原位模拟降雨条件下太湖地区不同农田类型氮磷流失特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以往的研究表明,农田地表径流引起的氮磷流失是地表水水体富营养化的主要原因。太湖水网地区雨量丰富,地势低平,农田排水沟渠密集,持续降雨条件下旱作农田也会发生渗漏,同样引起农田氮磷流失。流失方式不同、农田利用类型不同、施肥强度不同、土壤氮磷含量不同,农田氮磷流失特征与流失量都会有所不同。至目前为止,在太湖流域关于不同流失方式下,不同农田利用类型的氮磷流失特征的研究尚为缺少。本研究在浙江嘉兴、上海青浦区与松江区选择了12个实验点位,包括稻田、种植年限短菜地、种植年限长菜地3种农田类型,利用原位模拟降雨实验,在三种农田类型上,研究了渗漏与地表径流两种流失方式下的氮磷流失特征及流失量。主要结论如下:
     1. 12个点位的原位模拟降雨实验,降雨量为80mm条件下,旱作菜地农田地表径流水量和渗漏水量差异不显著,分别为降雨量的57.8%、64.6%;稻田地表径流水量为降雨量的89%,高于菜地径流水量。菜地农田实验点位上,地表径流方式下降雨结束后产流延续时间极显著低于渗漏方式,仅为渗漏方式的1/18,两者分别为1.7min、25.2min;而地表径流方式下产流速率是渗漏方式的3倍,两者平均分别为96.2ml/min、31.3 ml/min。
     2.三种农田类型上,地表径流方式下农田总氮流失量差异不显著,种植年限长菜地、种植年限短菜地、稻田总氮流失量平均分别为6.78、4.02和1.28 kg/hm~2,总氮流失浓度平均分别为12.63、8.25、1.71 mg/L;渗漏方式下种植年限长菜地和种植年限短菜地总氮流失量差异也不显著,平均分别为78.83、35.62 kg/hm~2,总氮流失浓度平均分别为164.32、56.32 mg/L。渗漏方式下硝态氮是流失总氮的主体,占总氮的70%以上;地表径流方式下水溶性氮为流失总氮的主体,平均占总氮的65%以上。在旱作菜地农田的8个点位上,渗漏方式下总氮流失量显著高于地表径流方式,渗漏和地表径流方式总氮流失量分别为32.5、5.4 kg/hm~2。
     3.三种农田类型上,地表径流方式下农田总磷流失量差异不显著,种植年限长菜地、种植年限短菜地、稻田平均总磷流失量分别为0.93、0.36、0.13kg/ hm~2,总磷流失浓度平均分别为1.83、0.78、0.17 mg/L;渗漏方式下种植年限长菜地和种植年限短菜地总磷流失量差异也不显著,平均分别为2.06、0.23kg/ hm~2,种植年限长菜地总磷流失浓度显著高于种植年限短菜地,平均分别为3.09、0.38 mg/L。渗漏方式与地表径流方式下水溶性磷均占流失总磷50%以上,水溶性磷为渗漏方式和地表径流方式磷素流失的主体。渗漏方式与地表径流方式总磷流失量无显著差异,在菜地农田的7个点位上,渗漏方式与地表径流方式总磷流失量分别为0.62、0.71 kg/hm~2。
     4.农田0~5cm、0~20cm土壤硝态氮含量分别为31.2~472.9和33.2~171.1mg/kg时,地表径流方式下,农田0~5cm、0~20cm土壤硝态氮含量与径流液总氮、水溶性氮、硝态氮、铵态氮和水溶性有机氮流失量、流失浓度相关不显著。渗漏实验则显示:农田0-5cm、0~20cm土层硝态氮含量与渗漏液总氮、水溶性氮、硝态氮的流失量、流失浓度呈极显著正相关。0~20cm是氮素渗漏流失的关键层次,该土层NO_3~--N含量是渗漏氮素流失的主要影响因素,0~5cm土壤硝态氮含量对氮素渗漏流失的影响大于其他土层。
     5.农田0~5cm、0~20cm土壤Olsen-P含量分别为3.9~59.6和2.4~45.0mg/kg时,地表径流方式下,土壤Olsen-P含量与径流液总磷、水溶性磷、水溶性无机磷、水溶性有机磷流失量、流失浓度相关不显著,与颗粒态磷流失量相关不显著。渗漏实验显示:0~5cm土壤Olsen-P含量低于20mg/kg时,渗漏液总磷浓度全部低于0.53 mg/L,流失量低于0.46 kg/hm~2,土壤Olsen-P含量高于20mg/kg时,渗漏液中总磷浓度和流失量明显增高,总磷浓度均高于1.57 mg/L,最高达8.50 mg/L,流失量可达6.61 kg/hm~2。
     本项研究结果显示,菜地农田在80mm降雨条件下,对氮流失而言,渗漏大于地表径流,即:在持续阴雨条件下,氮的流失风险大;而对磷流失而言,渗漏方式与地表径流方式区别不大。在菜地农田上,随农田表层0~5cm和0~20cm土壤硝态氮含量,0~5cm的土壤Olsen-P含量的增加,氮磷的地表径流流失或渗漏流失均有明显增加的趋势,换言之,土壤0~5cm硝态氮与Olsen-P含量可较好反映农田氮磷流失潜力。
It was reported that N and P losses from cropping land into water system were mainly through runoff. Taihu Lake region is located at lowland plain with abundant precipitation and water-nets consisting of rivers, channels, ditches and flooding crop land. Under consisting raining period, which occur in winter or summer season, N and P loss through leaching may take place. Generally, N and P losses are depending on the losing procedures (runoff or leakage), the cropping lands (vegetable or rice field), the fertilizer rates and the soil nutrient concentrations. However, few works were done on N and P losses through runoff, leakage, from different cropland in Taihu Lake region. In this study, 12 site-specific rainfall simulation experiments were done in order to understand N and P losses through runoff, leakage and from different cropland. These experiments distributed in Shanghai and Zhejiang province and covered three different cropping land, i.e. rice filed, long-term vegetable land and vegetable land for less than 5 years. The main results were as follows.
     Under 80mm rainfall simulation, the results of 12 experiments showed that the amount of runoff water and leakage water in vegetable land were not different apparently, with 57.8% and 64.6% to the rainfall respectively. The amount of runoff water in rice field is higher than that of vegetable land, with an average of 89% to the rainfall. For vegetable land, the outflow lasting time after rainfall stopping under runoff is only 1/18 of that under leakage, with 1.7 minutes and 25.2 minutes respectively, but the velocity of runoff is 3 times faster than that of leakage, with 96.2 ml/min and 31.3 ml/min respectively.
     There are no apparent differences of total N loss through runoff among long-term vegetable land, vegetable land for less than 5 years and rice field, with 6.78、3.36和1.28 kg/ha ,respectively, and with average of total P concentration of 12.63、8.25、1.71 mg/L, respectively. And there are also no apparent differences of total N loss through leakage between long-term vegetable land and vegetable land for less than 5 years, with 78.83, 35.62 kg/ha, respectively,and with average of total N concentration of 164.32、56.32 mg/L, respectively. Analysis showed that NO_3~--N is the main form in leakage water, accounting for more than 70% of the TN, but that total dissolved nitrogen was the main form in runoff water. for that of runoff. The On the 8 sites of vegetable lands, analysis showed that total N losses (32.5 kg/ha) from leakage is significantly higher than that ( 5.4 kg/ha)of runoff.
     There are no apparent differences of total P loss through runoff among long-term vegetable land, vegetable land for less than 5 years and rice filed, with 0.93, 0.36 and 0.13 kg/ha,respectively, and with average of total P concentration of 1.83、0.78、0.17 mg/L. There are also no apparent differences of total P loss through leakage between long-term vegetable land and vegetable land for less than 5 years, with an average 2.06 , 0.23 kg/ha, respectively, and with average of total P concentration of 3.09、0.38 mg/L, respectively. Total dissolved P losses of runoff and leakage are both higher than 50% of total P losses. On the 7 sites of vegetable land, analysis showed that there are no apparent differences of total P between through runoff and through leakage, with an average of 0.71、0.62 kg/ha, respectively.
     Results from the runoff experiments showed that when soil NO_3~--N content is 31.2~472.9 and 33.2~171.1 mg/kg, there are no significant correlations between the content of 0~5 cm or 0~20 cm soil NO_3~--N and concetrations of total N, total dissolved N, NO_3~--N, NH4+-N, particulate N in runoff water. But results from the leakage experiments showed that there were significant correlations between the content of 0~5 cm or 0~20 cm soil NO_3~--N content and the concetrations or amount of total N, total dissolved nitrogen, and NO_3~--N. The depth of 0-20 cm was the main depth for leakage, and soil NO_3~--N content of this soil depth is the main factor for N loss in leakage. The effect of 0~5 cm soil NO_3~--N content was higher than other soil depth.
     Results from the runoff experiments showed that when Olsen-P content is 3.9~59.6 and 2.4~45.0 mg/kg, there are no significant correlations between the Olsen-P content of 0~5 cm or 0~20 cm soil depth and concetrations of total P, total dissolved P, dissolved reactive P, dissolved organophosphorus and particulate P. And results from the runoff experiments showed that when soil Olsen-P content is lower than 20 mg/kg, the total P losses is lower than 0.8 kg/ha. Results from the leakage experiments showed that when the content of 0~5 cm soil Olsen-P is lower than 20 mg/kg, the total P concetration is lower than 0.53 mg/L, and the total P losses is lower than 0.46 kg/ha, but when the content of 0~5 cm soil Olsen-P is higher than that value, the total P concetration is more than 1.57 mg/L, the maximum is 8.50 mg/L, and the total P losses is up to 6.61 kg/ha.
     Results from experiments showed that N loss through leakage was higher than through runoff on vegetable farmland under 80 mm rainfall simulation. That mean the risk of N loss was high under consisting raining condition. There were few difference between P loss through runoff and through leakage. With increase of NO_3~--N content of 0~5 cm and 0~20 cm soil depth and increase of Olsen-P content of 0~5 cm soil depth, N and P loss were obviously enhanced both through runoff and leakage. That mean NO_3~--N and Olsen-P content of 0~5 cm could be well reflected the potential of N and P loss .
引文
1. Andraski T W, Bundy L G. Relationships between phosphorus levels in soil and in runoff from corn production systems. Journal of Environmental Quality, 2003, 32:310-316.
    2. Andrew N, Sharpley. Rainfall Frequency and Nitrogen and Phosphorus Runoff from Soil Amended with Poultry Litter. Journal of Environmental Quality, 1997, 26(4): 1127~1132.
    3. Beven K, Germann P. Macropores and water flow in soils. Water Resources Research, 1982, 18:1311-1325.
    4. Carpenter S R, Caraco N F, Correll D L, et al. Non point pollution of surface waters with phosphorus and nitrogen. Ecological Application, 1998, 8:559-568.
    5. Caruso B S. Integrated assessment of Phosphorus in the Lake Hayes catchment, South Island, New Zealand . Journal of Hydrology, 2000, 229:168-189.
    6. Chang S C, Jackson M L. Fractionation of soil phosphorus. Soil Science. 1957, 84: 133-144
    7. Choudhayr M, Lal R, Dick W. Long-term tillage on runoff and erosion simulated rainoff of a a central Ohio soil. Soil & Tillage Research, 1997, 42:175-184.
    8. Correl D L. The role of Phosphorus in the eutrophication of receiving waters. Journal Environment, 1998, 27:261-266.
    9. Cox F R, and Hendricks S E, Soil test phosphorus and clay content effects on runoff water quality. Journal of Environmental Quality, 2000, 29:1582-1586.
    10. Dalal R C. Soil organic phosphorus. Advances in Agronomy. , 1977,29:83-119.
    11. Daniel T C, Sharpley A N, Edwards D R, et al. Minimizing surface water eutrophication from agriculture by Phosphorus management. Journal of Soil and Water Conservation, 1994, 49:30-35.
    12. Dennis L, Gorwin. Non-point pollution modeling based on GIS. Journal of Soil and Water Conservation, 1998, 1: 75-88.
    13. Dzikiewicz M. Activities in non-Point Pollution control in rural areas of Poland. Ecological Engineering, 2000, 14:429-434.
    14. Gascho G L, Wauchope J G, Davis J G, et al. Nitrate-nitrogen, soluble, and bioavailable phosphorus runoff from simulated rainfall after fertilizer application. Soil Science Society of America Journal, 1998, 62:1711-1718.
    15. Gaynor J D, Findlay W I. Soil and phosphorus loss f rom conservation and conventional tillage in corn production. Journal of Environmental Quality, 1995 ,24:734-741.
    16. Hansen N C, Gupta S C. Snowmelt runoff, sediment, and phosphorus losses under three different tillage systems. Soil & Tillage Reseach, 2000, 57:93-100.
    17. Hartemink A E, Bruesh R J, Bashin Jama. Soil. Sci. Soc. Am. J., 1996, 60:568-574.
    18. Heckrath G, Brookes PC, Poulton P R. Phosphorus leaching from containing different phosphorus concentrations in the Broadbalk experiment. Journal of Environmental Quality, 1995, 24:904-910.
    19. Hesketh N, Brookes P C. Development of indicator for risk of phosphorus leaching. Journal ofEnvironmental Quality, 2000, 29(1):105-110.
    20. Houtin J A, Karam A, Couillard D, et al. Use of a fractionation procedure to assess the potential for P movement in a soil profile after 14 years of liquid pig manure fertilization. Agriculture, Ecosystems and Environment, 2000, 78:77-84.
    21. Jordan C, McGuckin S O, Smith R V. Increased predicted losses of phosphorus to surface water from soils with high Olsen2P concentration. Soil Use and management, 2000, 16:27-35.
    22. Kronvang B, Grant R, Larsen S E, et al. Non-Point source nutrient losses to the aquatic environment in Denmark: impact of agriculture. Marine & Freshwater Research, 1995, 46:167-177.
    23. lewis D G. Quirk J P. Phosphate diffusion in soil land and uptake by plants. Plant and Soil, 1967, 26:445-453.
    24. Line D E. NonPoint soueres Pollution. Water Enviornment Reseach, 1998, 70(4):895-911.
    25. Markantonoats P G, Bacalis N C, Angelidis M. Pollution control the catchment basin of the river Evrotas, Greece. Water Science and Technology, 1995, 32(9-10):247-255.
    26. McDowell R W, Muirhead R W, Monaghan R M. Nutrient, sediment, and bacterial losses in overland flow from pasture and cropping soils following cattle dung deposition. Communications in Soil Science and Plant Analysis, 2006, 37:93~108.
    27. McDowell R W, Sharpley A N. Phosphorus losses in subsurface flow before and after manure application to intensively farmed land. The Science of the Total Environment. 2001,278 :113~125
    28. McDowell R W, Sharpley A N. Variation of phosphorus leached from Pennsylvanian Soils amended with manures, composts or inorganic fertilizer. Agriculture, Ecosystem and Environment, 2004,102:17~27..
    29. McNeal B L, Stanley C D, Graham W D, et al. Nutrient-Loss Trends for Vegetable and Citrus Fields in West-Central Florida: I. Nitrate. Journal of Environmental Quality, 1995, 24:95-100.
    30. Stanley C D, McNeal B L, Gilreath P R, et al. Nutrient-Loss Trends for Vegetable and Citrus Fields in West-Central Florida: II. Phosphate. Journal of Environmental Quality, 1995, 24:101-106.
    31. Mendoza R E, Canduci A, Aprile C. Phosphorus release from fertilized soils and its effect on the changes of phosphate concentration in soil solution. Fertilizer Research, 1990, 23:165-172.
    32. Mozaffari M, Sims J T. Phosphorus availability and sorption in an Atlantic Coastal Plain watershed dominated by animal based agriculture. Soil Science. 1994,157:97-107.
    33. Oenema O. Nitrogen and Phosphorus losses from agriculture into surface waters: the effects on Policies and measuers in the Netherlands. Water Science and Technology, 1998, 37(2):456-463.
    34. Pote D H, Daniel T C, Nichols D J, et al. Relationship between phosphorus levels in three ultisols and phosphorus concentrations in runoff. Journal of Environmental Quality, 1999,28:170-175.
    35. Randall L, Davis, Hailin Zhang, et al.2005. Soil characteristics and phosphorus level effect on phosphorus loss in runoff. Journal of Environmental Quality 34:1640-1650.
    36. Romkens M J, Nelson D W, Phosphorus relationships in runoff from fertilized soils. Journal of Environmental Quality, 1974, 3:10-13.
    37. Sallade Y E, Sims J T. Phosphorus transformations in the sediments of Delaware's agriculturaldrainage ways: II Effect of Reducing Condition on Phosphorus Release. Journal of Environmental Quality 1997, 26:1579-1588.
    38. Schab A P, Kulyingong S. Changes in phosphorus activities and availability indexes with depth after
    40 years of fertilization. Soil Science, 1989, 147(3):179-186.
    39. Schindler D W. Evolution of phosphorus limitation in lakes. Science. 1977, 195:260~262.
    40. Schlesinger W H, Abrahmas A D, Parsons A J, et al. Nutrient losses in runoff from grassland and shrub land habits in Southern New Mexico:Ⅰ. Rainfall simulation experiments. Biogeochemistry, 1999, 45:21-34.
    41. Sharpley A N, Chapra S C, Wedepohl R,et al. 1994. Managing agricultural phosphorus for protection of surface waters:Issues and options. Journal of Environmental Quality, 23:437-451.
    42. Sharpley A N, Daniel T C, Edwards D R. Phosphorus movement in the landscape. Journal of Production Agriculture, 1993,6:492-500.
    43. Sharpley A N. Dainel T C, Sims J T, et al. Determining environmental sound soil phosphorus levels. Journal of soil and water conservation, 1996, 51(2):160~163.
    44. Sharpley A N. Phosphorus cycling in unfertilized abd fertilized agricultural soil. Soil Science Society of America Journal,1985, 49:905-911.
    45. Sharpley, A N. Dependence of runoff Phosphorus on extractable soil Phosphorus. Journal of Environmental Quality, 1995, 24:920-926.
    46. Gascho G L, Wauchope J G, Davis J G, et al. Nitrate-nitrogen, soluble, and bioavaliable phosphorus runoff from simulated rainfall after fertilizer application. Soil Science Society of America Journal, 1998, 62:1711-1718.
    47. Shuman L M. Phosphorus and nitrate nitrogen in runoff following fertilizer application to turfgrass. Journal of Environmental Quality ,2002,31:1710-1715.
    48. Sigua G C, Setward J S, Tweedale W A. Water quality monitoring and biological integrity assessment in the Indian River Lagoon. Florida: status, trends, and loadings (1988-1994). Journal of Environmental Management, 2000, 25, 199-209.
    49. Sims J T, Simard R R, Joern B C. Phosphorus loss in agriculture drainage: historical perspective and current research. Journal of Environmental Quality, 1998, 27:227-293.
    50. Sims J T. Phosphorous Soil testing: innovations for water quality protection. Communications in Soil Science and Plant Analysis, 1998, 29(11-14) :1471~1489.
    51. Storey R G, Williams D D, Fulthorpe R R. Nitrogen processing in the hyporheic zone of a pastoral stream. Biogeochemistry, 2004, 69: 285-313.
    52. Stuck J D, Lzuno E T, Campbell K L, et al. Farm-level studies of particulate phosphorus transport in the Everglades Agricultural Area. Transactions of the American Society of Agricultural Engineers, 2001, 44:1105-1116.
    53. Take K B,The biological transformation of phosphorus in soil. Plant and Soil, 1984, 76:245-256.
    54. Tan C S, Drury C F, Reynolds W D, et al. Water and nitrate loss through tiles under a clay loam soil in Ontario agrer 42 years of consistent fertilization and crop rotation. Agriculture, Ecosystems and Environment, 2002, 93: 121-130.
    55. Thorburn P J, Biggs J S, Weier K L, et al. Nitrate in groundwaters of intensive agricultural areas in coastal Northeastern Australia. Agriculture, Ecosystems and Environment, 2003, 94: 49-58.
    56. Torbert H A, Daniel T C, Lemunyon J L. Relationship of Soil Test Phosphorus and Sampling Depth to Runoff Phosphorus in Calcareous and Noncalcareous Soils. Journal of Environmental Quality, 2002, 31:1380-1387.
    57. Torbert H A, Potter K N, Hoffman D W, et al. Surface residue and soil moisture affect fertilizer loss in simulated runoff on a heavy clay soil. Agronomy Journal, 1999, 91:606-612.
    58. Vadas P A, Kleinman P J, Sharpley A N, et al. Relating soil phosphorus to dissolved phosphorus in runoff: a single extraction coefficient for water quality modeling. Journnal of Environmental Quality, 2005, 34(2): 572-80.
    59. Vadas P A, Srinivasan M S, Kleinman P J A, et al. Hydrology and groundwater nutrient concentrations in a ditch-drained agroecosystem. Journal of Soil and Water Conservation, 2007, 62(4):178-188.
    60. Vaughan R E. Agricultural drainage ditches: Soils and their implication for nutrient transport. Master's thesis, University of Maryland, College Park, 2005.
    61. Viney N R. A conceptual model of nutrient mobilization and transport applicable at large catchment scales. Journal of Hydrology, 2000, 240:23-44.
    62. Vuorenmaa J, Rekolainen S, Lepisto A, et al. Losses of nitrogen and phosphorus from agricultural and forest areas in Finland during the 1980s and 1990s. Environmental Monitoring and Assessment, 2002, 76(2):13-248.
    63. Wendt R C, Alberts E E. Estimating labile and dissolved inorganic phosphate concentrations in surface runoff. Journal of Environmental Quality, 1984, 13:613-618.
    64. Hubbard R K, Thomas D L, Leonard R A, Butler. Surface run-off.and shallow ground water quality as affected by centre pivot applied dairy cattle wastes. Transactions ASAE. 1987, 30 (2), 430-437.
    65. Haygarth P M, Condron L M, Heathwaite A L.The phosphorus transfer continuum: Linking source to impact with an interdisciplinary and mult-scaled approach. Science of the Total Environment, 2005, 344: 5-14.
    66. William F. Ritter, Adel Shirmohammadi. Agricultural nonpoint source pollution. 2001,U.S., CRC Press LLC, 1-2.
    67. Zaimes C N, Schultz R C. Phosphorus in agricultural watersheds: A literature review. Dep of For., Iowa State Univ, Ames. 2002.
    68. Zamplla R A. characterization of surface water quality along a watershed disturbance gradient. Water Resource Bulletin, 1994, 30:605.
    69. Zhang W L, Tian Z W, Zhang N, et al. Surface water quality of factory-based and vegetable-based peri-urban areas in the Yangtze River Delta region, China. Gatena, 2007, 69: 57-64.
    70. Hossain M F, White S K, Elahi S F, Sultana N, Choudhury. The efficiency of nitrogen fertilizer for rice in Bangladeshi farmers’fields. Field Crops Research, 2005, 93: 94-107.
    71. Lehmann L, Lan Z, Hyland C, Sato S, Solomon D, Ketterings Q. Ketterings. Long-term dynamics of phosphorus forms and retention in manure-amended soils. Environmental Science & Technology 2005, 39: 6672-6680.
    72.晏维金,尹澄清,孙濮等.磷氮在水田湿地中的迁移转化及径流流失过程.1999,10(3):312-316.
    73.曹林奎,朱江,陈国军等.黄浦江上游蔬菜田氮素流失规律测坑研究.2005,27(1):34-38.
    74.曹林奎.旱田土壤氮素流失特征及其控制途径研究.[博士学位论文],上海:上海交通大学,2006.
    75.陈浮,濮励杰,曹慧等.近20年太湖流域典型区土壤养分时空变化及驱动机理.土壤学报,2002,39(2):236~245.
    76.陈国军,曹林奎,陆贻通等.稻田氮素流失规律测坑研究.上海交通大学学报(农业科学版),2003,21(4):321-324.
    77.单艳红,杨林章,颜廷梅等.水田土壤溶液磷氮的动态变化及潜在的环境影响.生态学报,2005,25(1):115-121.
    78.高超,张桃林,吴蔚东.不同利用方式下农田土壤对磷的吸持与解吸特征.环境科学,2001,22(4):67-72.
    79.国家环保局《水和废水监测分析方法》编委会.水和废水监测分析方法(第三版).北京:中国环境科学出版社,1998.
    80.国家环境保护总局.中国环境状况公报(1992):3-4.
    81.国家环境保护总局.中国环境状况公报(2006):20-27.
    82.韩兆元主编.陕西土壤,北京:科学出版社,1992:47-298.
    83.黄满湘,章申,唐以剑等.模拟降雨条件下农田径流中氮的流失过程.土壤与环境,2001,10(1):6-10.
    84.黄沈发,陆贻通,沈根祥,,唐浩,上海郊区旱作农田氮素流失研究,农村生态环境,2005,21(2):50-53.
    85.黄漪平等主编.太湖水环境及其污染控制.北京:科学出版社,2001.
    86.黄云凤,张珞平,洪华生等.不同土地利用对流域土壤侵蚀和氮磷流失的影响.农业环境科学学报,2004,23(4):735~739.
    87.冀宏杰,张维理,张怀志.人工湿地对保护水环境的影响.农业资源与环境科学,2008,24(10):512-514.
    88.嘉兴市城区郊区土壤普查办公室.嘉兴土壤,1984.
    89.姜波,林咸永,章永松.杭州市郊典型菜园土壤磷素状况及磷素淋失风险研究.浙江大学学报(农业与生命科学版),2008,34(2):207~213.
    90.蒋柏藩.石灰性土壤无机磷有效性的研究.土壤,1992,24:61-64.
    91.蒋柏藩.土壤磷的化学行为与有效磷的测试.土壤,1992,22(4):181-189.
    92.金洁,杨京平.高肥力稻田分次施氮对氮素淋失的影晌.水土保持学报,2004,18(3):98-101.
    93.金相灿.中国湖泊富营养化[M].北京:中国环境科学出版社,1992.
    94.雷秋良.上海水网地区平方公里尺度下农田氮磷流失特征研究.[博士学位论文].北京:中国农业科学研究院,2007.
    95.李恒鹏,金洋,李燕.模拟降雨条件下农田地表径流与壤中流氮素流失比较.水土保持学报,2008,22(2):6~9,46.
    96.李荣刚,夏源陵,吴安之等.太湖地区水稻节水灌溉与氮素淋失.河海大学学报,2001,29(2):21-25.
    97.李世清,李生秀.半干旱地区农田生态系统中的硝态氮的淋失.应用生态学报.2000,11(2):240-242.
    98.李卫正,王改萍,张焕朝等.两种水稻土磷素渗漏流失及其与Olsen磷的关系.南京农业大学学报(自然科学版),2007,31(3):52-56.
    99.李裕元,邵明安.模拟降雨条件下施肥方法对坡面磷素流失的影响.应用生态学报,2002,,13(11)∶1421~1424.
    100.连纲,王德建.太湖地区麦季氮素淋失特征.土壤通报,2004,35(2):163-165.
    101.梁新强,田光明,李华等.天然降雨条件下水稻田氮磷径流流失特征研究.水土保持学报,2005,19(1):59-63.
    102.凌云霄.影响水稻土磷素扩散的某些因素.土壤学报,1981:第18卷第2期:194-198.
    103.鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环和平衡研究.土壤通报,1996.27(4):45-51.
    104.鲁如坤,刘鸿翔.我国典型地区农业生态系统养分循环和平衡现状.土壤通报,1996,27(5):193-196.
    105.鲁如坤,时正元,顾益初.土壤积累态磷的研究Ⅱ.磷肥的表观积累利用率,土壤,1995,27(6):286-289.
    106.鲁如坤,时正元,钱承梁.土壤积累态磷的研究Ⅲ.几种典型土壤中积累态磷的形态特征及其有效性.土壤,1997,第2期:57-60.
    107.鲁如坤.土壤磷素化学研究进展.土壤学进展,1990,18(16):1-5.
    108.陆敏.水早轮作农田系统氮素循环与水环境效应.[博士学位论文].上海:华东师范大学,2007.
    109.吕家珑,Fortune S,Brookes P C .土壤磷淋溶状况及其Olsen磷“突变点”研究.农业环境科学学报,2003,22(2):142-146.
    110.吕家珑,李祖荫.石灰性土壤中固磷基质的研讨.土壤通报,1991,22(5):204-206
    111.吕家珑,刘文革,王旭东等.长期施肥对土壤无机磷形态组成的影响.陕西农业大学学报,1995,23(3):51-54.
    112.吕家珑,张-平,张君常等.土壤磷运移研究.土壤学报,1999,36(1):75-82.
    113.吕耀.苏南太湖地区水稻土中硝态氮淋溶的定位研究.土壤通报,1999,30(3):113-114
    114.罗春燕.我国东南水网平原地区不同土地利用方式氮磷流失特征.[博士学位论文].北京:中国农业科学院,2008.
    115.马琨,王兆骞,陈欣等.模拟降雨条件下施肥方法对坡面磷素流失的影响.水土保持学报,2002,16(3):16-19.
    116.马立珊,汪祖强,张水铭,马杏法,张桂英等.苏南太湖水系农业面源污染及其控制对策研究.环境科学学报,1997,17(l):39-47.
    117.马立珊.苏南太湖水系农业非点源氮污染及其控制对策研究.应用生态报,1992,3(4):346-354.
    118.莫淑勋,钱菊芳,钱承梁.猪粪与有机肥料中磷素养分循环再利用的研究.土壤学报,1991,28(3):309-315.
    119.彭琳,彭祥林,卢宗藩.垆土早地土壤硝态氮季节性变化与夏季休闲的培肥增产作用.土壤学报,1981,18:212—222.
    120.彭琳,彭祥林.黄土地区土壤中磷的含量分布、形态转化与磷肥合理施用.土壤学报,1980,26(4):344-352.
    121.钦绳武,刘芷宇.土壤~根系微区养分状况的研究:Ⅵ.不同形态肥料氮素在根基的迁移规律.土壤,1989,26(2):117~123.
    122.秦祖平,徐琪,熊毅.太湖地区两种稻麦轮作制度中营养元素的循环:Ⅱ常规稻田生态系统中大量元素的循环状况.生态学报,1989,9(3):245~252.
    123.邱卫国,唐浩,王超.水稻田面水氮素动态径流流失特性及控制技术研究.2004,23(4):740-744.
    124.上海水务局,2005年水资源公报[EB/OL].http://www.shanghaiwater.gov.cn/sw/2005_1_1.asp.2005-11-1.
    125.沈仁芳.潮土无机磷的形态及其分布特点.河南农业科学,1992,12:24-24.
    126.沈善敏.农业生态系统中主要营养元素循环及农田土壤养分收支平衡[A].沈善敏.中国土壤肥力[M].北京:中国农业出版社,1998,80-83.
    127.盛海君,夏小燕,杨丽琴等.施磷对土壤速效磷含量及径流磷组成的影响.生态学报,2004,24(12):2837-2840.
    128.舒英格,刘方,何腾兵等.不同土壤磷水平下黄壤旱坡地磷素流失分析.耕作与栽培,2002,
    2:36-38.
    129.宋歌,孙波,教剑英.测定土壤硝态氮的紫外分光光度法与其它方法的比较.土壤学报,2007,44(2):288-293.
    130.田平,陈英旭,田光明等.杭嘉湖地区淹水稻田氮素径流流失负荷估算.应用生态学报,2006,
    17(10):1911~1917.
    131.王彩绒,胡正义,杨林章等.太湖典型地区蔬菜地土壤磷素淋失风险.环境科学学报,2005,25(1):76-80.
    132.王朝辉,宗志强,李生秀等.蔬菜的硝态氮累积及菜地土壤的硝态氮残留.环境科学,2002,23(3):79~83.
    133.王道涵,梁成华.农业磷素流失途径及控制方法研究进展.土壤与环境,2002,11(2):183-188.
    134.王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点.中国生态农业学报,2001,9(1):16-18.
    135.王家玉,王胜佳,陈义.稻田土壤中氦素淋失的研究.土壤学报,1996,33(1):28—35
    136.王少平,高效江,胡雪峰等.上海西郊麦期氮素淋溶定位研究.环境污染与防治,2002,24(2):68-70.
    137.王小治,曹志洪,盛海君等.太湖地区渗育性水稻土径流中磷组分的研究.土壤学报,2004,41(2):119-125.
    138.王小治,盛海君,栾书荣等.渗育性水稻土渗滤液中的磷组分研究,土壤学报,2005,42(1):78-83.
    139.王晓燕,王晓峰,汪清等.北京密云水库小流域非点源污染负荷估算.地理研究,2004,24(2):227-231.
    140.肖强,张维理,王秋兵等.太湖流域麦田土壤氮素流失过程的模拟研究.植物营养与肥料学报,2005,11(6):731-736.
    141.肖强.太湖平原地区模拟降雨条件下麦田径流氮磷流失研究.[硕士学位论文].沈阳:沈阳农业大学,2004.
    142.谢学位,冉讳,沈其荣等.田间条件下32P在淹水水稻土中的垂直运移.南京农业大学学报,2063,26(3):56-59.
    143.徐明岗,张-平,王锐群.土壤磷扩散规律及其能量特征研究-水分、质地、温度及其相互作用对磷扩散的影响,土壤学报,1996,33(2):148-157.
    144.徐志洪,曹志洪,李庆逞.尿素颗粒在石灰性砂壤土上对夏玉米效应及氮意去向的研究.土壤学报,l987,24:51-58.
    145.杨爱玲,朱颜明.地表水环境非点源污染研究.环境科学进展,1998,7(5):60-67.
    146.杨丽霞,杨桂山,苑韶峰.施磷对太湖流域典型蔬菜地磷素流失的影响.中国环境科学2007,27(4):518~523.
    147.杨学云,Brookes P C,李生秀.土壤磷淋失机理初步研究.植物营养与肥料学报,2004,10(5):479-482.
    148.杨学云,李生秀,Brookes P.C..灌溉与旱作条件下长期施肥楼土剖面磷的分布与移动.植物营养与肥料学报.2004,10(3):250-254.
    149.杨钰,阮晓红.土壤磷素循环及其对土壤磷流失的影响.土壤与环境,2001,10(3):256-258.
    150.于天仁等.土壤电化学性质及其研究法.北京:科学出版社,1976,302-321.
    151.于兴修,杨贵山,梁涛.西苕溪流域土地利用对氮素径流流失过程的影响.农业环境保护,2002,21(5):424-427.
    152.袁可能.植物营养元素的土壤化学[M].北京:科学出版社,1983,110-163.
    153.苑韶峰,吕军.流域农业非点源污染研究概况.土壤通报,2004,35(4):507-511.
    154.张大弟,陈佩清,支月娥.上海市郊4种地表径流及稻田水中的污染物浓度.上海环境科学,1997,16(9):4-6.
    155.张福珠,熊先哲,戴同顺.应用15N究土壤—植物系统中氦素淋失动态.环境科学,1984,5(1):21-24.
    156.张国梁,章申.农田氮素淋失研究进展.土壤,1998,6:291-297.
    157.张红爱.太湖地区典型水稻土磷素的径流流失及其机理[硕士学位论文],南京:南京农业大学,2003.
    158.张焕朝,张红爱,曹志洪.太湖地区水稻土磷素径流流失及其Olsen磷的“突变点”.南京林业大学学报(自然科学版),2004,28(5):6-10
    159.张继宗.太湖河网地区不同类型农田氮磷流失特征[博士学位论文].北京:中国农业科学院,2006.
    160.张继宗.太湖平原地区稻麦轮作方式下农田径流氮素流失研究[硕士学位论文].沈阳:沈阳农业大学,2003.
    161.张认连.模拟降雨研究水网地区农田氮磷的流失[硕士学位论文].北京:中国农业科学院,2004.
    162.张善良,吴建富,郭成志等.应用N15N对稻田生态系中氮素淋失和去向的研究.江西农业大学学报,1998,20(2):153-157.
    163.张水铭,马杏法,汪祖强.农田排水中磷素对苏南太湖水系的污染.环境科学,1993,14(6):24-30.
    164.张维理,冀宏杰,KolbeH等.中国农业面源污染形式估计及控制对策Ⅱ.欧美国家农业面源污染状况及控制,中国农业科学,2004,37(7),1018-1025.
    165.张维理,田哲旭,张宁.我国北方农用氮肥造成地下水硝酸盐污染的调查.植物营养与肥料学报,1995,1(2):80-87.
    166.张维理,武淑霞,冀宏杰等.中国农业面源污染形式估计及控制对策Ⅰ.21世纪初期中国农业面源污染的形式估计.中国农业科学,2004,37(7),1008-1017.
    167.张学军,孙权,陈晓群等.不同类型菜田和农田土壤磷素状况研究.土壤,2005,37(6) :549~654.
    168.张志剑,王光火,王柯等.模拟水田的土壤磷素溶解特征及其流失机制,土壤学报,2001,38(1):139-143.
    169.张志剑,王坷,朱荫湄等.浙北水稻主产区田间土-水P流失潜能.环境科学,2001,22(1):98-101.
    170.赵建宁,沈其荣,冉炜.太湖地区侧渗水稻土连续施磷处理下稻田磷的径流损失.农村生态环境,2005,21(3):29-33.
    171.中国土壤学会.土壤农业化学分析方法.鲁如坤等主编,北京:中国农业科技出版社,2000,166.
    172.朱铁群.我国水环境农业非点源污染防治研究简述.农村生态环境,2000,16(3):55-57.
    173.朱新开,盛海君,夏小燕等.稻麦轮作田氮素径流流失特征初步研究.生态与农村环境学报,2006,22(1):38-41.
    174.朱兆良,孙波.中国农业面源污染控制对策研究.污染减排,2008(4B):4-6.
    175.朱兆良,文启孝主编,中国土壤氮素.南京:江苏科学技术出版让,1992,212—249.
    176.朱兆良.关于土壤氮素研究中的几个问题.迈向21世纪的土壤科学.南京中国土壤学会编,1999,58-61.
    177.朱兆良.我国氮肥的施用现状、存在问题和对策.见:李庆逵,朱兆良,于天仁编.中国农业持续发展中的肥料问题.南京:江苏科学技术出版社,1998.
    178.董克虞.畜禽粪尿对环境的污染及资源化途径.环境科学研究,1998,17(6):281-283.