开垦种植对草地生产力及土壤影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪30年代以来,为了满足人们对农作物以及家畜对饲料的不断需求,加拿大大面积的草原被开垦种植一年生或多年生作物和牧草。长期以来,对于开垦天然草地种植牧草是否会提高草地生产力这个问题的研究经常得到不同的结论,而这些矛盾主要是由于实验时间、实验处理和实验设计不同造成的。本研究选取加拿大阿尔伯塔省南部具有代表性的两块从未被任何利用干扰过的天然草地作为实验样地对以上问题做了进一步研究。ADRI样地位于列桥市郊区(49°07′N,112°57′W),以针茅-格兰马草-冰草(Stipa– Bouteloua- Agropyron)建群,Onefour靠近阿尔伯塔省和美国的边境(49°03′N, 110°27′W),以针茅-格兰马草(Stipa-Bouteloua)建群。实验采用完全随机区组设计,7个处理,每个处理4次重复,地上净初级生产力每年测定一次,土壤采样在2006年4月份进行,并分为0-15cm、15-30cm、30-60cm和60-90cm四层。
     研究结果表明:
     1、各个耕作处理的地上净初级生产力和刈割净初级生产力显著受到样地以及样地、耕作处理和采样时间三者交互作用的影响(P<0.05)。ADRI样地中冰草在样地建立最初1-4年地上净初级生产力显著高于对照(P<0.05),但在接下来的5-13年中与对照趋于相等。但在Onefour样地的1-11年中地上净初级生产力均显著高于对照处理(P<0.05)。该结果说明在降水较少、温度较高的Onefour样地冰草是表现出较强的适应性和生长能力。两样地中小麦始终是最高产的作物,不论净初级生产力和刈割净初级生产力均显著高于对照处理。
     2、开垦天然草地种植俄罗斯新麦草和冰草13或12年后,草地土壤碳氮含量、碳氮储量以及土壤轻组有机质性质与对照相比无显著变化(P>0.05),而种植小麦则使以上各个指标显著降低(P<0.05);所有耕作处理之间的土壤较稳定碳含量均无显著差异(P>0.05),土壤碳氮含量的变化主要来自于土壤易分解有机质库。
     3、种植冰草使土壤碳氮矿化量显著增加而俄罗斯新麦草只造成土壤碳矿化的显著增加(P<0.05)。两个小麦处理使土壤矿化碳显著下降(P<0.05)而对矿化氮无影响(P>0.05)。
     4、在加拿大普列里草原上,土壤碳氮、轻组有机质和土壤矿化碳之间存在显著或极显著相关关系(P=0.0001或P=0.05),而土壤矿化氮和硝化氮与以上指标无相关关系。地上净初级生产力与土壤碳氮含量呈一元一次线性正相关关系,而与土壤矿化碳、碳矿化速率、矿化氮、氮矿化速率、硝化氮和氮硝化速率呈一元一次线性负相关关系。
     5、根系生物量受样地、耕作处理的影响(P<0.05)而不受样地和耕作处理交互作用影响(P>0.05)。俄罗斯新麦草的根系生物量显著高于对照,而两个小麦处理的根系生物量显著低于对照(P<0.05);ADRI样地所有处理的根系生物量均高于Onefour样地的根系生物量。
The production-oriented goals of agriculture have resulted in tremendous changes in land-use on the prairies with the conversion of native grassland to forage and crop land for food production and livestock fodder from 1930’s. The relative benefits of introducing forage species to the Northern Great Plains has been examined in well publicized studies with contradictory conclusion because of the differences by time of establishment, treatments arrangment and experimental design. Consequently, in order to clear the issue with trustable data and address a relative correct conclusion we prompted this study to re-examine the issue. Two experimental sites which were totally undisturbed on Mixed Prairie were selected in southern Alberta. ADRI is located in the suburb of Lethbridge(49°07′N, 112°57′W), near Animal Disease Research Institution with plant community of Stipa– Bouteloua- Agropyron. Onefour site is close to the boundry of Alberta and America(49°03′N, 110°27′W), with the plant community of Stipa-Bouteloua. The design of the field study was a randomized complete block design with 7 treatments, 4 replicates. ANPP was investigated every year. Soil samples were taken in fall 2006 at 4 increments (0– 15, 15– 30, 30– 60, and 60– 90 cm depth) for analysis.
     The results showed:
     1. ANPP and Ha-ANPP among forage types was influenced (P<0.05) by community and its interaction with treatment and sampling period. ANPP of ADRI was significantly higher than native grassland in 1 to 4 years after sites established(P<0.05) while tended to be similar with native grassland in the following 5 to 13 years. ANPP of Onefour was always significantly higher than naitve grassland in 1 to 11 years. The study confirmed the relative ANPP advantage of Crested wheatgrass on the Onefour site but not on ADRI site. Wheat was the most productive forage on both sites and its ANPP advantage to the native harvest appeared sustainable.
     2. Converting native grassland to Russian wildrye and Crested wheatgrass 13/12 years had no effect on soil organic carbon and nitrogen concentration, soil organic carbon and nitrogen stock and light fraction qualities (P>0.05) while converting native grassland to Wheat led a lower soil organic carbon and nitrogen concentration, soil organic carbon and nitrogen stock and light fraction qualities less (P<0.05). All cropping treatments had no effect (P>0.05) on More stable carbon indicated the loss of soil carbon and nitrogen was mainly from labile organic matter pool.
     3. Crested wheatgrass led a higher carbon and nitrogen mineralization (P<0.05) while while Russian wild rye only led a higher carbon mineralization than native grassland (P<0.05). Converting native grassland to wheat significantly lower (P<0.05) carbon mineralization while had no effect on nitrogen mineralization (P>0.05).
     4. On the Mixed prairie, soil carbon and nitrogen stock, light fraction qualities, carbon mineralization and nitrogen mineralization were closely correlated to each other (P<0.05 or P<0.0001)while no relations between nitrogen mineralization and nitrificati was detected. ANPP positively liner related to soil organic carbon and nitrogen stock while negetive liner related to carbon nitrogen mineralization, nitrogen nitrification and their rates. No relations between ANPP and light fraction qualities were detected.
     5. Corse root biomass was significantly effected by site and treatment (P<0.05) while was not effected by their interactions (P>0.05). Russian wild rye led higher corse root biomass than native grassland while wheat significantly lower corse root biomass (P<0.05). Corse root biomass on ADRI site was higher than Onefour site.
引文
1 Scurlock J M O, Hall D O. The global carbon sink: a grassland perspective. Global Change Biology, 1998, 4: 229-233
    2 Parton W J, Coughenor M B, Scurlock J M O, et a1. Global grassland ecosystem modelling: Development and test of ecosystem models for grassland systems.In: Hau, D O, eds. Global Change. Effects on Coniferous Forests and Grasslands. London: Wiley, 1996: 229-269
    3 Whittaker R H, Likens G E. Biosphere and Man[A]. Lieth H. Primary Productivity of the Biosphere[C]. New York: Springer-Verlag, 1975: 305-308
    4 Ajtay G L, et al. Terrestrial primary production and phytomass. The Global Carbon Cycle [M]. Chichester: John wiley & sons, 1979: 129-182
    5 Smoliak S. and Dormaar, J F. Productivity of Russian wildrye and Crested wheatgrass and their effect on prairie soils[J]. Journal of Range Manage. 38: 403-405
    6 Schoen D J. 1997. Primary productivity: the link to global health[J]. Bioscience, 47: 477-480
    7 Mooney H A. Ecosystem physiology: overview and synthesis. In: Walker, B & W Steffen eds. Global change and terrestrial ecosystems. Cambridge: Cambridge University Press. 1996: 13-16
    8 Nemani R R, Keeling C D, Hashimoto H, et al. Climate-driven increases in global terrestrial net primary production from 1982 to 1999[J]. Science, 2003, 300: 1560-1563
    9 Melillo J M, McGuire A D, Kicklighter D W, et al. Global climate change and terrestrial net primary production[J]. Nature, 1993, 363 (20): 234-240
    10 Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how can it occur?[J]. Biogeochemistry, 1991, 13: 87-115
    11 Lauenroth W K, Sims P L. Evapotranspiration from a shortgrass prairie subjected to water and nitrogen treatments[J]. Water resources research, 1976, 12: 437-442
    12 Cannell M G R, Dewar R C. Carbon allocation in trees: a review of concepts for modeling[J]. Advances in ecological research, 1994, 25: 59-104
    13 Aguilar R, Kelly E F and Heil R D. Effects of cultivation on soils in northen Great Plains rangeland[J]. Soil Sci Soc Am J. 1988, 52:1081-1085.
    14李玉强,赵哈林,陈银萍.陆地生态系统碳源与碳汇及其影响机制研究进展[J].生态学杂志, 2005, 24 (1) :37-42.
    15高英志,汪诗平,韩兴国,等.退化草地恢复过程中土壤氮素状况以及与植被地上绿色生物量形成关系的研究[J].植物生态学报, 2004, 28(3): 285-293
    16李月梅,王跃思,曹广民,等.开垦对高寒草甸土壤有机碳影响的初步研究[J ].地理科学进展, 2005, 24(6): 61-67
    17王其兵,李凌浩,白永飞,等.气候变化对草甸草原土壤氮素矿化作用影响的实验研究[J].植物生态学报, 2000, 24(6): 687-692
    18李玉中,王庆锁,钟秀丽,等.羊草草地植被-土壤系统氮循环研究[J].植物生态学报, 2003, 27(2): 177-182
    19 Zhu Z X. Soil Science Beijing: Agriculture Publication 1983 (in Chinese). Stuart F. Pamela A. Matson Harold A.
    20谢锦升,杨玉盛,陈光水,等.严重侵蚀红壤封禁管理后土壤性质的变化[J].福建林学院学报, 2002, 22(3): 236-239
    21 Houghton R A. Magnitude, distribution and causes of terrestrial carbon sinks and some implications for policy[J]. Climate Policy, 2002, 21: 71-88.
    22朴河春,余登利,刘启明,等.林地变为玉米地后土壤轻质部分有机碳的C/ N比值的变化[J].土壤与环境, 2000, 9(3): 218-222
    23侯扶江.放牧对牧草光合作用、呼吸作用和氮、碳吸收与转运的影响[J].应用生态学报, 2001, 12(6): 938-942
    24李香真,陈佐忠.放牧草地生态系统中氮素的损失和管理[J].气候与环境研究, 1997, 2(3): 241-250
    25李凌浩.土地利用变化对草原生态系统土壤碳贮量的影响[J].植物生态学报, 1998, 22(4): 300-302
    26杜睿,王庚辰,吕达.放牧对草原土壤NO2产生及微生物的影响[J]. 2001, 22(4): 11-15
    27耿远波,章申,董云社,等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报, 2001, 56(1): 44-53
    28 Ting G, Novak J M, Amarasiriwardena D, et al. Soil organic matter characteristic as affected by tillage management[J]. Soil Science Society of America Journal, 2002, 66: 421-429
    29 Parton W J, Schimel D S, Coleand C V, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51: 1173-1179
    30 Biederbeck V O, Janzen H H, Campbell C A, et al. Labile soil organic matter as influenced by cropping practices in an arid environment[J]. Soil Biology and Biochemistry, 1994, 26: 1647-1656
    31 Rovira P, Ramón Vallejo V. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach[J]. Geoderma, 2002, 107: 109-141
    32 McLauchlan K K, Hobbie S E. Comparison of labile soil organic matter fractionation techniques[J]. Soil Science Society of America Journal, 2004, 68: 1616-1625
    33 Greenland D J, Ford G W. Separation of partially humified organic materials by ultrasonic dispersion[C]. International Society of Soil Science. Eighth International Congress of Soil Science. Bucharest, Romania, Transaction, 1964, 3: 137-148
    34 Strickland T C, Sollins P. Improved method for separating light and heavy fraction organic material from soil[J]. Soil Science Society of America Journal, 1987, 51: 1390-1393
    35 Janzen H H. Soil organic matter characteristics after long-term cropping to various springwheat rotations[J]. Canadian Journal of Soil Science, 1987, 67: 845-856
    36 Janzen H H, Campbell C A, Brandt S A, et al. Light-fration organic matter in soils from long-term crop rotations[J].Soil Science Society of America Journal, 1992, 56: 1799-1806
    37 Boone R D. Light fraction soil organic matter: origin and contribution to net nitrogen mineralization[J]. Soil Biology and Biochemistry, 1994, 26: 1459-1468
    38 Sollins P, Spycher G, Glassman C A. Net nitrogen mineralization from light and heavy-fraction forest soil organic matter[J]. Soil Biology and Biochemistry, 1984, 16: 31-37
    39 Besnard E, Chenu C, Balesdent J, et al. Fate of particulate organic matter in soil aggregates during cultivation [J]. European Journal of Soil Science, 1996, 47: 495-503
    40 Dalal R C, Mayer R J. Long term trends in fertility of soils under continuous cultivation and cereal cropping in southern Queensland. III distribution and kinetics of soil organic carbon in particle size fractions[J]. Australia Journal Soil Research, 1986, 24: 293-300
    41 Molloy L F, Speir T W. Studies on a climosequence of soils in tussock grassland—Constituents of the soil light fraction[J]. New Zealand Journal of Soil Science, 1977, 20: 167-177
    42 Oades J M, Vassallo A M, Waters A G, et al. Characterization of organic matter in particle size and density fractions from 13 Red-brown Earth by solidstate CNMR[J]. Australia Journal of Soil Research, 1987, 25: 71-821
    43 Schulten H R, Leinweber P. Thermal stability and composition of mineral-bound organic matter in density fractions of soil[J]. European journalof soil science, 1999, 50: 237-248
    44 TurchenekL W, Oades J M. Fractionation of Organic mineral complexes by sedimentationand density techniques [J]. Geoderma, 1979, 21: 311-343
    45 Chotte J L, Ladd J N, Amato M. Sites of microbial assimilation and turnover of soluble and particulate 14C-labelled substrates decomposing in a clay soil[J]. Soil Biology and Biochemistry, 1998, 30: 205-218
    46 Jocteur Monrozier L, Ladd J N, Fitzpatrick R W, et al. Components and microbial biomass content of size fractions in soils of contrasting aggregation[J]. Geoderma, 1991, 49: 37-62.
    47 Six J, Guggenberger G. Sources and composition of soil organic matter fractions between and within soil aggregates [J]. European journal of soil science, 2001, 52: 607-618
    48 Solomon D, Lehmann J, Zech W. Land use effects on amino sugar signature of chromic Luvisols in the semi-arid part of northern Tanzania[J]. Biology Fertilizer Soils, 2001, 33: 33-40
    49 Balesdent J. The significance of organic separates to carbon dynamics and its modeling in some cultivated soils[J]. European Journal of Soil Science, 1996, 47: 485-493
    50 Bremer E, Janzen H H, Johnston A M. Sensitivity of total, light and mineralizable organic matter to management practices in a Lethbridge soil [J]. Canadian Journal of Soil Science, 1994, 74, 131-138
    51 Dalal R C, Henry R J. Cultivation effects on carbohydrate contents of soil and soil fractions[J]. Soil Science Society of America Journal, 1998, 52: 1361-1365
    52 Liang B C, McConey B C, Schoenau J, et al. Effect of tillage and crop rotations on the light fraction organic carbon and carbon mineralization in Chernozemic soils of Saskatchewan [J]. Can J Soil Sci, 2003, 83: 65-72.
    53 Ford G W, Greenland D J, Oades J M. Separation of the light fration from soils by ultrasonic dispersion halogenated hydrocarbons containing a surfactant[J]. Journal of Soil Science, 1968, 20: 291-296
    54杨玉盛,刘艳丽,陈光水,等.格氏栲天然林与人工林土壤非保护性有机碳研究[J].生态学报, 2004, 24(1): 1-81.
    55杨玉盛,杨伦增,俞新妥.杉木林取代杂木林后土壤腐殖质组成及特性变化的研究[J].福建林学院学报, 1996, 16(2): 97-100.
    56 Six J, Conant R T, Paul E A, et al. Stabilization mechanism of soil organic matter: Implications for C saturation of soils[J]. Plant and Soil, 2002, 241: 155-176
    57 Cambardella C A, Elliott E T. Methods for physical separation and characterization of soil organic matter fractions [J]. Geoderma, 1993, 56: 449-457
    58 Roscoe R, Buurman P. Tillage effects on soil organic matter in density fractions of a Cerrado Oxisol[J]. Soil and Tillage Research, 2003, 70: 107-119
    59李志博,王起超,陈静.农业生态系统的氮素循环研究进展[J].土壤与环境, 2002, 11(4): 417-421
    60郑淑颖,管东生.人类活动对全球碳循环的影响[J].热带地理, 2001, 21(4): 369-373
    61 Malhi S S, Harapiak J T, Nyborg M, et al. Total and light fraction organic C in a thin Black Chernozemic grassland soil as affected by 27 annual applications of six ratesof fertilizer N[J]. Fertilizer research, 2003, 66: 33-41
    62 Compton J E, Boone R D. Long-term impacts of agriculture on soil carbon and nitrogen in New England forests [J]. Ecology, 2000, 81: 2314-2330
    63张金波,宋长春,杨文燕.三江平原沼泽湿地开垦对表土有机碳组分的影响[J].土壤学报, 2005, 42(5): 155-157
    64 Ajtay G L. et al. Terrestrial primary production and phytomass. The Global Carbon Cycle[M]. Chichester: John wiley & sons, 1979: 129-182
    65王常慧,邢雪荣,韩兴国.草地生态系统中土壤氮素矿化影响因素的研究进展[J].应用生态学报, 2004, 15(11): 2184-2188
    66 Davison E A, Galloway L F, Strand M K. Assessing available carbon: comparison of techniques across selected forest soils[J]. Commum. Soil Sci. Plant Anal. 1987,18: 45-64
    67 Kong C H, Wang P, Zhao H, Xu X H and Zhu Y D. Impact of allelochemicals exudated from allelopathic rice on soil microbial community[J]. Soil Bio and Biochem. 2008, 40: 1862-1869
    68 Zhu Z X. Soil Science Beijing: Agriculture Publication 1985 (in Chinese).
    69 Raison R J, Connell M J, Khanna P K. Mothodology for studying fluxes of soil mineral N in situ[J]. Soil Biology and Biochemistry 1987, 19, 521-530
    70 Kuikman P J, VanVeen J A. The impacts of protozoa on the availability of bacterial nitrogen to plants[J]. Biology Fertilization Soils 1989, 8(1), 13-18
    71 Steltzer H, Bowman W D. Different influence of plant species on soil nitrogen transformations within moist meadow[J]. Alpine Tundra 1998, 1: 464-474
    72 Hassink J, Bouwman L A, Zwark K B, Brussard L. Relationship between habitable pore space, soil biota and mineralization rates in grassland soils[J]. Soil Biology and Biochemistry 1993, 25: 47-55
    73 Parton W J, Coughenor M B, Scurlock J M O, et a1. Global grassland ecosystem modelling: Development and test of ecosystem models for grassland systems[J].In: Hau, D O, eds. Global Change. Effects on Coniferous Forests and Grasslands. 1996, London:.Wiley, 229-269
    74 Curtin D C, Campbell A, Jail A. Effects of acidity on mineralization: pH-dependenceof organic matter mineralization in weakly acidic soils[J]. Soil Biology and Biochemistry 1998, 30, 57-64
    75 Vitousek P M, Gose J R, Grier C C, Melillo J M, Reiners W A. A comparative analysis of potential nitrification and nitrate mobium production in soil under waterlogged conditions as an index of nitrogen availability. Naturility in forest ecosystem[J]. Ecological Monographs 1982, 52: 155-177
    76 Loiseau P, Soussana J F. Effects of elevated CO2 temperature and N fertilization on fluxes in a grassland ecosystem[J]. Global Change Biology. 2000, 6: 953~965
    77 Mu X M, Fan X L. A review on ecological models of soil N minerzalization[J]. Chinese Journal of Application Ecology 1999, 10(1): 114-118 (in Chinese)
    78 Grewal J S, Yadvinder-singh, Bijay-singh, et al. Effect of source and nest size of N fertilizers and temperature on nitrification in a coarse textured, alkaline soil[J]. Nutrient Cycling in Agroecosystem 1999, 54: 199-207
    79 Calderon J F, Louise E J, Scow K M, Rolston D E. Microbial response to simulated tillage in cultivated and uncultivated soils[J]. Soil Boilogy and Biochemistry 2000, 32: 1547-1559
    80 Dormaar J F and Willms W D. Impact of rangeland management on soil biological indicators in southern Alberta[J]. J. Range Manage, 2000, 53: 233-238
    81 Willms W D. Influence of summer cutting and fertilizer application on Altai wildrye in winter[J]. Canadian Journal of Plant Science, 1991, 72: 173-179.
    82 Schlesinger W H. 1986. Changes in soil carbon storage and associated properties with disturbance and recovery. P:194-220. In: J R Traballa and D E Reichle(eds.), The changing carbon cycle-A global analysis. Springer-Verlag, New York
    83 McGill W B, Dormaar J F and Reinl-Dwyer E. 1988. New perspectives on soil organic matter quality, quantity, and dynamics on the Canadian Prairies[J]. P: 30-48. In: Land degredation and conservation tillage. Partial Proceedings of the 34th annual CSSS/AIC Meeting, Calgary, Alberta
    84 Tiessen H, Stewart J W B and Bettany J R. Cultivation effects on the amounts and concentration of carbon, nitrogen, and phrosphorus in grassland soils[J]. Agron. J. 1982, 74: 831-835
    85 Ellert B H, Bettany J R, Calculation of organic matter and nutrients stored in soils under contrasting management regimes[J]. Can. J. Soil Sci. 1995, 75: 529-538
    86 Jenkinson, D S and Johnston A E. Soil organic matter in the Hoosfeild continuous barly experiment[J].P:87-101.In:Rothamsted experimenal perspective. Geoscience Canada, 1976, 24: 121-133
    87 Duxbury, J M, 1995. The significance of greenhouse gas emissions from soils of tropical agro-ecosystems[M]. P. 279-291. In: R.Lal, J. Kimble, E. Levine and B A Steward(eds.), Soil management and the greenhouse effect. Lewis Publishers.
    88 Campbell C A, Selles F, Lafond G P, et al. Effect of crop management on C and N in long-term crop rotations after adopting no-tillage management: Comparison of soil sampling strategies[J]. Can. J. Soil Sci, Plant Anal, 1998, 22: 205-212
    89 Smoliak S. Grazing studies on native range, crested wheatgrass, and Russian wildrye pastures[J]. Journal of Range Management, 1968, 21:47-50
    90 Smoliak S and S B. Slen. Beef production on native range, crested wheatgrass, and Russian wildrye pastures[J]. Journal of Range Management. 1974, 27: 433-436
    91 Kilcher M R. and J Looman. Comparative performance of some native and introduced grasses in southern Saskatchewan[J]. Canada. Journal of Range Management.1983, 36: 654-657.
    92 Willms W D, Porter S, Dormaar J F, et al. 1999. Effects of Agriculture on Forage Production and Soil Quality of Native Grasslands in Southern Alberta. Alberta Agricultural Research Institute, Farming For the Future Final Report. Project #950642. 100 pp.
    93 Elliott E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils[J]. Soil Science Society of America Journal, 1986, 50: 627-633
    94 Grupta, V S R and Germida J J. Distribution of microbial biomass and its activity in different soil aggregate size classes as affected by cultivation[J]. Soil Biology & Biochemistry, 1988, 20: 777-786
    95 Huggins D R, Buyanovsky G A, Wagner G H, et al. Soil organic C in the tall grass prairie-derived region of the corn belt: effects of long-term crop management[J]. Soil Tillage Res, 1998, 47: 219-234
    96 Wang Z P, Han X G and Li L H. Effects of grassland conversion to croplands on soil organic carbon in the temperate Inner Mongolia[J]. J. Environ. Manage. 2008, 86: 529-534
    97 Burke I C, Lauenroth W K and Coffin D P. Soil organic matter recovery in semiarid grasslands: Implications for the conservation reserve program. Ecol. Applic. 1995,5: 793-801
    98 Paustian K, Collons H P and Paul E A. 1997. Management controls on soil carbon[M], p. 15-49. In : E A Paul, K Paustian, E T Elliott and C V Cole (eds.) Soil organic matter in temprate agroecosystems: long-term experiments in North America. CRC Press, Boca Raton, Fla.
    99 Tiessen H, Cuevas E and Chacon P. The role of soil organic matter in sustaining soil fertility[J]. Nature, 1994, 371: 783-785
    100 Svejcar T and Sheley R. Nitrogen dynamics in perennial and annual dominated arid rangland[J]. J. Arid Environ. 2001, 47: 33-46
    101 Bolinder M A, Angers D A, Gregorich E G et al. The response of soil quality indicators to conservation management[J]. Can. J. Soil Sci.1999, 79: 37-45
    102 Bremer E, Ellert B H and Janzen H H. Total and light-fraction carbon dynamics during four decades after cropping changes[J]. Soil Sci. Soc. Am. J. 1995, 59: 1398-1403
    103 Janzen H H, Campbell C A, Brandt S A, et al. Management effects on soil C storage on the Canadian prairies[J]. Soil Tillage Res. 1998, 47: 181-195
    104 Liang B C, McConey B C, Campbell C A et al. Short-term crop rotation and tillage effects on soil organic carbon on the Canadian prairies. P: 287-293 in J M Kimble, R Lal, and R E Follett, eds. Agricultural practices and policies for carbon sequestration in soil. Lewis Publishers, CRC Press, Boca Raton, FL.
    105 Amundson R G., Trask J and Pendall E. A ropid method of soil carbonate analysis using gas chromatograpgy[J]. Soil Sci. Soc. Am. J. 1988, 52: 880-883