓红.添加相对CuW合金组织与性能的影响[D].西安:西安理工大学,2006
    
    [59] 李辛庚.真空电触头材料技术开发现状及展望[J].中国电力,2001,11(8):39
    
    [60] 聂作仁,周美玲,陈颖.二元复合稀土钨电极材料的性能[J].金属学报,1999,35(3):334-339
    
    [61] 李淑霞,魏光明,朱瑞.镧钨电极材料[J].中国钨业,1998,12(6):42-47
    
    [62] 刘光华,孙洪志,李红英.稀土材料与应用技术[M].北京:化学工业出版社,2005
    
    [63] 杜挺.稀土元素在金属材料中的一些物理化学作用[J].金属学报,1997,33(1):69-77
    
    [64] 刘光华.稀土固体材料学[M].北京:机械工业出版社,1997
    
    [65] 稀有金属手册(下册)[M].北京:冶金工业出版社,1995
    
    [66] 贾佐诚,康庆华,齐燕波.新型稀土电极材料[J].粉末冶金技术,1993,11(3):196-202
    
    [67] 张晖,陈献峰,杨志懋.显微组织细化对W-ThO_2阴极性能的影响[J].材料研究学报,2000, 14(11: 19-24
    
    [68]席晓丽,聂柞仁,杨建参.掺杂方式对钨电子发射材料性能和结构的影响[J].稀有金属 2004,28(2):293-296
    
    [69]姚义俊,丘泰,焦宝祥,沈春英.稀土氧化物对氧化铝瓷性能的影响[J].真空电子技术, 2004,4:28-31
    
    [70] M Thompson A, Soni K K, Chan H M, et al. Dopant Distribution in Rare-earth-doped Alumina[J].J Am Ceram Soc, 1997,4(2): 373-376
    
    [71]郭庚辰.液相烧结粉末冶金技术[M].北京:化学工业出版社,2003
    
    [72]李震彪,张逸成.真空触头材料的性能分析比较[J].低压电器,1998,3(9):15-25
    
    [73]陈文革,谷臣清.电触头材料的制造、应用与研究进展[J].上海电器技术,1997,(2):12-17
    
    [74]史久熙.真空开关用触头材料[J].上海有色金属,2000,21(4):199-207
    
    [75]张剑平,陈敬超,周晓龙.影响CuCr系触头材料性能的因素[J].电工材料,2003(1):3-8
    
    [76] K.S. Venkataraman, R.A. Dimilia. Predicting the grain-size distributions in high purity alumina ceramics [J]. Am ceram soc, 1989,72:33-39
    
    [77]彭清艳.CuWCr复合材料击穿特性的研究[D].西安:西安理工大学,2005
    
    [78] Sedak A A, Masao Ushio, Matsuda F. Effect of Rare Earth Metal Oxide Additions to Tungsten Electrode[J]. Metallurgical Trans A, 1990,21:3221-3236
    
    [79]杨晓红,范志康,梁淑华.TiC对CuW触头材料组织与性能的影响[J].稀有金属材料与 工程2007,36(5):817-821
    
    [80]冯宇,卜涛,王红理.CuCr25纳米晶化对真空电弧阴极斑点扩散的影响[J].稀有金属材 料与工程2007,36(5):929-932
    
    [81] 苏亚凤,杨志懋,丁秉钧.纳米Cu阴极斑点短程有向运动分析[J].稀有金属材料与工程 2007,36(1):68-70
    
    [82]潘保武,赵捍东.材料科学与工艺,2000,8(1):91-92
    
    [83]孙杏囡,崔永福,宣林杰.液—固混料法制取钨-稀土氧化物包覆粉的研究[J].稀有金属 材料与工程,1997,26(4):36-39