典型河口区沉积物的硝化和反硝化过程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仅在过去四十年,人类通过陆源输入向海洋排放的氮量就增加了一倍。氮输入量的增加导致了海洋严重的人为富营养化,造成海水透明度下降、耗氧量增加甚至威胁到人类健康和经济发展。硝化反应将NH4﹢经NO2﹣氧化为NO3﹣,是氮循环中连接生物固氮和厌氧反硝化作用的重要环节;同时还会消耗水体和沉积物中大量的氧气,导致陆架海域低氧甚至缺氧区的形成。反硝化作用把NO2﹣氧化为NO3﹣转化为气态的N2O或N2,对于缓解海水的富营养化、估算氮循环通量研究全球气候变化都具有重要的意义。因此,硝化和反硝化过程及其对环境因子变化(如气候变暖、难降解有机物污染及氮富营养化)的响应成为海洋环境科学中的一个重要的研究课题。
     已有的研究表明,温度、盐度、溶解氧和NH4﹢含量等环境变量是影响硝化和反硝化速率的主要环境因子,而通过氨单加氧酶(amo)实现NH4﹢至NO2﹣转化的自养氨氧化细菌活性是硝化反应的限速因子。以DNA序列技术为基础的分子生物学实验手段可以实现对硝化细菌的特异性染色或扩增,进而不经过培养就能够对硝化细菌的数量和群落结构进行分析。反硝化细菌群落较复杂,难以采用分子生物学技术,但以传统的培养方法仍可以估算其数量及分布的趋势。尽管如此,关于硝化和反硝化过程、环境因子及细菌群落特征关系的系统性研究还极少。本论文选取长江口、黄河口以及英国的Colne河口区作为研究海域,测定了表层沉积物的硝化和反硝化速率,硝化和反硝化细菌数量的分布;与环境因子的相关性进行分析,讨论了硝化和反硝化作用的主要控制因子,为探讨环境因子的变化对硝化和反硝化过程的影响提供了理论依据;通过计算硝化和反硝化过程产生的N、O通量说明其重要的环境效应。
     长江口夏初的硝化反应速率范围为100.3~514.3μmol·m-2·h-1,自近岸向远海逐渐降低;反硝化速率的范围是101.3~731.9μmol·m-2·h-1,以长江口外和杭州湾口的两个高值区为中心向外逐渐降低;硝化和反硝化过程有较高的耦合性,反硝化过程以与硝化作用耦合的反硝化作用为主。硝化细菌数量(以湿重计)在(1.87~3.53)×105cells·g-1之间,并表现出一定的耐盐性,反硝化细菌数量为(3.9×105~110.0×105) cells·g-1。在硝化细菌多样性相似度60%的高盐度海区硝化细菌数量对硝化速率的影响率高达87.7%,是影响硝化反应速率的主要因素。反硝化速率的决定因素是反硝化细菌数量,同时受环境中盐度、溶解氧和氨氮含量的显著影响。在该海域每天硝化作用转化的无机氮通量为4.68×105 kg,消耗的DO通量为6.07×104 mol,反硝化作用产生的氮通量约为8.19×105 kg,表明硝化作用是影响长江口海域夏初DIN形态分布和底层DO分布的主要因素之一。
     黄河口海域硝化速率的范围是(30.3~76.5)μmol·m-2·h-1,在黄河口前方海域较高,向渤海方向和山东半岛方向逐渐降低。黄河口海域反硝化速率的范围是(3.49~19.09)μmol·m-2·h-1,在黄河口的前方海域和靠近莱州湾的海域形成一高值区,从两个高值区向四周海域呈放射状减少,在向渤海延伸的一端形成最低值区。硝化和反硝化过程无显著相关性。黄河口研究海域的硝化细菌数量范围是(1.87±0.19~3.53±0.34)×104 cells·g-1(湿重),站位间差异性不显著,反硝化细菌数量范围是(1.2~11.0)×103 cells·g-1。黄河口研究海域的硝化反应速率受多个环境因子的综合影响,硝化细菌数量的影响作用最大为72.9%,反硝化速率的主要影响因子是反硝化细菌数量,两者呈显著正相关关系,研究海区内硝化作用产生的氮和氧通量分别为1.65×105kg·N·d-1和1.37×104mol·d-1,反硝化作用去除的氮通量为4.10×104kg·N·d-1。
     英国Colne河口海域冬季反硝化速率范围为(23.99±8.85~154.74±46.45)μmol·m-2·h-1,上游站位的速率值要明显高于入海口,其中耦合的反硝化作用占52.98~96.10%。夏季潜在硝化速率范围为3.33~8.89μmol·m-2·h-1,与反硝化速率及耦合的反硝化速率没有显著相关性,硝化细菌数量范围为(1.24~16.92)×106 cells·g-1,Hythe和Alresford站位的硝化细菌数量逐月递增,而Brightling站位的硝化细菌数量变化不明显,硝化细菌的种类主要属于β-和γ-Proteobacterium,其中β- Proteobacterium硝化细菌主要存在Nitrosomonas spp.和Nitrosospira spp.两属。在多样性相似度60%时,硝化细菌数量与潜在硝化反应速率呈现一定的相关性。
Human activity has increased the flux of nitrogen from land to the oceans by twofold globally over the past 40 years. The increasing loads of nitrogen have caused serious anthropogenic eutrophication which would contributes to series negative effects such as decreased water transparency, increased oxygen demand and even a threat to both human health and economy. As a critical link in nitrogen cycle, nitrification, the oxidation of ammonia to nitrate via nitrite, is thought to connect biological N fixation and anaerobic N losses. Moreover DO in the water column and the sediments can be depleted by intense nitrification, leading to the formation of hypoxic zone at continental shelves. Denitrification, the conversion of NO3﹣or NO2﹣into gaseous forms either N2O or N2, is of both fundamental and practical contribution to calculate nitrogen cycle flux, control nitrogen eutrophication and study global climate change. Thus there is considerable concern on the nitrification and denitrification process influenced by pollution, for example, global warming, contamination with recalcitrant organic compounds, and nitrogen overloading.
     Several environmental variables have been demonstrated to influence nitrification and denitrification including temperature, oxygen, ammonium, salinity and so on. Nitrification is always rate limited in most ecosystems by activities of autotrophic ammonia-oxidizing bacteria (AOB) that are responsible for the oxidation of ammonia to nitrite by the enzyme ammonia monooxygenase (amo). Recent advances in DNA-based techniques for direct whole microbial community analysis have made it possible to study AOB communities without culturing by using probes or PCR primers target amoA, a functional gene coding for the active subunit of amo. Although it’s difficult to use culcure-independent methodologies for a wide range of taxonomic groups, denitrifier quantity could be estimated by the application of MPN. However, as yet few special and systematical studies have reported on relationships ?among environmental variables, characteristic bacteria community and nitrification or denitrification process.
     The present study was explored the processes of nitrification and denitrification occurring in surface sediment at the Changjiang River, Yellow River and Colne River Estuaries. The aim is to investigate: (i) the rates of nitrification and denitrification; (ii) distributions of nitrifier and dinitrifier; (iii) the role of bacteria in and the influence of environmental factors such as temperature and salinity on the nitrification and denitrification processes; (iv) the environmental effects of nitrification and denitrification through calculating the nitrogen and oxygen flux.
     For Changjiang River Estuary, the nitrification rates ranged from 100.3μmol·m-2·h-1 to 514.3μmol·m-2·h-1 which decreased from nearshore to offshore. The denitrification rates were in the range between 101.3μmol·m-2·h-1 and 731.9μmol·m-2·h-1 and had a decreased gradient from nearshore to offshore sediment with two high value regions located at the mouth of Yangtze River and Hangzhou Bay respectively. The nitrifying bacteria were counted as (1.87-3.53)×105 cells·(gram wet weight) -1 and exhibited salt tolerance to some extent. The nitrifier quantity was a main factor to effect nitrification rates at high-salinity sea area, with an influence ratio of 87.7%, at a level of 60% biodiversity similarity. The quantities of denitrifying bacteria ranged from 3.9×105 cells·(gww)-1 to 110.0×105 cells·(gww)-1, which were significant correlated with the denitrification rate, indicated that denitrifying bacteria was the determining factor. The denitrification rate was also primarily affected by the salinity and the concentrations of DO and ammonia. Fluxes of transformed nitrogen and consumed oxygen by nitrification process were 4.68×105 kg·N and 6.07×104mol per day respectively, meanwhile the nitrogen flux by the denitrification process was calculated to be 8.19×105 kg·N·d-1, suggesting that nitrification and denitrification would be important factors for the distribution of DIN species and DO at bottom water in early summer.
     For Yellow Riever Estuary, the range of the nitrification rates was between 30.3μmol·m-2·h-1 and 76.5μmol·m-2·h-1, with higher value at the mouth of Yellow River and decreasing gradually to adjacent area of Bohai Sea and Shandong Peninsula. In addition, denitrification rates ranged from 3.49μmol·m-2·h-1 to 19.09μmol·m-2·h-1. The distribution of denitrification rates showed radial decrease from two higher-value areas at the mouth of Yellow River and adjacent sea area of the Laizhou Bay to the lower-value area at the Bohai Sea extended area. Nitrification and denitrification processes have no significant correlation. The numbers of the nitrifier ranged from (1.87±0.19)×104 cells·(gww)-1 to (3.53±0.34)×104 cells·(gww)-1, meanwhile the numbers of denitrifier were counted as (1.2-11.0)×103 cells·(gww)-1, which had no significant differences among sampling sites. Nitrification was influences by many environment factors, and the most impact factor is nitrifier quantities with influence ratio of 72.9%. The remarkable correlation coefficient indicated that denitrifier quantity was the most impact factor for denitrification. The fluxes of Nitrogen and Oxygen generated by nitrification process were 1.65×105 kg·N·d-1 and 1.37×104 mol·d-1, respectively. And the flux removed by denitrification process was 4.10×104 kg·N·d-1.
     For Colne River Estuary in UK, denitrification rate were measured between (23.99±8.85)μmol·m-2·h-1 and (154.74±46.45)μmol·m-2·h-1 in winter, with the values of upriver stations much higher than that of the river mouth. The percentages of coupled nitrification-denitrification in the total denitrification were from 52.98% to 96.10%. The range of potential nitrification rate was between 3.33μmol·m-2·h-1 and 8.89μmol·m-2·h-1 which has no significant correlation with denitrification rate or coupled nitrification-denitrification. The nitrifier quantities ranged from 1.24×106 cells·(gww)-1 to 16.92×106 cells·(gww)-1, with increasing monthly at Hythe and Alresford sites and varying unobviously at Brightlingsea site. Nitrifier populations were dominated byβ- andγ-Proteobacterium, while members of theβ-Proteobacterium were mainly belonging to the Nitrosomonas and Nitrosospira. Regression analysis showed that there was some correlation between nitrifier quantity and potential nitrificant rate at a level of 60% biodiversity similarity.
引文
Arrigo, K.R. (2005). Marine microorganisms and global nutrient cycles [J]. Nature, 437: 349-355.
    Avise, J.C., (1994). Molecular markers, natural history and evolution [M]. Chapman & Hall, New York.
    álvarez-Salgado, X.A., Gllcoto, M., (2004). Inferring nitrification rates with an inverse method in a coastal upwelling system, Ría de Vigo (NW Spain) [J]. Marine Ecology Progress Series, 276: 3-17.
    Aller, R.C., Mackin, J.E., Ullman, W.J., et al. (1985). Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter neat the mouth of the Changjiang East China [J]. Continental Shelf Research, 4: 227-251.
    Bai, J., Li, K.R., Liu, D.Y., (2007). Seasonal Variation of Inorganic Nutrient Uptake by Heterotrophic Bacterioplankton in Jiaozhou Bay, North China [J]. Water, Air, & Soil Pollution: Focus, 7(6): 673-681.
    Bedard, C., and Knowles, R. (1989). Physiology, biochemistry and specific inhibitors of CH4, NH4 and CO oxidation by methanotrophs and nitrifiers [J]. Microbiol. Rev., 53(1): 68-84.
    Bernhard, A.E., Tucker, J., Giblin, A.E., et al. (2007). Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient [J]. Environ. Microbiol., 9: 1439-1447
    Bernot, M.J., Dodds, W.K., Gandner, W.S., et al. (2003). Comparing denitrification estimates for a Texas estuary by acetylene inhibition and membrane inlet mass spectrometry [J]. Appl. Environ. Microbiol., 69: 5950-5956.
    Bianchi, M., Fosset, C., and Conan, P. (1999). Nitrification rates in the NW Mediterranean Sea [J]. Aquat. Micro. Ecol., 17:267-278.
    Bie, M.J.M de, Speksnijer, A.G.C.L., Kowalchuk, G.A., et al. (2001). Shifts in the dominant populations of ammonia-oxidizingβ-subclass Proteobacteria along the eutrophic Schelde estuary [J]. Aquat. Microb. Ecol. 23: 225-236.
    Bird, E.C.F. (1995). Present and future sea level: the effects of predicted global changes [M]. In: Climate Change: Impact on Coastal Habitation. Eisma D. (Ed.). Boca Raton, FL, Lewis Publishers, pp: 29-56.
    Blackburn, T.H., and Blackburn, N.D. (1992). Model of nitrification and denitrification in marine sediments [J]. FEMS Microbiol. Lett., 100: 517-522.
    Blackburn, T.H. (1993). Turnover of 15NH4﹢tracer in sediments [M]. In: Handbook of methods in aquatic microbial ecology. Kemp P.F., Sherr B.F., Sherr E.B., et al., (Eds.). Lewis, USA, pp:643-648.
    Blackburn, T.H., Blackburn, N.D., Jensen, K., et al. (1994). Simulation model of the coupling between nitrification and denitrification in a freshwater sediment [J]. Appl. Environ. Microbiol., 45: 444-450.
    Boatman, C.D., Murray, J.W. (1984). Modeling exchangeable NH4﹢adsorption in marine sediments: process and controls of adsorption [J]. Limnology and Oceanography, 27: 99-110
    Bollmann, A., Schmidt, I., Saunders, A.M., et al. (2005). Influence of starvation on potential ammonia-oxidizing activity and amoA mRNA levels of Nitrosospira briensis [J]. Appl. Environ. Microbiol., 71(3), 1276-1282.
    Bollmann, A. & Laanbroek, H.J. (2002). Influence of oxygen partial pressure and salinity on the community composition of ammonia-oxidizing bacteria in the Schelde estuary [J]. Aquat. Microbiol. Ecol., 28: 239-247.
    Borsa, P., Blanquer, A., Berribi, P., (1997). Genetic structure of the flounders Platichthys flesus and P. stellatus at different geographical scales [J]. Mar. Biol., 129: 233-246.
    Boon, P.I., Moriarty, D.J.W., and Saflinga, P.G. (1986). Rates of ammonium turnover and the role of amino-acid deamination in seagrass (Zostera capricorni) beds of Moreton Bay [J]. Australia. Mar. Biol., 91: 269-275.
    Boyd, P.W., and Doney, S.C. (2003). The impact of climate change and feedback processes on the ocean carbon cycle [M]. In: Ocean biogeochemistry: the role of the ocean carbon cycle in global change. Fasham M.J.R. (Ed.). The IGBP series. New York, Springer, pp: 157-195.
    Boyle-Yarwood, S.A., Bottomley, P.J., Myrold, D.D., (2008). Community composition of ammonia-oxidizing bacteria and archaea in soils under stands of red alder and Douglas fir in Oregon [J]. Environmental Microbiology, doi:10.1111/j.1462-2920.2008.01600.x.
    Brandes, J.A., and Devol, A.H. (2002). A global marine fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling [J]. Global Biogeochem. Cy., 16, 1120, doi:10.1029/2001GB001856.
    Brandes, J.A., Devol, A.H., and Deutsch, C. (2007). New developments in the marine nitrogen cycle [J]. Chem. Rev., 107: 577-589.
    Casserly, C., Erijman, L. (2003). Molecular monitoring of microbial diversity in an UASB reactor [J]. International Biodeterioration & Biodegration, 52(1):7-12.
    Bruce, K.D., Hiorns, W.D., Hobman, J.L., et al (1992). Amplification of DNA from native populations of soil bacteria by using the polymerase chain reaction [J]. Appl. Environ. Microbiol., 58: 3413-3416.
    Chang, B.X., Devol, A.H., Chridtensen, J.P. (2006). Spring and summer denitrification rates in theshelf and slope sediments of the western Arctic [A]. Ecos Trans, AGU, 87(36), Ocean Sci. Meet. Suppl., Abstract OS44M-05.
    Chen, C-C, Gong, G-C, Shiah, F-K, (2007). Hypoxia in the east China sea: One of the largest coastal low-oxygen areas in the world [J]. Mar. Environ. Res., 64: 399-408.
    Chesterikoff, A., Garban, B., Billen, G., et al. (1992). Inorganic nitrogen dynamics in the River Seine downstream from Paris (France) [J]. Biogeochemistry, 17:147-164.
    Clark K.R., Gorley R.N., 2006. PRIMER v6: user Manual/Tutorial [M]. PRIMER-E, Plymouth. Coci, M., Riechmann, D., Bodelier, P.L.E., et al. (2005). Effect of salinity on temporal and spatial dynamics of ammonia-oxidizing bacteria from intertidal freshwater sediment [J]. FEMS microbial. Ecol., 53: 359-368.
    Codispoti, L.A., Brandes, J.A., Christensen, J.P., et al. (2001). The oceanic fixed nitrogen and nitrous oxide budgets: moving targets as we enter the anthropocene? [J]. Scientia Marina, 65 (Supp. 2): 85-105.
    Cotner, J.B., Ammerman, J.W., Peele, E.R., et al. (1997).Phosphorus-limited bacterioplankton growth in the Sargasso Sea [J]. Aquat. Microb. Ecol., 18: 105-115.
    Coutant, C.C. (1990). Temperature-oxygen habitat for freshwater and coastal striped bass in a changing climate [J]. Transactions of the American Fisheries Society, 119: 240-253.
    Daims, H., Ramsing N.B., Schleifer, K.-H., et al. (2001). Cultivation-independence, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescence in situ hybridization [J]. Appl. Environ. Microbiol., 67: 5810-5818.
    Das, S., Lyla, P.S., and Khan, S.A. (2006). Marine microbial diversity and ecology: importance and future perspectives [J]. Current Science, 90: 1325-1335.
    Davidson, E.A., and Seizinger, S. (2006). The enigma of progress in denitrification research [J]. Ecological Applications, 16: 2057-2063.
    De Boer, W., Laanbroek, H.J. (1989). Ureolytic nitrification at low pH by Nitrosospira spec [J]. Arch. Microbiol., 152: 935-941.
    Delmas, R.J., Ascencio, J.M., and Legrand, M. (1980). Polar ice evidence that atmospheric CO2 20000 yr BP was 50% of present [J]. Nature, 284: 155-157.
    Deutsch, C., Sarmiento, J., Sigman, D.M., et al. (2007). Spatial coupling of nitrogen inputs and losses in the ocean [J]. Nature, 445: 163-167.
    Devol, A.H., Uhlenhopp, A.G., Naqvi, S.W., et al. (2006). Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone [J]. Deep-Sea Res. I, 53: 1533-1547.
    Dong L.F., Thornton, D.C.O., Nedwell D.B., et al. (2000). Denitrification in sediments of theRiver Colne estuary, England [J]. Mar. Ecol.Prog. Ser., 203: 109-122.
    Dong L.F. and Nedwell D.B., (2006). Sources of nitrogen used for denitrification and nitrous oxide formation in sediments of the hypernutrified Colne, the nitrified Humber, and the oligotrophic Conwy estuaries, United Kingdom [J]. Limnol. Oceanogr., 51 (1, part2), 545-557.
    Donner, G., Schwarz, K., Hoppe, H-G., et al. (1996). Profiling the succession of bacterial populations in pelagic chemoclines [J]. Arch. Hydrobiol. Spec. Issues Advanc. Limnol., 48: 7-14.
    Duffy, J.E., Cardinale, B.J., France, K.E., et al. (2007). The functional role of biodiversity in ecosystems: incorporating trophic complexity [J]. Ecology Letters, 10: 522-538.
    Dugdale, R.C., Menzel, D.W., Ryther, J.H. (1961). Nitrogen fixation in the Sargasso Sea [J]. Deep-Sea Research, 7: 297-300.
    Dumont, M.C., and Murrell J.C. (2005). Stable isotope probing– linking microbial identity to function [J]. Nature reviews, 499(3): 499-504.
    Edwards, U., Rogall, T., Bl?cker, H., et al. (1989). Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA [J]. Nucleic Acids Research, 17(19):7843-7853.
    Eriksson, P.G., Svensson, J.M., Carrer, G.M. (2003). Temporal change and spatial variation of soil oxygen consumption, nitrification and denitrification rates in a tidal marsh of the Lagoon of Venise, Italy [J]. Estuarine, Coastal and Shelf Science, 58: 861-871.
    Eyer, B.D., Rysgaard, S., Dalsgaard, T., et al. (2002). Comparison of isotope pairing and N2/Ar methods for measuring sediment denitrification: assumptions, modifications, and implications [J]. Estuaries, 25: 1077-1087.
    Féral, J.P. (2002). How useful are the genetic markers in attempts to understand and manage marine biodiversity [J]? Journal of experimental marine biology and ecology, 268:121-145.
    Farias, L., and Cornejo, M. (2007). Effect of seasonal changes in bottom water oxygenation on sediment N oxides and N2O cycling in the coastal upwelling regime off central Chile (36.5°S) [J]. Oceanography, 75: 561-575.
    Fear, J.M., Thompson, S.P., Gallo, T.E., et al. (2007). Denitrification rates measured along a salinity gradient in the eutrophic Neuse River Estuary, North Carolina, USA [J]. Estuaries and Coasts, 28(4): 608-619. Flather, D.H., and Beauchamp, E.G. (1992). Inhibition of the fermentation process in soil by acetylene [J]. Soil Biology and Biochemistry 24: 905-911. Field, S. (2004). Global nitrogen: cycling out of control [J]. Environmental health perspectives,112 (10): A556-A563.
    Francis, C.A., Roberts, K.J., Beman, J.M., et al. (2005). Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean [J]. PNAS, 102, 14683-14688.
    Freitag, T.E., Chang, L., and Prosser, J.I. (2006). Changes in the community structure and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient [J]. Environ. Microbiol., 8, 684-696.
    Fuhrman, J.A., Hewson, I., Schwalbach, M.S., et al. (2006). Annually reoccurring bacterial communities are predictable from ocean conditions [J]. PNAS, 103: 13104-13109.
    Galloway, J.N., Aber, J.D., Erithman, J.W., et al. (2003). The nitrogen cascade [J]. Bioscience 53, 341-356.
    Galloway, J.N., Dentener, F.J., Capone, D.G., et al. (2004). Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 70: 153-226.
    Galloway, J.N., Schlesinger, W.H., Levyll, H., et al. (1995). Nitrogen fixation: atmospheric enhancement-environmental response [J]. Global Biogeochemical Cycles, 9: 235-252.
    Groffman, P.M., Altabet, M., B?hlke, J.K., et al. (2006). Methods for measuring denitrification: diverse approaches to a difficult problem [J]. Ecological Application, 16(6): 2091-2122.
    Gruber, N., and Galloway, J.N. (2008). An Earth-system perspective of the global nitrogen cycle [J]. Nature 451(1): 293-296.
    Gruber, N. (2004). In: Carbon Climate Interactions [M]. Oguz T., and Follows M. (Eds.) Kluwer Academic, Dordercht, pp: 97-148.
    Gruber, N., and Sarmiento, J.L. (1997). Global patterns of marine nitrogen fixation and denitrification [J]. Global Biogeochem. Cy., 11: 235-266.
    Gruber, N., and Sarmiento, J.L. (2002). Biogeochemical/physical interactions in elemental cycles [M]. In: The sea: biological-physical interactions in the oceans Vol.12. Robinson A.R., McCarthy J.J., and Rothschild B.J. (Eds.). John Wiley and Sons, New York, pp: 337-399.
    H?der, D.P., Kumar, H.D., Smith, R.C., et al. (2003). Aquatic ecosystems: effects of solar ultraviolet radiation and interactions with other climatic change factors [J]. Photochemistry and Photobiology Sciences, 2: 39-50.
    Haller, C.M., R?lleke, S., Vybiral, D., et al. (1999). Investigation of 0.2μm filterable bacteria from the Western Mediterranean Sea using a molecular approach: dominance of potential starvation forms [J]. FEMS Microbiology Ecology, 31(2):153-161.
    Hallin, S., Braker, G., and Philippot, L. (2006). Molecular tools to assess the diversity and density of denitrifying bacteria in their habitats [M]. In: Biology of the Nitrogen Cycle. Bothe.H.,Ferguson, S.J. and Newton, W.E., (Eds). Elsevier, Netherlands, pp: 313-331.
    Hansen, J.I. (1980). Potential nitrification in marine sediments [D]. MSc thesis, University of Aarhus, Denmark.
    Hansen, J.I., Henriksen, K., and Blackburn, T.H. (1981). Seasonal distribution of nitrifying bacteria and rates of nitrification in coastal marine sediments [J]. Microb. Ecol., 7: 297-304.
    Hansen, L.S., and Blackburn, T.H. (1992). Effect of algal bloom deposition on sediment respiration rates and fluxes [J]. Marine biology, 112: 147-152.
    Hebbein, D., and Paul, A. (2007). Marine biogeochemistry cycles and ecosystems and their interactions with climate [J/OL]. International Journal of Earth Sciences, Doi: 10.1007 /s00531-007-0230-y. http://www.springerlink.com/content/l530125710817388.
    Heid,C.A., Overbergh, L., Valekx, D., et al. (1996). Real-time quantitative PCR [J]. Genome. Res., 6(10):986-994.
    Henriksen, K., and Kemp, W.M. (1988). Nitrification in estuarine and coastal marine sediments [M]. In: Nitrogen Cycling in Coastal Marine Environments. Blankburn T.H., and Scrensen J., (Eds). John Wiley and Sons, New York, pp: 207-249.
    Herbert, R.A. (1999). Nitrogen cycling in coastal marine ecosystems [J]. FEMS Microbiology Reviews, 23: 563-590.
    Herbert, R.A., and Nedwell, D.B. (1990). Role of environmental factors in regulating nitrate respiration in intertidal sediments [M]. In: Denitrification in Soil and Sediment. Revsbech N.P., and Sorensen J., (Eds.). Plenum Press, New York, pp. 77-90.
    Hobbie, J.E., Daley, R.J., and Jones, G.E., (1977). Use of Nuclepore filters for counting bacteria by florescence microscopy [J]. Appl. Environ. Microbiol., 33: 1225-1228.
    Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world’s coral reefs [J]. Marine and Freshwater Research, 50: 839-866.
    Holben, W.E., Feris, K.P., Kettunen, A., et al. (2004). GC fractionation enhances microbial community diversity assessment and detection of minority populations of bacteria by denaturing gradient gel electrophoresis [J]. Appl. Environ. Microbiol., 70:2263-2270.
    Hollibaugh, J.T., (1994). Relationship between thymidine metabolism badteriaplankton community metabolic capabilities and sources of organic matter used for growth [J]. Microb. Ecol., 28: 117-131.
    Holmes, A., Costello, A., Lidstrom, M.E., et al. (1995). Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related [J]. FEMS Microbiology Letters, 132:203-208.
    Horz, H-P, Rotthauwe, J-H, Lukow, T., et al. (2000). Identification of major subgroups ofammonia-oxidizing bacteria in environmental samples by T-RFLP analysis of amoA PCR products [J]. Journal of Microbiological Methods, 39(3): 197-204.
    Hou, L.J., Liu, M., Xu, S.Y., et al. (2007). The effect of semi-lunar spring and neap tidal change on nitrification, denitrification and N2O vertical distribution in the intertidal sediments of the Yangtze estuary, China [J]. Estua. Coast. Shelf Sci., 73: 607-616.
    Howarth, A. (1991). Comparative responses of aquatic ecosystems to toxic chemical stress [M]. In: Comparative analysis of ecosystems: patterns, mechanisms, and theories. Cole J.J., Findlay S., and Lovett G. (Ed.). Springer-Verlag, New York, USA, pp: 161-195.
    Howarth, R. W., Billen, G., Swaney, D., et al. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean-Natural and human influences [J]. Biogeochemistry, 35: 75-79;
    Hulth, S., Aller, R.C., Canfield, D.E., et al. (2004). Nitrogen removal in marine environments: recent findings and future research challenges [J]. Mar. Chem., 94: 125-145.
    IMBER (2005). Science Plan and Implementation Strategy [C]. IGBP Report No. 52, IGBP Secretariat, Stockholm. 76pp.
    Intergovernmental Panel on Climate Change (2007). In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [C]. Solomon S. et al. (Eds.). Cambridge University Press, Cambridge, UK, pp: 1-18.
    Jenkins, M.C., and Kemp, W.M. (1984). The coupling of nitrification and denitrification in two estuarine sediments [J]. Limnology and Oceanography, 29: 609-619.
    Jorgensen, K.S., and Sorensen, J. (1988). Two annual maxima of nitrate reduction and denitrification in estuarine sediment (Norsminde Fjord, Denmark) [J]. Mar. Ecol. Prog. Ser., 94: 267-274.
    Justié, D., Rabalais, N.N., and Turner, R.E. (1996). Effects of climate change on hypoxia in coastal waters: A doubled CO2 scenario for the northern Gulf of Mexico [J]. Limnology and Oceanography, 41: 992-1003.
    Kaplan, W.A., Teal, J.M., and Valiela, I. (1997). Denitrification in saltmarsh sediments: evidence foe seasonal temperature selection among populations of denitrifiers [J]. Microb. Ecol., 3: 193-224.
    Kemp, W.M., Wetzel, R.L., Boynton, W.R., et al. (1982). Nitrification cycling in estuarine interfaces [M]. In: Estuarine Comparisons. Kennedy, V.S. (Ed.). pp: 209-230. Academic Press, New York.
    Khalil, M.A.K., and Rasmussen, R.A. (1992). The global sources of nitrous oxide [J]. J. Geohpys.Res., 97: 14651-14660.
    Kim, D.H., Matsuda, O., and Yamamoto, T. (1997). Nitrification, denitrification and nitrate reduction rates in the sediment of Hiroshima Bay, Japan [J]. Journal of Oceanography, 53: 317-324.
    Kjellin, J., Hallin, S., W?rman, A., 2007. Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure [E]. Water Res. doi:10.1016/j.watres.2007.06.053.
    Knowles, R. (1990). Acetylene inhibition technique: development, advantages and potential problems [M]. In: Denitrification in Soil and Sediment. Revsbech, N.P. and Sorensen, J. (Eds.). pp: 151-166. Plenum, New York.
    Kowalchuk, G.A., Stephen, J.R., Boer, W.D., et al. (1997). Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl. Environ. Microbiol., 63(4): 1489-1497.
    Kowalchuk, G.A., Stienstra, A.W., Heilig, G.H.J., et al. (2000). Molecular analysis of ammnia-oxidising bacteria in soil of successional grasslands of the Drentsche A (The Netherlands) [J]. FEMS Microbiology Ecology, 31: 207-215.
    Kristensen, E. (1985). Oxygen and inorganic nitrogen exchange in a Nereis virens (polychaeta) bioturbated sediment-water system [J]. J. Coast. Res. 1, 109-116.
    Laima, M.J.C. (1993). Recovery of 15NH4﹢in labeling experiments on coastal marine sediments [J]. Mar. Chem., 44:31-42.
    LaPara T.M., Ghosh, S. (2006). Population dynamics of the ammonia-oxidizing bacteria in full-scale municipal wastewater treatment facility [J]. Environmental Engineering Science, 23(2): 309-319.
    LaRoche, J., and Harrison, W.G. (1987). Compartmental models of nitrogen cycling in tropical and temperate marine environments [J]. Mar. Ecol. Prog. Ser., 38: 137-149.
    Li, M.T., Xu, K.Q., Watanabe, M., et al. (2007). Long-term variations in dissolved silicate, nitrogen, and phosphorus flux from the Yangtze River into the East China Sea and impacts on estuarine ecosystem [J]. Estuar. Coast. Shelf. S. 71: 3-12.
    Lu, Y., Lueders, T., Friedrich, M.W., et al. (2005). Detecting active methanogenic populations on rice roots using stable isotope probing [J]. Environ. Microbiol., 7(3): 326-336.
    Magalh?es, C.M., Joye, S.B., Moreira, R.M., et al. (2005). Effect of salinity an inorganic nitrogen concentration on nitrification and denitrification rates in intertidal sediments and rocky biofilms of the Douro River estuary, Portugal [J]. Water Res., 39: 1783-1794.
    Marsho, T.V., Brezonik, P.L., Putnam, H.D., et al. (1975). Nitrogen fixation in the Rhode River estuary of Chesapeake Bay [J]. Can. J. Microbiol., 21: 1348-1356.
    McKew, B.A., Coulon, F., Yakimov, M.M., et al. (2007). Efficacy of intervention strategies for bioremediation of crude oil in marine systems and effects on indigenous hydrocarbonoclastic bacteria [J]. Environ. Microbial., 9: 1562-1571.
    McKew, B.A., Smith, C.J. (2009). Real-time PCR approaches for analysis of hydrocarbon-degrading bacterial communities [M]. In: Microbiology of Hydrocarbons, Oils, Lipids. Timmis, K.N. (Ed.). Springer-Verlag, Heidelberg, (in press).
    Middleburg, J.J., Soetaert, K., Herman, P.M.J. (1996). Evaluation of the nitrogen isotope-pairing method for measuring benthic denitrification: a simulation analysis [J]. Limnol. Oceanogr., 41: 1839-1844.
    Miller, D.N., Bryant, J.E., Madsen, E.L., et al (1999). Evaluation and optimization of DNA extraction and purification procedures for soil and sediment samples [J]. Appl. Environ. Microbiol., 65(11):4715-4724.
    Mou, X.Z., Moran, M.A., Stepanauska, R., et al. (2005). Flow-cytometric cell sorting and subsequent molecular analyses for culture-independent identification of bacterioplankton involved in dimethylsulfoniopronate transformations [J]. Appl. Environ. Microbiol. 71: 1405-1416.
    Mosier, A.R. (1980). Acetylene inhibition of ammonium oxidation in soil [J]. Soil Biology and Biochemistry, 12:443-444.
    Murray, A.E., Preston, C.M., Massana, R., et al. (1998). Seasonal and spatial variability of bacteria and archeal assemblages in the coastal waters neat Anvers Island, Antarctica [J]. Appl. Environ, Microbiol. 64: 2585-2595.
    Murray, A.E., Hollibaugh, J.T. and Orrego C. (1996). Phylogenetic compositions of bacterioplankton from two California estuaries compared by denaturing gradient electrophoresis of 16S rDNA fragments [J]. Appl. Environ. Microbiol., 62: 2676-2680.
    Muyzer, G., De Waal, E.C., Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA [J]. Appl. Environ. Microbial., 59(3): 695-700.
    Nakamura Y, Satoh H, Kindaichi T, et al. (2006). Community structure, abundance, and in situ activity of nitrifying bacteria in river sediments as determined by the combined use of molecular techniques and microelectrodes [J]. Environ Sci Technol, 40: 1532-1539.
    Naqvi, S., Jayakumar, D., Narvekar, P., et al. (2000). Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf [J]. Nature 408: 346-349.
    Nicolaisen, M.H., and Ramsing, N.B., (2002). Denaturing gradient gel electrophoresis (DGGE) approaches to study the diversity of ammonia-oxidizing bacteria [J]. J. Microbiol. Methods, 50: 189-203.
    Nielsen, L.P. (1992). Denitrification in sediment determined from nitrogen isotope pairing [J] FEMS Microbiol. Ecol. 86: 357-362.
    Nielsen, L.P., and Glud, R.N. (1996). Denitrification in coastal sediment measured in situ by the nitrogen isotope pairing technique applied to a benthic flux chamber [J]. Mar. Ecol. Prog. Ser., 137: 181-186.
    Nixon, S.W. (1981). Remineralization and nutrient cycling in coastal marine ecosystems [M]. In: Estuaries and Nutrients. Nielson B.J., and Cromin L.E. (Eds.). Humana Press, New Jersey, pp: 111-138.
    Nixon S. W., Ammerman J. W., Atkinson L. P., et al. (1996). The fate of nitrogen and phosphorous at the land-sea margin of the Atlantic Ocean [J]. Biogeochemistry, 35: 141-180.
    NRC [National Research Council Committee on Wastewater Management for Coastal Urban Areas, Water Science and Technology Board] 1993. Managing wastewater in coastal urban areas. National Research Council, Washington, D.C., USA.
    Ogilvie, B., Nedwell,D.B., Harrison, R.M., et al. (1997). High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the River Colne estuary [J]. Mar. Ecol. Prog. Ser., 150: 217-228
    Okano, Y., Hristova, K.R., Leutenegger, C.M., et al. (2004). Application of real-time PCR to study effects of ammonium on population size of ammonia-oxidizing bacteria in soil [J]. Appl. Environ. Microbiol., 70(2):1008-1016.
    O’Mullan, G.D., and Ward, B.B. (2005). Relationship of temporal and spatial variabilities of ammonia-oxidizing bacteria to nitrification rates in Monterey Bay, Califonia [J]. Appl. Environ. Microb., 71: 697-705.
    Pai, S.C., Tsau, Y.J., Yang T.I. (2004). pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method [J]. Analytica Chimica Acta, 434(2): 209-216.
    Peter, C.P. (2006). A quantitative measure of nitrifying bacterial growth [J]. Water Research, 40: 1569-576.
    Pomeroy. L.R. (1974). The ocean’s food web, a changing paradigm [J]. Bioscience, 24: 499-504.
    Powell, S.M., Bowman, J.P., Snape, I., et al. (2003). Microbial community variation in pristine and polluted nearshore Antarctic sediments [J]. FEMS Microb. Ecol., 45: 135-145.
    Powell, S,M., Snape, I., Bowman, J.P., et al. (2005). A comparison of the short term effects of diesel fuel and lubricant oils on the Antarctic benthic microbial communities [J]. J. Exp. Mar.Biol. Ecol., 322: 53-65.
    Prasad, R., and Power, J.F. (1995). Nitrification inhibitor for agriculture, health and the environment [J].Adv. in Agron., 54:233-281.
    Ramos, B.J., Biswas, H., Schulz, K.G., et al. (2007). Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmiun [J]. Global Biogeochem. Cycles 21, doi:10.1029/2006GB 002898.
    Reigstad, L.J., Richter, A., Daims, H., et al. (2008). Nitrification in terrestrial hot spring of Iceland and Kamchatka [J]. FEMS Microbiol. Ecol., 64:167–174.
    Rittmann B E, McCarty P L. Environmental Biotechnology: Principles and Applications [M]. New York: McGraw-Hill Book Co, 2001. 408.
    Roberts, K., Granum, E., Leegood, R.C., et al. (2007). C3 and C4 Pathways of Photosynthetic Carbon Assimilation in Marine Diatoms Are under Genetic, Not Environmental, Control [J]. Plant Physiology, 145:230-235.
    Robinson, A.D., Nedwell, D.B., Harrison, R.M., et al. (1998). Hypernutrified estuaries as a sourses of N2O emission to the atmosphere: the estuary of the River Colne, Essex, UK [J]. Mar. Ecol. Prog. Ser., 164: 59-71.
    Rodhe, H. (1990). A comparison of the contribution of various gases to the greenhouse effect [J]. Science, 248: 1217-1219.
    Rotthauwe, J.H., Witzel, K.P., Liesack, W., (1997). The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of national ammonia-oxidizing population [J]. Appl. Environ. Microbiol., 63: 4704–4712.
    Rysgaard, S., Risgaard-Petersen, N., Nielsen, L.P., et al. (1993). Nitrification and denitrification in lake estuarine sediments measured by the 15N dilution technique and isotope pairing [J]. Appl. Environ. Microbiol., 59(7): 2093-2098.
    Sahan, E., Muyzer, G., 2008. Diversity and spatio-temporal distribution of ammonia-oxidizing archaea and bacteria in sediments of the Westerschelde estuary. FEMS Microbiol. Ecol., 64: 175–186.
    Sambrook, J., Frestch, E.F., Maniatis, T., (1989). Molecular cloning: a laboratory manual [M], 2nd Edn. Cold spring Harbor Laboratory Press, Cold spring Harbor, New York.
    Sarmiento, J.L., and Gruber, N. (2002). Anthropogenic carbon sinks [J]. Physics Today, 55: 30-36.
    Sanguin, H., Kroneisen, L., Gazengel, K., et al. (2008). Development of a 16S rRNA microarray approach for the monitoring of rhizosphere Pseudomonas populations associated with the decline of take-all disease of wheat [J]. Soil Biology and Biochemistry, 40(5):1028-1039.
    Sch?fer, H., Abbas, B., Witte, H., et al. (2001). Microbial community dynamics in Mediterraneannutrient-enriched seawater mesocosms: changes in the genetic diversity of bacteria populations [J]. FEMS Microbiol. Ecol., 34: 243-253.
    Seitzinger, S.P., Kroeze, C., Bouwman, A.F., et al. (2007). Global patterns of dissolved inorganic and particulate nitrogen inputs to coastal systems: Recent conditions and future projections [J]. Estuaries and Coasts, 25(4): 1559–2723.
    Seitzinger, S.P., Nielsen, L.P., Caffrey, J., et al. (1993). Denitrification measurements in aquatic sediments: a comparison of three methods [J]. Biogeochemistry, 23: 147-167.
    Sherry, L.D., Hyun, J.H., Smith, A.C., et al. (2005). Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediment [J]. Appl. Environ. Microbiol., 71: 240-246.
    Shen, J-P, Zhang, L-M, Zhu, Y-G, et al. (2008). Abundance and composition of ammonia-oxidizing archaea communities of an alkaline sandy loam [J]. Environ. Microbiol., 10(6), 1601-1611.
    Silvennoinen, H., Hietanen, S., Liikanen, A., et al. (2007). Denitrification in the river estuaries of the northern Baltic Sea [J]. A Journal of the Human Environment, 36(2): 134-140.
    Slater, J.M., and Capone, D.G. (1989). Nitrate requirement for acetylene inhibition of nitrous oxide reduction in marine sediments [J]. Microbial Ecology, 17: 143-157.
    Sloth, N.P., Nielsen, L.P., Blankburn, T.H. (1992). Nitrification in sediment cores measured with acetylene inhibition [J]. Limnol. Oceanogr. 37(5): 1108-1112.
    Smith, C.J., Nedwell D.B., Dong, L.F., et al. (2007). Diversity and abundance of nitrate reductase genes (narG and napA) nitrite reductase genes (nirS and nrfA), and their transcripts in estuarine sediments [J]. Appl. Environ. Microbiol., 73: 3612-3622.
    Smith, D.C., AZAM Farooq, (1996). A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine [J]. Marine Microbial Food Webs, 6(2): 107-114
    Smith, L.K., Voytek, M.A., B?hlke, J.K. et al. (2006). Denitrification in nitrate-rich streams: application of N2: Ar and 15N-tracer methods in intact cores [J]. Ecological Applications, 16(6): 2191-2207.
    Smith, S.V. (1984). Phosphorus versus nitrogen limitation in the marine environment [J]. Limnol. Oceanogr., 29: 1149-1160.
    Stephen, J.R., McCaig, A.E., Smith, Z., et al. (1996). Molecular Diversity of soil and marine 16S rRNA gene sequences related toβ-subgroup ammonia-oxidizing bacteria [J]. Appl. Environ. Microbiol., 62: 4147-4154.
    Strous, M., Fuerst, J.A., Kramer, E.H., et al. (1999). Missing lithotroph identified as new planctomycete [J]. Nature 400, 446–449.
    S?derlund, R., and Rosswall, T. (1982). The nitrogen cycles [M]. In: The Handbook of Environmental Chemistry Vol.1 Part B. Hutzinger, O. (Ed.). Springer-Verlag, Berlin, Heidelberg, New York, pp: 61-81.
    Song, J-Y., Nakayama, K., Murakami, Y., et al. (2008). Does heavy oil pollution induce bacteria diseases in Janpanese flounder Paralichthys olivaceus [J]? Marine Pollution Bulletin, 57(6-12): 889-894.
    Tamegai, H., Aoki, R., Arakawa, S., (2006). Molecular analysis of the nitrogen cycle in deep-sea microorganisms from the Nankai Trough: genes for nitrification and denitrification from deep-sea environmental DNA [J]. Extremophiles, 11(2): 269-275.
    Tamura, K., Dudley, J., Nei, M., et al. (2007). MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol., 24:1596-1599.
    Teske, A., Wawer, C., Muyzer, G., et al. (1996). Distribution of sulfate-reducing bacteria in a stratified Fjord (Mariager Fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments [J]. Appl. Environ. Microbiol., 62: 1405-1415.
    Thompson, S.P., Paeri, H.W., Go, M.C., (1995). Seasonal patterns of nitrification and denitrification in a natural and a restored salt marsh [J]. Estuaries, 18(2): 399-408.
    Tobias, C.R., Anderson, I.C., Canuel, E. A., et al. (2001). Nitrogen cycling through a fringing marsh-aquifer ecotone [J]. Mar. Ecol. Prog. Ser. 210: 25-39.
    Trimmer, M., Risgaard-Petersen, N., Nicholls, J.C., et al. (2006). Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores [J]. Mar. Ecol. Prog. Ser., 326: 37-47.
    Tsai, Y.L., Olson, B.H., (1992). Rapid method for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction [J]. Appl. Environ. Mivrobiol., 58(7): 2292-2295.
    Urakawa, H., Tajiman, Y., Numata, Y., et al. (2008). Low temperature decreases the phylogenetic diversity of ammonia-oxidizing archaea and bacteria in aquatium biofiltration system [J]. Appl. Environ. Microbiol., 74(3): 894-900.
    VanMooy, B.A.S., Keil, R.G., Devol, A.H., (2002). Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via dentirification [J]. Geochimica et Cosmochimica Acta, 66: 457-465.
    Vitousek, P.M., Aber, J.G., Howarth, R.W., et al. (1997). Human alteration of the global nitrogen cycle: sources and consequences [J]. Ecol. Appl., 7(3): 737-750.
    Vives-Rego, J., Lebaron, P., and Caron, G.N., (2005). Corrent and future applications of flowcytometry in aquatic microbiology [J]. FEMS Microbiol. Rev., 24:429-448.
    Vogeler, I., Vachey, A., Deurer, M., et al. (2008). Impact of plants on the microbial activity in soils with high and low levels of copper [J]. European Journal of Soil Biology, 44(1): 92-100.
    Ward, B.B., and Carlucci, A.F., (1985). Marine ammonia- and nitrite-oxidizing bacteria: serological diversity determined by immunofluorescence in culture and in the environment [J]. Appl. Enviton. Microbiol., 50: 194-201.
    Ward, B.B. (1996). Nitrification and denitrification: probing the nitrogen cycle in aquatic environments [J]. Microb. Ecol., 32: 247-261.
    Ward, B.B. (2005). Molecular approaches to marine microbial ecology and marine nitrogen cycle [J]. Annu. Rev. Earth Pl. Sc., 33: 301-333.
    Webster, G., Embley, T.M., and Prosser, J.I., (2002). Grassland management regimens reduce small-scale heterogeneity and species diversity ofβ-Proteobacterial ammonia oxidizer populations [J]. Appl. Environ. Microbiol., 68(1): 20-30.
    Whiteley, A.S., Manefield M., Turner, S.L., et al. (2005). Lessons from the genomes: microbial ecology and genomics [M]. In: Molecular Microbial Ecology. Osborn, A.M., and Smith C.J. (Eds.). Abingdon, Taylor & Francis Group, pp: 241-254.
    Willianms, P.J.B. (2000). Heterotrophic bacteria and the dynamics of dissolved organic material [M]. In: Microbial Ecology of the Oceans. Kirchman, D.L. (Ed.). New York, Wiley-Liss Inc., pp: 153-200.
    Wuchter, C., Abbas, B.A., Coolen, M.J.L., et al. (2006). Archaeal nitrification in the ocean [J]. PNAS, 103: 12317-12322.
    Xia, X.H., Yang, Z.F., Huang, G.H., et al. (2004). Nitrification in natural waters with high suspended-solid content-A study for the Yellow River [J]. Chemosphere, 57: 1017-1029.
    Yoshikawa, C., Yamanaka, Y., and Nakatsuka, T. (2005). An ecosystem model including nitrogen isotopes: perspectives on a study of the marine nitrogen cycle [J]. Journal of Oceanography, 61: 921-942.
    Zehr, J.P., Montoya, J.P., Jenkins, B.D., et al. (2007). Experiments linking nitrogenase gene expression to nitrogen fixation in the North Pacific subtropical gyre [J]. Limnol. Oceanogr., 52: 169-183.
    Zhang, Y.X., Negishi, J.N., Richardson, J.S., et al. (2003). Impact of marine-derived nutrients on stream ecosystem functioning [M]. Proc. R. Soc. Lond. B: 2127-2123.
    Zobell, C.E. (1946). Marine Microbiology [M]. Chronica Botanica Co, Waltham, Mass., USA.
    白洁,李岿然,张昊飞,等,(2005)。胶州湾异养浮游细菌对磷的吸收作用及影像因素研究[J]。中国海洋大学学报,35(5):835-838。
    白洁,王晓东,李佳霖,等,(2007)。北黄海沉积物——水界面反硝化速率及影响因素研究[J]。中国海洋大学学报,37(4):653-656。
    毕玲玲,(2006)。胶州湾悬浮物组成特征及对营养盐的吸附解吸作用研究[D]:[硕士学位论文]。青岛:中国海洋大学。
    陈满荣,俞立中,许世远,等,(2003)。长江口潮滩沉积物中PCBs及其空间分布[J].海洋环境科学,22(5):20-23。
    冯士笮,李凤歧,李少菁,(1999)。海洋科学导论[M],北京,高等教育出版社,133-142。
    李道季,张经,黄大吉,等,(2002)。长江口外氧的亏损[J]。中国科学(D辑),32:686-694。
    刘敏,(2007)。应用PCR-DGGE技术分析长江口低氧区和黄海冷水团的细菌群落组成[D]:[硕士学位论文]。青岛:中国科学院研究生院。
    刘敏,侯立军,许世远,等,(2005)。长江口潮滩表层沉积物对NH4﹢-N的吸附特征[J]。海洋科学,27(9):60-66。
    刘学瑞,(2003)。海底及污染环境中微生物群落分子多样性研究[D]:[博士学位论文]。长沙:湖南农业大学。
    吕晓霞,翟世奎,于增慧,(2005)。长江口及邻近海域表层沉积物中营养元素的分布特征及控制因素[J]。海洋环境科学,24:1-5。
    马绍赛,辛福言,(2004)。黄河和小清河主要污染物入海量的估算[J]。海洋水产研究,25:47-51。
    马文漪,杨柳燕,顾宗濂,等,(1998)。环境微生物工程[M]。南京:南京大学出版社,92-93,180-186。
    孟春霞,邓春梅,姚鹏,等,(2005)。小清河口及邻近海域的溶解氧[J]。海洋环境科学,24(3):25-28。
    米铁柱,于志刚,姚庆祯,等,(2001)。春季莱州湾南部溶解态营养盐研究[J]。海洋环境科学,20(3):14-18。
    沈国英,施并章,(2003)。海洋生态学[M],北京,科学出版社,292-295。
    沈志良,(2004)。长江氮的输送通量[J]。水科学进展,15(6):752-759。
    沈志良,陆家平,刘兴俊,等。长江口区营养盐的分布特征及三峡工程对其影响[A]。见:中国科学院海洋研究所。海洋科学集刊[C]。北京,科学出版社,1992。109-129。
    史军贤,陈忠元,(1996)。浙江省海岛沿岸水域微生物生态分布[J]。东海海洋,14(2): 35-43。
    苏纪兰,唐启升,(2005)。我国海洋生态系统基础研究的发展——国际趋势与国内需求[J]。地球科学进展,20(2):139-143。
    孙云明,宋金明,(2003)。海洋沉积物——海水界面附近氮、磷、硅的生物地球化学[J]。地质评论,47(5):527-534。
    覃超梅,(2005)。珠江口淇澳岛海岸带氮生物地球化学研究[D]:[硕士学位论文]。广州:中国科学院广州地球化学研究所。
    王保栋,(2006)。长江口及邻近海域富营养化状况及其生态效应[D]:[博士学位论文]。青岛,中国海洋大学。
    王东启,陈振楼,许世远,等,(2006a)。长江口崇明东滩沉积物反硝化作用研究[J],中国科学(D辑),36(6):544-551。
    王东启,陈振楼,王军,等,(2006b)。夏季长江河口潮间带反硝化作用和N2O的排放与吸收[J]。地球化学,35(3):271-279。
    王芳,康建成,周尚哲,等,(2006)。春秋季长江口及其邻近海域营养盐污染研究[J]。生态环境,15(2):276-283。
    徐继荣,王友绍,殷建平,等,(2005)。珠江口入海河段DIN形态转化与硝化和反硝化作用[J]。环境科学学报,25(5):686-692。
    徐继荣,王友绍,殷建平,等,(2007)。大亚湾海域沉积物中的硝化和反硝化作用[J]。海洋与湖沼,38(3):206-211。
    许洁,张桂玲,张经,等,(2006)。胶州湾水体中氧化亚氮的分布和海气交换通量研究[J]。中国海洋大学学报(自然科学版),32:27-32。
    薛超波,王国良,金珊,等,(2004)。海洋微生物多样性研究进展[J]。海洋科学进展,22(3):377-384。
    余晖,张学青,张曦,等,(2004)。黄河水体颗粒物对硝化过程的影响研究[J]。环境科学学报,24(4):601-606。
    张蓓,沈立松,(2003)。实时荧光定量PCR的研究进展及其应用[J]。国外医学临床生物化学与检验学手册,24(6):327-329。
    张向上,(2004)。黄河口有机碳的时空分布及影响因素研究[D]:[硕士学位论文]。青岛:中国海洋大学。
    张于光,(2005)。三江源国家自然保护区土壤微生物的分子多样性研究[D]:[博士学位论文]。长沙:湖南农业大学。
    张玉芹,刘开启,王革,等,(2005)。反硝化细菌的筛选及培养条件的研究[J]。农业环境科学学报,24(1):165-168。
    周伟华,袁翔城,(2004)。长江口邻域叶绿素a和初级生产力的分布[J]。海洋学报,3(26): 143-150。
    周淑青,沈志良,李峥,等(2007)。长江口最大浑浊带及邻近水域营养盐的分布特征。海洋科学,31(6):34-42。
    朱琳,尹立红,浦跃朴,等(2005)。荧光原位杂交法检测环境硝化细菌实验条件优化及应用[J]。东南大学学报(自然科学版),35(2):266-270。
    中国海洋环境保护:现状和对策,国家环保总局/水环境保护/海洋环境,http://www.zhb.gov.cn