新型钨铜复合材料的设计、制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
W-Cu复合材料独特的性能使其被广泛用作电接触器、真空断路器、热沉材料等功能和结构器件。由于W、Cu之间较大的性能差异,一直以来W-Cu复合材料的制备工艺都是该领域的研究热点。目前,传统工艺存在致密化程度低、微观组织不均匀或成分受限制等一系列问题,使得W-Cu复合材料无法发挥更大的潜力。现代电子信息业和国防工业高尖端领域的快速发展对W-Cu复合材料提出了新的发展方向和要求:(1)探索适用于工业化生产的材料制取工艺;(2)通过进一步提高致密度和微结构均匀性得到更高性能的W-Cu复合材料;(3)开发满足高科技要求的新型高性能W-Cu复合材料;(4)拓展W-Cu复合材料的应用领域。本论文针对以上方面提出以机械合金化技术为基础结合常压烧结或热压的方法制备高性能细晶W-Cu复合材料、W-Cu/AlN复合材料和W-Cu梯度功能材料,并对其工艺,优化设计及性能等方面进行探索和研究。为今后高性能W-Cu复合材料的实际生产和应用领域的拓展提供理论依据和数据支撑。
     首先,对不同成分W-Cu纳米晶复合粉体的机械合金化过程进行了研究,通过对球磨和退火热处理过程中复合粉体的内部相转变和成分分布,以及晶粒尺寸、晶格常数、微观应变和形貌特点等方面的分析,探讨了机械合金化制备W-Cu纳米晶粉体的工艺特点、粉体的特征和热稳定性。W-15Cu、W-20Cu和W-30Cu复合粉末在分别球磨30h、40h和60h后均形成了常温下稳定的W(Cu)过饱和固溶体。在W-15Cu系统中:随着球磨的进行,复合粉体中W晶粒尺寸逐渐减小;复合粉末的粒度在球磨过程中呈现先增大后减小的趋势,球磨30h粉末颗粒呈多面体状,表面平滑,平均粒度4μm左右。W(Cu)过饱和固溶体的形成机制为球磨初期,粉体呈现Cu包裹W的包覆结构形态;继续球磨,包覆结构的复合颗粒进一步细化,包覆层间距大大减小,形成W、Cu均匀弥散分布的复合组织;球磨30h,形成了组织和成分均一的W(Cu)过饱和固溶体。W-15Cu纳米晶复合粉末在退火热处理过程中晶格畸变程度降低、内应力释放,粉体结构有序度明显提高;球磨过程中形成的W(Cu)过饱和固溶体在500℃退火时开始脱溶。
     其次,采用机械合金化技术制备的纳米晶W-Cu复合粉体,分别通过常压液相烧结或热压烧结的方法,制备出W-15Cu、W-20Cu和W-30Cu,以及W-Cu/x%AlN(x=0.25,0.5,1.0,2.0,质量分数)复合材料并对其密度、热导率、电阻率、电导率等物理性能,以及硬度、抗弯强度等力学性能和显微结构进行测试和观察,探讨了高能球磨及烧结工艺参数对W-Cu复合材料组织结构和性能的影响,以及高能球磨后粉体的烧结致密化机理。机械合金化技术从细化晶粒、提高粉体组成的均匀度和形成W(Cu)固溶体等多方面改善了W-Cu复合粉体的烧结性能,加强了W-Cu之间的相互作用,增大了W-Cu之间的接触机会,从而大大提高了W-Cu复合材料的致密度和组织的均匀性,是获得近全致密W-Cu复合材料最佳制备工艺之一。常压烧结优化工艺参数为:成型压力350MPa,烧结温度为1200℃,保温90min。W-15Cu、W-20Cu、W-30Cu复合材料的致密度分别为98.42%,99.10%,99.34%。采用真空热压烧结工艺在相对较低的温度1050℃,25MPa压力下烧结90min制备出组织结构更加均匀细小的W-Cu复合材料,三种成分的W-Cu复合材料的致密度分别达到:97.87%,98.29%,98.94%。少量纳米AlN颗粒(≤1wt%)的加入对W-Cu复合材料的致密度影响并不大,在1wt%加入量时,致密度仍接近98%;纳米AlN颗粒均匀弥散分布于基体中Cu相中,提高基体材料中Cu的硬度;但是随着AlN纳米颗粒的含量增加,基体晶界上的增强相颗粒分布过多,影响烧结过程中相邻W颗粒间结合和材料的致密化,而致使材料的抗弯强度有所下降,但对导热性能的提高有一定的帮助。
     最后,采用有限元方法(Finite Element Method),针对W-Cu梯度功能材料在制备过程中产生的残余热应力进行了数值模拟分析。在综合分析了残余热应力大小和梯度层中应力分布状态等因素的基础上,确定了三层结构的W-Cu梯度材料,P=2.4时,过渡层Cu含量为33vol.%时的三层W-Cu梯度功能材料W-20%Cu/W-33%Cu/W-50%Cu具有较好的热应力缓和效果;四层结构的W-Cu梯度材料,在P=1.4时,模拟计算得出的W-20%Cu/W-29.1%Cu/ W-39.2%Cu/W-50%Cu四层均厚的W-Cu复合材料的等效应力具有最小值。并基于上述成分结构研究了W-Cu梯度复合材料的制备工艺,提出先冷压后低温热压烧结的制备工艺较好的保证了梯度材料具有较高的致密度,同时保持了单层的原始设计成分。所制备W-Cu三层和四层梯度复合材料的层界面结合良好,没有明显的裂纹等缺陷;热导率分别达到198 W·m-1K-1和202 W·m-1K-1,获得了较高的导热性能;两种结构的FGM样品经800℃温差的热震试验后,界面处没有发现裂纹和开裂现象,表现出良好的抗热震性能;热疲劳试验结果表明,三层结构和四层结构的梯度材料在分别经过86和143次热循环后首次出现裂纹,热疲劳裂纹总是最先出现在梯度材料的两端,与热应力模拟结果一致。
W-Cu composite possesses unique properties of superior thermal and electronic managements, high microwave absorption capacity and etc. These features make the W-Cu composite a very attractive material which has been widely used as heavy-duty electronic contactors, circuit breakers and thermal management devices, and so on. However, due to their relatively large difference in properties between W and Cu, the preparation process of this composite requires higher requirement. W-Cu composite prepared by the conventional methods has drawbacks such as low densification, microstructure inhomogeneity and/or limited composition variation which hinders its further applications. With the rapid development of the electronic information industry and the high-tech fields of defense industry, there are several new directions of development and requirements on high performance W-Cu composites, such as (1) to explore the preparation process which can be applied to industrial production; (2) to further improve the densification and microstructure uniformity of W-Cu composites with a higher performance; (3) to develop new high-performance W-Cu composites to meet the requirements of the high-tech fields; and (4) to expand the applications of W-Cu composites. In this paper, W-Cu, W-Cu/AlN composites and W-Cu functionally graded materials with high performance were fabricated by combining mechanical alloying technique and pressureless sintering or hot-pressing technique. And the technic parameters of process, optimal design and properties of those composites were investigated and analyzed. The results of those studies would provide a theoretical basis and data base for the production and application of high-performance W-Cu composites.
     The mechanical alloying process of nanocrystalline W-Cu composite powder with different contents was investigated. The process characteristics, structural evolution and thermal stability of the MA W-Cu nanocrystalline powder were investigated in detail by analysing phase transformation, composition distribution, grain size, lattice parameter, microstrain, and morphology changes of the composite powder during mechanical alloying and subsequent annealing. The results showed that room temperature stable supersaturated W(Cu) solid solution formed after 30h, 40h and 60h milling of W-15Cu, W-20Cu and W-30Cu composite powder. During mechanical alloying of W-15Cu powder, the grain size decreased with increasing milling time, and the particle size first increased then decreased with increasing milling time. After milling for 30h, particles were polyhedral in shape with smooth surface, and average particle size was about 4μm. At the initial stage, the structure of W-15Cu powder was the ring-like composite layer generated by the Cu particles enwrapping around the W particles. In the middle stage, the composite particles of circle-like layers became finer and the space between the layers greatly reduced. The mixed microstructure of homogeneously dispersed W and Cu was formed. After milling for 30h, the powder was composed of homogeneous W(Cu) solid solution phase. Annealing of as-milled W-15Cu powder reduces the lattice deformation and internal strain, and incresased the lattice ordering degree. Meanwhile, Cu precipitated from the supersaturated W(Cu) solid solution at the temperature of 500℃.
     Liquid phase sintering, or hot pressing was used to consolidate MA nanocrystalline W-Cu powders to bulk compacts of W-15Cu, W-20Cu, W-30Cu, and bulk composites of W-Cu/AlN with different contents of AlN (0.25, 0.5, 1.0, 2.0wt.%). The microstructure, physical properties such as density, thermal conductivity, electrical resistivity and conductivity, mechanical properties such as hardness, bending strength and etc. of these materials were characterized and investigated. The effects of process parameters of high energy ball milling and sintering on the microstructure and properties of W-Cu composite, and the sintering densification mechanism of MA powders were studied. The results showed that mechanical alloying technique promoted the sintering of W-Cu composite powder, strengthened the interaction and increased the contacts between W and Cu by grain refining, enhancing the microstructure homogeneity of powder and the formation of W(Cu) solid solution. Thus, the relative density and microstructure homogeneity of W-Cu composites were effectively enhanced. Which means mechanical alloying is one of the optimal preparation processes to obtain near full dense W-Cu composites. Considering all factors, the optimal sintering process parameters were as follows: forming pressure was 350MPa, sintering temperature and time were 1200℃and 90min. The relative densities of W-15Cu, W-20Cu and W-30Cu composites were 98.42%, 99.10% and 99.34%, respectively by using the above-mentioned parameters. Finer structure bulk W-Cu composites were successfully synthesized by the means of hot pressed vacuum sintering at 1200℃for 90min under the pressure of 25MPa. The relative densities of W-Cu composites with three different compositions were 97.87%, 98.29%, and 98.94%, respectively. Addition of small amount of nano AlN particles had less negative effect on degradation of relative density. The relative density of W-Cu composites remained at about 98% when the addition of AlN was 1wt%. Nano AlN particles were even distributed in Cu phase of the matrix. The hardness of Cu in the matrix would increase due to the reinforcement effect brought about by grain refining and dispersion strengthening. The increasing strengthening particles distributed at grain boundaries with the increasing of AlN content, would lead to the decrease of bending strength of composites by affecting the combination between adjacent particles and densification of materials during sintering process. However, the thermal conductivity of composites increased with increasing AlN content.
     The residual thermal stress of W-Cu functionally graded materials arising from the fabrication process was analyzed using finite element method (FEM). Based on the calculation results of the residual thermal stress and stress state in graded layers, W-Cu functionally graded materials with three layers and four layers structure were designed. W-20%Cu/W-33%Cu/W-50%Cu FGM (P=2.4) and W-20%Cu/W-29.1%Cu/W-39.2%Cu/W-50%Cu FGM (P=1.4) had the minimal equivalent thermal stresses and the thermal stress were reduced by 52% and 68% respectively comparing with the non-FGM. Based on the optimization results, two kinds of W-Cu FGMs with high density and pretty microstructure were prepared by hot-pressing sintering. The thermal conductivities of W-Cu FGMs with three layers and four layers structure were 198 W·m~(-1)K~(-1) and 202 W·m~(-1)K~(-1) respectively. After the thermal shock test with 800℃temperature sdifference, no cracks were found at the interface of two kinds of FGM samples. The two kinds of FGM survived up to 86 and 143 thermal cycle tests respectively. Cracks were found at the interface at both ends of FGMs, which was consistent with the previous calculation results of the residual thermal stress. These results indicated the two kinds of FGMs had excellent heat resistance and exhibited good property of reducing thermal stress.
引文
[1] Kim Y D, Oh N L, Oh S T, et al. Thermal conductivity of W-Cu composites at various temperatures [J]. Materials Letters, 2001, 51(5): 420-424.
    [2]周武平,吕大铭.钨铜材料应用和生产的发展现状[J].粉末冶金材料科学与工程,2005,10(1):21-25.
    [3]宋贞桢. W-Cu纳米复合粉体及合金的制备[C].北京科技大学硕士学位论文,2004.
    [4]范景莲.钨合金及其制备新技术[M].北京:冶金工业出版社,2006:1-2.
    [5]范景莲,彭石高,刘涛,等.钨铜复合材料的应用与研究现状[J].稀有金属与硬质合金,2006,34(3):30-35.
    [6]李云平,曲选辉,段柏华. W-Cu(Mo-Cu)复合材料的最新研究状况[J].硬质合金,2001,18(4):232-236.
    [7]陈文革,丁秉均.钨铜基复合材料的研究及进展[J].粉末冶金工业,2001,11(3):45-50.
    [8]姜国圣,王志法,刘正春.高钨钨-铜复合材料的研究现状.稀有金属与硬质合金[J],1999,136:39-42.
    [9] Yang B, German R M. Powder injection molding and infiltration sintering of superfine grain W-Cu [J]. The International Journal of Powder Metallurgy, 1997, 33 (4): 55-63.
    [10]王志法,刘正春,姜国圣. W-Cu电子封装材料的气密性.中国有色金属学报[J],1999,9(2):323-326.
    [11]吕大铭.钨铜材料的生产、应用和发展[J].中国钨业,2004,19(5):69-74.
    [12]雷纯鹏,程继贵,夏永红.新型钨铜复合材料的制备和性能研究的新进展[J].金属功能材料,2003,10(4):24-27.
    [13]李志翔,杨晓青. W-Cu合金的最新研究进展[J].工程材料,2005,32(8):53-59.
    [14]范景莲,刘军,严德剑,等.细晶钨铜复合材料制备工艺的研究[J].粉末冶金技术,2004,22(2):83-86.
    [15]杨明川,宋贞桢,卢柯. W-20%Cu纳米复合粉的制备[J].金属学报, 2004, 40(6): 639-642.
    [16] Srikanth R, David L. Bourell. Synthesis and evaluation of advanced nanocrystalline tungsten-based materials [J]. P/M Science & Technology Briefs, 1999, 1(1): 9-14.
    [17] Cheng J G, Lei C P, Xiong E T, et al. Preparation and characterization of W-Cu nanopowders by a homogeneous precipitation process [J]. Journal of Alloys and Compounds, 2006, (421): 146-150.
    [18] Li Y P, Qu X, Zheng Z S, et al. Properties of W-Cu composite powder produced by athermo-mechanical method [J]. International Journal of Refractory Metals & Hard Materials, 2003, (21): 259-264.
    [19]牟科强.氧化物共还原制取W-Cu和Mo-Cu复合材料的研究[J].粉末冶金工业,2004,14(5):13-16.
    [20]杨红伟. W-Cu系纳米材料的机械合金化制备及组织、性能的研究[D].北京科技大学硕士学位论文,1999.
    [21]曹顺华,林信平,李炯义.纳米晶W-Cu复合粉末烧结行为[J].中国有色金属学报,2005,15(2):248-253.
    [22] Skorokhod V V, Solonin Y M, Filippov N I. Solid-phase sintering of ultrafine W(Mo)-Cu composite powders [J]. Powder Metallurgy and Metal Ceramics, 1984, 23(1): 19-24.
    [23] Lee J S, Kim T H. Densification and microstructure of the nanocomposite W-Cu powers [J]. Nanostructured Materials, 1995, 6: 691-694.
    [24] Hong S H, Kim B K, Munir Z A. Synthesis and consolidation of nanostructured W-10-40 wt.% Cu powders [J]. Materials Science and Engineering A, 2005, 405(1-2): 325-332.
    [25] Lee G G, Ha G H, Kim B K. Synthesis of high density ultra-fine W-Cu composite alloy by mechano-thermochemical process [J]. Powder Metallurgy, 2000, 43(1): 79-82.
    [26] Kim J C, Ryu S S, Moon I H. Nanostructural characteristics and sintering behavior of W–Cu composite powder prepared by mechanical alloying [J]. Journal of advanced materials, 1999, 31(4):37-44.
    [27] Ryu S S, Kim Y D, Moon I H. Dilatometric analysis on the sintering behavior of nanocrystalline W-Cu prepared by mechanical alloying [J]. Journal of Alloys and Compounds, 2002, 335(1-2): 233-240.
    [28] Moon I H, Ryn S S, Kim J C. Sintering Behavior of Mechanical Alloyed W-Cu Composite Powder[A]. Proceedings of the 14 international plansee Seminar [C], Reutte,1997,16-26.
    [29] Xiong C S, Xiong Y H, Zhu H, et al. Synthesis and structural studies of the Cu-W alloys prepared by mechanical alloying [J]. Nanostructure Materials, 1995, 5(4): 425-432.
    [30]陈德欣.钨铜电子封装材料的工程化研究[D].中南大学硕士学位论文,2005.
    [31]吴人洁.复合材料[M].天津:天津大学出版社,2000.
    [32]聂存珠,赵乃勤.金属基电子封装复合材料的研究进展[J].金属热处理,2003,28(6):1-5.
    [33] Zweben C. Metal-Matrix composites for electronic packaging [J]. JOM. 1992, 44(7): 15-23.
    [34] German R M, Hens K F, Johnson J L. Powder metallurgy processing of thermal management materials for microelectronic applications [J]. The International Journal of Powder Metallurgy. 1994, 30(2): 205-215.
    [35]雷纯鹏.超细W-Cu复合粉体的制备及其烧结性能的研究[D].合肥工业大学硕士学位论文,2004.
    [36]王铁军,周武平,熊宁,等.电子封装用粉末冶金材料[J].粉末冶金技术,2005,23(2):145-151.
    [37]陈文革,张珂,丁秉均. W-Cu触头材料电寿命的研究[J].粉末冶金技术,2003,21(4):224-227.
    [38]杨建明,乔斌,李化强.电火花加工用工具电极材料的研究进展[J].工具技术,2007,41(8):13-16.
    [39]高娃,张存信.钨铜合金的最新研究进展及应用[J].新材料产业,2006,2:57-60.
    [40]陈伟,邝用庚,周武平.中国高温用钨铜复合材料的研究现状[J]. 2004,33(1):11-14.
    [41]吕大铭.钨铜复合材料研究的新进展[J]. 2000,15(6):27-30.
    [42]马如璋,蒋明华,徐祖雄.功能材料学概论[M].北京:冶金工业出版社,1999.
    [43]韩杰才,徐丽,王宝林等.梯度功能材料的研究进展及展望.固体火箭技术,2004,27(3):207-215.
    [44]吴利英.梯度功能材料的发展和应用.新工艺新技术新设备,2003,12:57-61.
    [45]谢长生.人类文明的基石-材料科学技术[M].武汉:华中理工大学出版社,2000.
    [46]王豫,姚凯伦.功能梯度材料研究的现状与将来发展.物理,2000,4:206-211.
    [47]徐小荣.金属/陶瓷梯度热障涂层的微观结构特征及其性能的关系.武汉理工大学硕士论文,2000.
    [48]贡长生,张克立.新型功能材料[M].北京:化学工业出版社,2001.
    [49]周张健,葛昌纯,李江涛.熔渗-焊接法制备W/Cu功能梯度材料的研究[J].金属学报,2000,36(6):654-658.
    [50]周张健,葛昌纯,李江涛等.热压法制备W/Cu功能梯度材料[J].材料科学与工艺,2000,8(1):52-54.
    [51]凌云汉,周张健,李江涛等.超高压梯度烧结法制备W/Cu功能梯度材料[J].中国有色金属学报,2001,11(4):578-581.
    [52] Jech D E, Sepulveda J l, Frazier J P, et al. Functionally graded metal substrate for use in housing a microelectronic component has a functional insert and a surrounding body in the x-y plane that is made from two metal compositions[p].US Patent:US6114048-A,5 Sept.,2000.
    [53] Riccardi B, Montanari R, Casadei M, et al. Optimaization and characterization of tungsten thick coatings on copper based alloy substrates [J]. Journal of Nuclear Materials, 2006, 352: 29-35.
    [54] Liu X, Yang L, Tamura S, et al. Thermal response of plasma sprayed tungsten coating to high heat flux [J]. Fusion Engineering and Design, 2004, 70: 341-349.
    [55] Pintsuk G, Brunings S E, Doring J E, et al. Development of W/Cu-functionally gradedmaterials [J]. Fusion Engineering and Design, 2003, 66-68: 237-240.
    [56]汪峰涛,吴玉程,王涂根,等. W-Cu面对等离子体梯度热沉材料的制备和性能[J].复合材料学报,2008,25(2):25-30
    [57] T.G Wang, J.L. Chen, Y. Chen et al. Thermal properties of VPS-W coatings on CuCrZr alloy with Ti bonding layer [J]. Journal of Nuclear Materials, 2007, 363-365:1294-1298.
    [58] D?ring J E,Va?en R,Pintsuk G,et al.The processing of vacuum plasma-sprayed tungsten–copper composite coatings for high heat flux components [J].Fusion Engineering and Design,2003,66-68:259-263.
    [59] Kang H K.Thermal properties of plasma-sprayed tungsten deposits [J].Journal of Nuclear Materials,2004,335(1):1-4.
    [60] Bolt H, Barabash V, Krauss W, et al.Materials for the plasma-facing components of fusion reactors [J].Journal of Nuclear Materials,2004,329-333:66-73.
    [61] Itoh Y, Takahashi M, Takano H.Design of tungsten/copper graded composite for high heat flux components [J].Fusion Engineering and Design,1996,31(4):279-289
    [62]陶光勇,郑子樵,刘孙和.W/Cu功能梯度材料的制备及热循环应力分析[J].复合材料学报,2006,2006,23(4):72-77.
    [63] You J H, Bolt H.Analytical method for thermal stress analysis of plasma facing materials [J].Journal of Nuclear Materials,2001,299(1):9-19.
    [64] Chapa J,Reimanis I.Modeling of thermal stresses in a graded Cu/W joint[J].Journal of Nuclear Materials,2002,303(2-3):131-136.
    [65]宁超.电子封装用低膨胀高导热钨铜复合材料的工艺研究[D].机械科学研究院硕士学位论文,2004.
    [66] Johnson J L, German R M. Factors affecting the thermal conductivity of W-Cu composites [J]. Advances in Powder Metallurgy and Particulate Materials, 1993, 4: 201-213.
    [67]任淑彬,叶斌,曲选辉,等.复杂形状SiCP/Al复合材料零件的制备与性能[J].中国有色金属学报,2005,15(11):1722-1726.
    [68]刘彬彬,鲁岩娜,谢建新.热压烧结制备近全致密W-Cu梯度热沉材料[J].中国有色金属学报,2007,17(9):1410-1415.
    [69] Jedamzik R, Neubrand A, Rodel J. Functionally graded materials by electrochemical processing and infiltration: application to tungsten/copper composites [J]. Journal of Materials Science, 2000, 35: 477-482.
    [70]李云平,曲选辉,郑洲顺,等.注射成形W-Cu研究现状及产业化发展趋势[J].粉末冶金技术,2003,21(2):108-110.
    [71]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社,2003.
    [72]陈文革,沈宏芳,刘兴.压渗法制备Mo/Cu梯度功能材料[J].有色金属,2006,58(1):10-14.
    [73]弓艳飞.超细钨铜和钼铜复合粉体的制备及其烧结性能研究[D].合肥工业大学硕士论文,2007.
    [74] Johnson J L, German R M. Phase equilibrium effects on the enhance liquid phase sintering of tungsten-copper [J]. Metallurgical transactions. A, 1993, 24(11): 2369-2377.
    [75] German R M, Rabin B H. Enhanced sintering through second phase additions [J]. Powder Metall, 1985, 28 (1): 7-12.
    [76] Bose A. Powder injection molding of tungsten heavy alloys [J]. Powder metallurgy, 1997, 40(3): 177-180.
    [77] Johnson J L, German R M. Chemically activated liquid phase sintering of tungsten-copper [J]. The International Journal of Powder Metallurgy, 1994, 30(1): 91-102.
    [78] Yang B, German R M. Powder injection molding and infiltration sintering of superfine grain W-Cu [J]. The International Journal of Powder Metallurgy, 1997, 33(4): 55-63.
    [79] Kim J C, Ryu S S, Lee H, et al. Metal injection molding of nanostructured W-Cu composite powder [J] . The International Journal of Powder Metallurgy, 1999, 35(4): 47-55.
    [80]王振廷,陈华辉.纳米WC-Co硬质合金的研制及发展[J].云南冶金,2004,34(1):37-40.
    [81]刘莉,牛乐园,张力江,等.热处理温度对La4/3Sr5/3Mn2O7的结构及电输运性质的影响[J].低温物理学报,2004,26(4):295-299.
    [82] Raghunathan S, Bourell DL. Synthesis and evaluation of advanced nanocrystalline tungsten-based materials [J]. P/M Science & Technology Briefs, 1999, 1(1): 9-14.
    [83]刘珍,梁伟,许并社,等.纳米材料制备方法及其研究进展[J].材料科学与工艺,2000,8(3):103-108.
    [84]赵放.超细晶粒钨铜合金的研究[D].北京科技大学硕士学位论文,2005.
    [85] McCandlish L E, Kear B H, Kim B K. Processing and properties of nanostructured WC-Co [J]. Nanostructured Materials, 1992, 1(2): 119-124.
    [86] Kear B H, McCandlish L E. Chemical processing and properties of nanostructured WC-Co materials [J]. Nanostructured Materials, 1993, 3(1-6): 19-30.
    [87]范景莲,汪登龙,黄伯云,等.难熔钨基合金的研究开发及其产业化方向[J].有色冶炼,2002,12(4):12-15.
    [88] Shi X L, Yang H, Wang S, et al. Characterization of W-20Cu ultrafine composite powder prepared by spray drying and calcining-continuous reduction technology [J]. Materials Chemistry and Physics, 2007, 104(2-3): 235-239.
    [89] Shi X L, Yang H, Wang S. Spark plasma sintering of W-15Cu alloy from ultrafine composite powder prepared by spray drying and calcining-continuous reduction technology [J].Materials Characterization, 2009, 60(2): 133-137.
    [90]苏维丰,熊宁,周武平,等.一种制备W-Cu复合材料的新工艺[J].粉末冶金材料科学与工程,2007,12(6):369-373.
    [91]李云平,曲选辉,郑洲顺.热机械法制备超细弥散分布钨铜复合粉末[J].粉末冶金技术,2004,22(5):265-269.
    [92] Dae G K, Baek H L, Sung T O, et al. Mechanochemical process for W-15 wt.%Cu nanocomposite powders with WO3-CuO powder mixture and its sintering characteristics [J]. Materials Science and Engineering A, 2005, 395: 333-337.
    [93] Hong S H, Kim B K. Fabrication of W-20 wt% Cu composite nanopowder and sintered alloy with high thermal conductivity [J]. Materials Letters, 2003, 57(18): 2761-2767.
    [94]程继贵,弓艳飞,夏永红,等.机械热化学法制备纳米W-Cu复合粉末及其烧结性能研究[J].材料热处理学报,2007,28(4):11-15.
    [95] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying [J]. Metallurgical Transactions. 1970, 1(10): 2943-2951.
    [96] Gilman P S, Benjamin J S. Mechanical Alloying [J]. Annual Review of Materials Science, 1983, 13: 279-300.
    [97]陈振华,陈鼎编.机械合金化与固液反应球磨[M].北京:化学工业出版社,2006.
    [98]吉洪亮,堵永国,张为军. W/Cu、Mo/Cu合金的致密化技术[J].电工材料,2001,(3):13-17.
    [99] Benjamin J S. Fundamentals of Mechanical Alloying [J]. Materials Science Forum, 1992, 88-90: 1-17.
    [100]王尔德,胡连喜.机械合金化纳米晶材料研究进展[J].粉末冶金技术,2002,20(3):135-139.
    [101]高丽丽,刘力.机械合金化的发展[J].化工科技,2007,15 (1):68-70.
    [102] Upadhyaya A, German R M. Densification and dilation of sintered W-Cu alloys [J]. The International Journal of Powder Metallurgy, 1998, 34(2): 43-55.
    [103] Kecskes L J, Trexler M D, Klotz B R, et al. Densification of structural change of mechanically alloyed W-Cu composites [J]. Metallurgical and Materials Transactions A, 2001, 32(11): 2885-2893.
    [104] Maneshian M H, Simchi A. Solid state and liquid phase sintering of mechanically activated W-20 wt.% Cu powder mixture [J]. Journal of Alloys and Compounds, 2008, 463(1-2): 153-159.
    [105]武安华,曹文斌,李江涛,等.第一壁材料SiC/C功能梯度材料的制备.粉末冶金工业[J]. 2001,11(1):23-26.
    [106] Zhu J C, Lai Z H, Yin Z, et al. Fabrication of functionally graded materials by powdermetallurgy [J]. Materials Chemistry and Physics, 2001, 68(1-3): 130-135.
    [107]邹俭鹏,阮建明,周钟诚,等.功能梯度材料的设计与制备以及性能评价.粉末冶金材料科学与工程[J]. 2005,10(4):78-87.
    [108] Jin G, Takeuchi M, Honda S, et al. Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing [J]. Materials Chemistry and Physics, 2005, 89(2-3): 238-243.
    [109] Grujicic M, Zhang Y. Determination of effective elastic properties of functionally graded materials using Voronoi cell finite element method [J]. Materials Science & Engineering A: 1998, 25(1): 64-76.
    [110]张宇民,郝晓东,韩杰才.梯度功能材料[J].宇航材料工艺,1998,5:5-10.
    [111] Kawase M, Tago T, Kurosawa M. Chemical vapor infiltration and deposition to produce a silicon carbide-carbon functionally gradient material. Chemical Engineering Science [J]. 1999, 54(15-16): 3327-3334.
    [112] Marple B R, Boulanger J. Graded Casting of Materials with Continuous Gradients [J]. Journal of the American Ceramic Society, 1994, 77(10): 2747-2750.
    [113]程继贵,雷纯鹏,邓莉萍.梯度功能材料的制备及其应用研究新进展[J].金属功能材料,2003,10(1):28-31.
    [114] Khor K A, Gu Y W, Dong Z L. Plasma spraying of functionally graded stabilized zirconia/NiCoCrAl coating system using composite powders [J]. Journal of Thermal Spray Technology, 2000, 9 (2): 245-249.
    [115]张幸红,韩杰才,董世运,等.梯度功能材料制备技术及其发展趋势[J].宇航材料工艺,1999,2:1-5.
    [116] Wang L, Wang F C, Lu G S, et al. Residual thermal stress for the interface in ZrO2-NiCrAl functionally gradient thermal barrier coatings [J]. Journal of Beijing Institute of Technology, 1998, 18(5): 630-633.
    [117] Sasaki M, Hirai T. Fabrication and properties of functionally gradient materials [J]. Journal of the Ceramic Society of Japan, International Edition, 1991, 99 (10): 1002-1013.
    [118] Ge C C, Wu A H, Ling Y H, et al. New progress of ceramic based functionally graded plasma facing materials in China [J]. Key Engineering Materials, 2002, 224: 459-464.
    [119]郭成,朱维斗,金志浩.梯度功能材料的研究现状与展望[J].稀有金属材料与工程,1995,24(3):18-25.
    [120] Zhang L Z, Shi S L, Huang H J. Investigation of Al2O3 coating with FGMs structure by SHS [J]. Materials Science Forum, 2003, 423: 577-578.
    [121] Dumont A L, Bonnet J P, Chartier T, et al. MoSi2 /Al2O3 FGM fabricated by tape casting and SHS [J]. Journal of the European Ceramic Society, 2001, 21(13): 2353-2360.
    [122]祝修盛.我国钨工业现状和发展前景(Ⅰ)[J].稀有金属快报,2004,23(1):1-4.
    [123]吕大铭.我国的钨铜、钨银材料的应用与发展[J].中国钨业,1999,14(5-6):182-185.
    [124]张全孝,高云,贾万明,等.机械合金化钨-铜药型罩材料的研究[J].兵器材料科学与工程,2000,23(3):44-50.
    [125]李云平,曲选辉,段柏华. W-Cu(Mo-Cu)复合材料的研究进展[J].粉末冶金材料科学与工程,2002,7(1):18-23.
    [126] Ozer O, Missiaen J M, Lay S, et al. Processing of tungsten/copper materials from W-CuO powder mixtures [J]. Materials Science and Engineering A, 2007, 460/461: 525-531.
    [127] Costa F A, Silva A G P, Gomes U U. The influence of the dispersion technique on the characteristics of the W-Cu powders and on the sintering behavior [J]. Powder Technology, 2003, 134(1-2): 123-132.
    [128] Maneshian M H, Simchi A, Razavi Hesabi Z. Structural changes during synthesizing of nanostructured W-20 wt% Cu composite powder by mechanical alloying [J]. Materials Science and Engineering A, 2007, 445/446: 86-93.
    [129] Lee J S, Kim T H. Densification and microstructure of the nanocomposite W-Cu powders [J]. Nanostructured Materials, 1995, 15 (1): 45-52.
    [130] Kim D G, Oh S T, Jeon H, et al. Hydrogen-reduction behavior and microstructural characteristics of WO-CuO powder mixtures with various milling time [J]. Journal of Alloys and Compounds, 2003, 354: 239-242.
    [131] Yoon E S, Lee J S, Oh S T, et al. Microstructure and sintering behavior of W-Cu nanocomposite powder produced by thermo-chemical process [J]. International Journal of Refractory Metals & Hard Materials, 2002, 20(3): 201-206.
    [132] Alam S N. Synthesis and characterization of W-Cu nanocomposites developed by mechanical alloying [J]. Materials Science and Engineering A, 2006, 433:161-168.
    [133]朱永兵,沈以赴. W-Cu纳米复合前驱体粉末的机械合金化制备[J].稀有金属材料与工程,2007,36(6):1091-1094.
    [134] Suryanarayana C. Mechanical alloying and milling [J]. Progress in Materials Science, 2001(46): 48-49.
    [135] Murty B S, Ranganathan S. Novel materials synthesis by mechanical alloying/milling [J]. International materials reviews, 1998, 43(3): 101-141.
    [136] Raghu T, Sundaresan R, Ramakrishnan P, et al. Synthesis of nanocrystalline copper-tungsten alloys by mechanical alloying [J]. Materials Science and Engineering A, 2001, 304/306: 438-441.
    [137]杨斌,袁兆勤. W/Cu二元粉末的机械合金化研究[J].湖南冶金,2003,31(3):24-27.
    [138] Kim Y D, Chung J Y, Kim J, et al. Formation of nanocrystalline Fe-Co powders produced by mechanical alloying [J]. Materials Science and Engineering A, 2000, 291: 17-21.
    [139] Williamson G K, Hall W H. X-ray line broadening from field aluminum and wolfram [J]. Acta Metallurgica, 1953, 1(1): 22-31.
    [140]熊曹勇,熊永红,朱弘,等.机械合金化Cu-W合金的制备及结构研究[J]. N中国科学技术大学学报,1996,26(1):78-82.
    [141]张代东,范爱玲. MA过程中W-Cu系纳米粉末的X射线相分析[J].铸造设备研究,2001,6:14-16.
    [142] Birringer R. Nanocrystalline materials [J]. Materials Science and Engineering A, 1989, 117: 33-43.
    [143]李世波,谢建新,陈姝,等.机械合金化W-Cu固溶体的形成机理[J].材料科学与工艺,2006,14(4):424-431.
    [144]胡赓祥,蔡珣.材料科学基础[M].上海:上海交通大学出版社,2000:37-38.
    [145]居志兰,戈晓岚,许晓静.块体纳米材料的研究现状与发展思路[J].江苏大学学报,2002,23(4):47-51.
    [146] Zhang Z W, Zhou J E, Xi S Q, et al. Phase transformation and thermal stability of mechanically alloyed W-Ni-Fe composite materials [J]. Materials Science and Engineering A, 2004, 379(1-2): 148-153.
    [147] Miedema A R. Heat of formation of alloys [J]. Philips Tech. Rev. 1976, 36 (8): 217-231.
    [148] DoréF, Martin C L, Allibert C H. Apparent viscosity of W–Cu powder compacts during sintering [J]. Materials Science and Engineering A, 2004, 383: 390-398.
    [149] Aboud T, Weiss B Z, Chaim R. Mechanical alloying of the immiscible system W-Cu [J]. NanoStructured Materials, 1995, 6: 405-408.
    [150]蔡一湘,刘伯武.钨铜复合材料致密化问题和方法[J].粉末冶金技术,1999,17(2):138-144.
    [151] Ihn T H, Lee S W, Joo S K. Effect of transition metal addition on liquid phase sintering of W-Cu [J]. Powder Metallurgy, 1994, 37(4): 283-288.
    [152] Johnson J L, Brezovsky J J, German R M. Effect of liquid content on distortion and rearrangement densification of liquid-phase-sintered W-Cu [J]. Metallurgical and Materials Transactions A, 2005, 36(6):1557-1565.
    [153] Kim J C, Ryu S S , Kim Y D, et al. Densification behavior of mechanically alloyed W-Cu composite powders by the double rearrangement process [J]. Scripta Materialia, 1998, 39(6):669-676.
    [154] Sebastian K V, Tendolkar G S. Experiment observations on the densification by rearrangement in liquid phase sintering [J]. Powder Metall Int, 1979, 11(2):62-64.
    [155] Da Costa F A, Da Silva A G P, Gomes U U. The influence of the dispersion technique on the characteristics of the W-Cu powders and on the sintering behavior [J]. Powder Technology, 2003, 134(1-2):123-132.
    [156]贾成厂,刘小杨,解子章,等.用机械活化与化学活化方法制备W-Cu合金[J].粉末冶金技术,2001,19(3):148-152.
    [157]杨自勤,贾成厂,甘乐,等.机械活化粉末制备W-Cu合金的微观组织[J].北京科技大学学报,2002,24(2):115-118.
    [158]王正云.高能球磨法制备纳米钨铜复合材料研究[D].西华大学硕士学位论文,2007.
    [159]朱心昆,林秋实,陈铁力,等.机械合金化的研究及进展[J].粉末冶金技术,1999,17(4):291-296.
    [160] Kim D G, Lee K W, Oh S T, et al. Preparation of W-Cu nanocomposite powder by hydrogen-reduction of ball-milled W and CuO powder mixture [J]. Materials Letters, 2004, 58(7-8):1199-1203.
    [161] Jia C C, Guan X H, Su X K, et al. Microstructure and properties of W-Cu prepared with mechanically activated powder [J]. Journal of University of Science and Technology Beijing, 2001, 8(2):129-132.
    [162]王正云,栾道成,冯威,等.高能球磨法制备钨铜复合材料研究[J].硬质合金,2007,24(3):148-152.
    [163]陈姝. W/Cu梯度功能材料的优化设计与制备[C].北京科技大学硕士学位论文,2004.
    [164]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.
    [165]王盘鑫.粉末冶金学[M].北京:冶金工业出版社,1997.
    [166] Kim J C, Moon I H. Sintering of Nanostructured W-Cu alloys prepared by mechanical alloying [J]. Nanostructured Materials, 1998, 10(2): 283-290.
    [167]杨成功,王尔德,于洋,等.W-35%Cu液相活化烧结工艺研究[J].粉末冶金工业,2003,13(5):1-5.
    [168]刘兵发,谭敦强,周浪.纳米钨-铜复合材料制备工艺的研究[J].材料导报,2005,19(V):180-183.
    [169]范景莲,严德剑,黄伯云,等.国内外钨铜复合材料的研究现状[J].粉末冶金工业,2003,13(2):9-14.
    [170] Santra S, Tapec R, Theodoropoulou N, et a1. Synthesis and characterization of silica-coated iron oxide nanoparticles in microemulsion: the effect of nonionic surfactants.Langmuir,2001,17(10):2900-2906.
    [171]郭庚辰.液相烧结粉末冶金材料[M].北京:化学工业出版社,2003.
    [172] Cannon H S, Lenel F V. Some observations on the mechanism of liquid phase sintering. Plansee Proceedings, F. Benesovsky (ed.), Metallwerk Plansee, Reutte, Austria, 1953: 106-121.
    [173] German R M. Liquid Phase Sintering [M]. New York: Plenum Press, 1985.
    [174] German R M. A Model for the thermal properties of liquid-phase sintered composites [J]. Metallurgical Transactions. A, 1993, 24(8):1745-1752.
    [175] Qin M L, Du X L, Wang J, et al. Influence of carbon on the synthesis of AlN powder from combustion synthesis precursors [J]. Journal of the European Ceramic Society, 2009, 29: 795-799.
    [176] Slack G A, Tanzilli R A, Pohl R O, et al. The intrinsic thermal conductivity of AlN [J]. J. Phys. Chem. Solids, 1987, 48(7): 641-647.
    [177] Sheppard L M. Aluminun nitride: a versatile but challenging material [J]. Am. Ceram. Soc. Bull., 1990, 69(11): 1801-1812.
    [178]邰艳龙,吴可量,苗继斌,等.纳米AlN润滑材料的制备研究[J].润滑油,2008,23(4):37-42.
    [179]高陇桥.陶瓷-金属材料实用封接技术[M].北京:化学工业出版社,2005.
    [180] Tian J,Shobu K. Hot-pressed AlN-Cu metal matrix composites and their thermal properties [J]. Journal of Materials Science, 2004, 39: 1309-1313.
    [181]金玉丰,王志平,陈兢.微系统封装技术概论[M].北京:科学出版社,2006.
    [182]董晟全,郭永春,李高宏.纳米AlN颗粒增强铝基复合材料的制备与力学性能研究[J].热加工工艺,2002,3:43-44.
    [183] Liu Y Q, Cong H T, Wang W, et al. AlN nanoparticle-reinforced nanocrystalline Al matrix composites: Fabrication and mechanical properties [J]. Materials Science and Engineering A, 2009, 505: 151-156.
    [184]刘德宝,崔春翔,马叙.氮化铝颗粒表面镀铜及其增强铜基复合材料[J].兵器材料科学与工程,2005,28(2):8-11.
    [185]邓景泉,吴玉程,王文芳,等.高强高导纳米复合材料CuCrZr/AlN的组织与性能[J].中国有色金属学报,2007,17(3):428-432.
    [186] Mabuchi M, Okamoto K, Saito N, et al. Tensile properties at elevated temperature of W-1%La2O3 [J]. Materials Science and Engineering A, 1996, 214(1-2):174-176.
    [187] Lee K H, Cha S I, Ryu H J, et al. Effect of two-stage sintering process on microstructure and mechanical properties of ODS tungsten heavy alloy [J]. Materials Science and EngineeringA, 2007, 458: 323-329.
    [188]陈勇,吴玉程,于福文,等. La2O3-TiC/W复合材料组织结构与力学性能[J].复合材料学报,2008,25(5):1-7.
    [189] Yu F W, Wu Y C, Chen Y, et al. Effect of TiC particle size on microstructure and mechanical properties of 1%TiCp/W composites [J]. Transactions of Nonferrous Metals Society of China, 2007, 17: 660-662.
    [190]杨晓红,范志康,梁淑华,等. TiC对CuW触头材料组织与性能的影响[J].稀有金属材料与工程,2007,36(5):817-821.
    [191] Shi X L, Yang H, Shao G Q, et al. Fabrication and properties of W-Cu alloy reinforced by multi-walled carbon nanotubes [J]. Materials Science and Engineering A, 2007, 457:18-23.
    [192]李荣久.陶瓷-金属复合材料[M].北京:冶金工业出版社,1995.
    [193]黄培云.粉末冶金原理.北京:冶金工业出版社[M],1997.
    [194]周文英,齐暑华,李国新,等.导热胶粘剂研究[J].材料导报,2005,19(5):26-33.
    [195]季英瑞. Ti/Al2O3梯度功能材料的制备与表征[D].济南大学硕士学位论文,2005.
    [196]张显程,徐滨士,王海斗,等.功能梯度涂层热残余应力[J].机械工程学报,2006,42(1):18-22.
    [197]周志光,张联盟,沈强,等.热应力缓和型梯度材料的计算机辅助设计系统[J].武汉理工大学学报,2004,26(7):1-3.
    [198]刘彬彬,谢建新. W-Cu梯度热沉材料的成分与结构设计[J].稀有金属,2005,29(5):757-761.
    [199] Gasik M M. Micromechanical modelling of functionally graded materials [J]. Computational Materials Science, 1998, 13(1-3): 42-55.
    [200] Ravichandran K S. Thermal residual stress in a functionally graded material system [J]. Materials Science and Engineering A, 1995, 201(1-2): 269-276.
    [201]陶光勇,郑子樵,刘孙和. W/Cu梯度功能材料板稳态热应力分析[J].中国有色金属学报,2006,16(4):694-700.
    [202] Ling Y H, Bai X D, Ge C C. Design and thermal shock Performance of W/Cu functionally graded materials used as Plasma facing component [J]. Materials Science Forum, 2003, 423-425: 49-54.
    [203]张驰,校金友.功能梯度材料的有限元方法研究[J].飞机设计,2007,27(4):31-33.
    [204]凌云汉,白新德,李江涛,等. W/Cu功能梯度材料的热应力优化设计[J].稀有金属材料与工程,2003,32 (12): 976-980.
    [205]程昌钧,朱媛媛.弹性力学[M].上海:上海大学出版社,2006.
    [206]高西亚.热循环下热障涂层残余应力及稳定性的研究[D].西北工业大学硕士学位论文,2007.
    [207]马维,潘文霞,张文宏,等.热喷涂涂层中残余应力分析和检测研究进展[J].力学进展,2002,32(1):41-56.
    [208]姜祎,徐斌士,王海斗.热喷涂涂层残余应力的来源及其失效形式[J].金属热处理,2007,32(1):25-27.
    [209]应保胜,高全杰,但斌斌.等离子喷涂涂层中残余应力分析[J].表面技术,2004,33(1):15-17.
    [210]余佐平,陆煜.传热学[M].北京:高等教育出版社,1999.
    [211]蒋玉川,张建海,李政章.弹性力学与有限单元法[M].北京:科学出版社,2007.
    [212] Wadashima K, Hirao T, Nino M. Space Application of Advance Structure Materials [J]. ESP SP-303, 1990: 97.
    [213] Markworth Alan J, Saunders James H. A model of structure optimization for a functionally graded material [J]. Materials Letters, 1995, 22: 103-107.
    [214]理查德,J布鲁克.陶瓷工艺(第II部分)[M].北京:科学出版社,1999.
    [215]王保林,韩杰才,张幸红.非均匀材料力学[M].北京:科学出版社,2003.
    [216]刘红兵. 316L不锈钢基材防氚渗透Al2O3涂层残余应力测试与数值模拟[D].南京航空航天大学硕士学位论文,2007.
    [217] Liu B B, Xie J X, Qu X H. Fabrication of W-Cu functionally graded materials with high density by particle size adjustment and solid state hot press [J]. Composites Science and Technology, 2008, 68(6): 1539-1547.
    [218] Shen W P, Li Q, Chang K, et al. Manufacturing and testing W/Cu functionally graded material mock-ups for plasma facing components [J]. Journal of Nuclear Materials, 2007, 367-370(2): 1449-1452.
    [219] Ilic D J, Fiscina J, Oliver C G, et al. Self Formed Cu-W functionally graded material produced via powder segregation [J]. Advanced Engineering Materials, 2007, 9(7): 542-546.
    [220] Zhou Z J, Song S X, Du J, et al. Performance of W/Cu FGM based plasma facing components under high heat load test [J]. Journal of Nuclear Materials, 2007, 363-365: 1309-1314.
    [221]种法力,陈俊凌,李建刚. Tokamak第一壁上W/ Cu材料的连接和界面应力的研究[J].稀有金属与硬质合金,2005,33(4):38-41.
    [222]种法力,陈俊凌,李建刚. VPS-EBW法制备W/Cu功能梯度材料及热负荷实验研究[J].稀有金属与硬质合金,2006,35(9):1509-1512.
    [223] Zhou Z J, Du J, Song S X, et al. Microstructural characterization of W/Cu functionally graded materials produced by a one-step resistance sintering method [J]. Journal of Alloys and Compounds, 2007, 428(1-2): 146-150.
    [224] Li S B, Xie J X. Processing and microstructure of functionally graded W/Cu composites fabricated by multi-billet extrusion using mechanically alloyed powders [J]. Composites Science and Technology, 2006, 66(13): 2329-2336.