灵石山不同海拔米槠林优势种叶片δ~(13)C及养分等属性特征的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
首次对灵石山不同海拔米槠林优势种叶片δ~(13)C值以及叶片养分含量、SLA、LDMC等各叶属性特征不同优势种间、不同叶龄间、不同海拔梯度间的差异性及其沿海拔梯度的变化规律进行分析;对δ~(13)C值与各叶属性因子的关系、各环境因子对叶片δ~(13)C值的影响以及各叶属性因子之间的关系及其与环境的关系等方面进行研究。
     1.灵石山米槠林各海拔优势种叶δ~(13)C值介于-34.52‰~-28.377‰之间,平均值为-30.885‰。叶δ~(13)C值种间以及叶龄间的差异性分析表明,除A7、A8海拔梯度上优势种间叶δ~(13)C值差异性不显著外,其它各海拔梯度种间叶δ~(13)C有显著差异;各海拔梯度上不同叶龄间δ~(13)C值差异性不显著。各海拔梯度上叶δ~(13)C值分布特征表现为,随海拔升高,叶δ~(13)C值分组逐渐单一。优势种叶δ~(13)C值海拔间的差异性显著,灵石山米槠林优势种叶δ~(13)C值随海拔升高而逐渐升高,平均变化量为3.2‰·km-1。
     2.分别对10种优势种不同叶龄叶绿体色素的差异分析表明,除少数优势种在某海拔梯度以外,叶绿素a、叶绿素b和叶绿素(a+b)存在显著或极显著叶龄间的差异,一般在中高海拔梯度差异最大,且2年生叶片含量高于1年生叶片。而不同年龄叶片间叶绿素a/b和类胡萝卜素含量的差异性表现形式复杂。不同优势种的叶绿素(叶绿素a、叶绿素b和叶绿素(a+b))在海拔梯度间存在显著的差异,并且沿海拔梯度的变化呈现一定的规律性,有7种优势种不同叶龄叶绿素含量均随海拔的升高先升高,一般在A5或A6达到最大值,然后随海拔的升高逐渐降低,而叶绿素a/b随海拔升高变化趋势比较多样化。类胡罗卜素作为功能色素由于其功能比较复杂,其含量对海拔的响应规律也不尽相同。说明海拔作为重要的环境因素对于植物叶绿体色素产生了显著的影响。
     3.优势种养分含量的分布特征分析表明,P和Na含量的分布范围较窄,分别为0.259~2.026 g·kg-1和0.150~1.804 g·kg-1;其它养分中,Ca含量变化范围最广,且除Mn以外,养分浓度在其分布范围内的低中部频数较高,说明优势种养分含量较低的居多。1年生叶片N、P、K含量高于2年生叶片,2年生叶片Na、Ca含量高1年生叶片,微量元素Fe、Mn、Zn的平均含量也为2年生叶片高于1年生叶片。不同叶龄P含量、2年生叶片Na含量、2年生叶片Ca含量、1年生叶片Mg含量、1年生叶片Fe含量、不同叶龄Zn含量符合对数正态分布。四级分类法对优势种养分含量进行分类,不同优势种对不同养分的“排斥”和“累积”效应不同。围涎树和石栎对N、狗骨柴和鹅掌柴对K和Na有明显的“累积”效应,厚叶冬青对P、青冈栎对Zn则表现出明显的“排斥”效应。除2年生叶片Fe含量优势种间差异性不显著外,其它养分含量种间差异性显著(p<0.05),多重比较表明,养分含量处于不同分类等级中的优势种差异显著,部分处于相同等级中的优势种也有显著的差异性。
     4.对不同叶龄SLA、LDMC以及养分特征等叶片属性沿海拔梯度的变化规律进行分析,各叶龄叶片SLA、LDMC、C、K、Mg含量以及2年生叶N、Mn含量均沿海拔梯度的变化表现出明显的规律性(P<0.05),其中LDMC随海拔梯度升高逐渐升高,其它指标则随海拔梯度的升高而降低。这种表现规律显示了植物叶片对生境的适应策略,随海拔升高养分含量降低,同时SLA降低、LDMC升高是对养分相对不足适应性的表现。
     5.对各海拔以及综合所有海拔梯度上优势种叶δ~(13)C值进行回归分析,除叶片有机碳含量在各海拔均与δ~(13)C值不存在相关关系外,其它叶属性指标均与叶片δ~(13)C值有显著的线性回归关系。综合所有海拔梯度,不同叶龄δ~(13)C值与P、Ca、LDMC含量显著正相关;不同年龄叶δ~(13)C值与SLA以及N、K、Na、Mg、Ash含量、2年生叶片叶绿素含量显著负相关;不同叶龄叶片δ~(13)C与Fe、Mn、Zn的关系在各海拔表现形式复杂,综合所有海拔,δ~(13)C与Fe、Zn相关性不显著,与1年生叶片Mn含量表现为负相关,与2年生叶片Mn含量表现为正相关。不同海拔梯度上以及不同叶龄δ~(13)C值与各叶属性指标的回归关系不相同,说明δ~(13)C值与叶属性的关系随物种、环境以及叶片年龄的变化而有所不同。
     6.对影响叶片δ~(13)C值的13个叶属性因子进行主成分分析表明,不同年龄叶片均提取了前五个主分量,综合了80%之多的叶属性因子的信息,且每个主分量的特征根大于1。不同叶龄叶属性指标的每个主分量所综合的主要生理因子不同,主成分回归分析表明,1年生叶片各叶属性指标与δ~(13)C值的相关性由大到小依次为:LDMC>Na含量>P含量>Ca含量>Mn含量>SLA>Fe含量>灰分含量>叶绿素含量>Zn含量>K含量>Mg含量>N含量,其中,Na含量、SLA、灰分含量、Mg含量与δ~(13)C值呈负相关;2年生叶片各叶属性指标与δ~(13)C值的相关性由大到小依次为:Ca含量>SLA>N含量>P含量>叶绿素含量>LDMC>K含量>Mg含量>Mn含量>Zn含量>Fe含量>灰分含量,其中,SLA、N含量和Mg含量与δ~(13)C值呈负相关;这说明植物在生长过程中,各生长因子对植物所起的作用处于动态变化中。SLA、LDMC、P含量、Ca含量在植物的生长过程中均起着重要的作用,相对于2年生叶片,Fe含量、Mn含量和灰分对于1年生叶片对于δ~(13)C值的影响更大,K含量和Mg含量对各叶龄的δ~(13)C影响程度相当,而2年生叶片叶绿素含量对于δ~(13)C值的影响更大。
     7.对主要优势种米槠、九节木、鹅掌柴、微毛柃不同叶龄δ~(13)C值与不同土壤深度的各种养分含量以及坡度、坡向等地形因子进行Pearson相关性分析,表明每一土壤深度的养分含量对叶片δ~(13)C值都有一定的影响。不同叶龄δ~(13)C值与土壤养分含量的相关性不一致,以不同年龄鹅掌柴叶片差异最明显,与2年生叶片相比,1年生鹅掌柴叶片δ~(13)C值与土壤养分含量的相关性更强。叶δ~(13)C值与土壤养分含量主要以正相关为主,说明不同的土壤养分能降低植物叶片的同位素判别,提高植物的水分利用效率。地形因子对叶δ~(13)C值也有一定的影响。
     8.为探讨在不局限于某一物种某一特定环境时叶绿素计SPAD的适用性,采用便携式叶绿素仪SPAD-502对灵石山米槠林不同海拔优势种不同年龄叶片的SPAD值进行野外测定,分别对各海拔不同叶龄不同优势种以及各叶龄不同海拔不同优势种的叶片SPAD值双因素方差分析表明,灵石山米槠林优势种群叶片SPAD值存在叶龄、种间以及海拔梯度间的差异。对各海拔优势种不同年龄叶片SPAD值与室内分光光度法测定的叶绿素含量以及叶片N含量进行回归分析,表明,SPAD值与叶片单位面积叶绿素含量及N含量最适合线性关系。SPAD值是叶绿素含量的真实反映,利用叶绿素仪SPAD-502可以快速有效的诊断林木N营养状况。
     9.对叶属性指标种间和叶龄间的差异性进行分析,SLA、LDMC以及叶片C、N、P、K、Ca、Mg、Fe、Mn、Zn含量和C/N、C/P、N/P均存在极显著的种间差异性;SLA、LDMC、叶P、K、Ca、Fe、Zn含量以及C/P存在显著的叶龄间差异。1年生叶片的SLA大于2年生叶片,而2年生LDMC大于1年生叶片。对SLA与其它叶属性指标进行回归分析,SLA与不同年龄叶片LDMC、Ca、C/N、C/P成负线性回归关系,与不同年龄叶片N、P、K、Na、Mg、Zn、Ash含量以及2年生叶片Fe、Mn、N/P成正线性回归关系。对不同养分含量及营养结构的关系进行回归分析,不同叶龄N、P、K、Ca、Mg含量与C含量回归关系不显著,不同叶龄N含量与P、K含量以及P含量与K含量之间存在极显著的正线性回归关系,C/N与C/P显著相关,不同叶龄N、P以及1年生叶片K与Ca含量均呈显著负线性回归关系,不同叶龄N、K与Mg元素均呈显著或极显著性正线性回归关系,2年生叶片Ca与Mg含量正线性回归关系,而不同叶龄P与Mg含量回归关系不显著,1年生叶片Na含量、不同叶龄K、Ca、Mg、Fe、Mn、Zn含量与Ash含量均呈显著正回归关系。
     10.分别对米槠、九节木、鹅掌柴、微毛柃不同叶龄养分含量与环境的关系进行排序分析,结果表明,土壤养分、土壤PH、海拔、坡度、坡向等环境因子对优势种叶养分含量都有不同程度的影响,但是环境因子对不同优势种养分的影响程度不同,相同优势种不同叶龄养分对环境的响应也不同。通过对4种优势种养分含量与环境进行排序分析不能够分离出哪些环境因子的影响更强。由不同海拔梯度上样地在排序图上的位置可以看出,各样地间存在一定的环境变化梯度。
Castanopsis carlessi forests are important constructive species for the evergreen broad leaves forests. The characteristics and adaptation to environment of leaf have been one of the key and hot points of Ecology. For the first time, foliar stable carbon isotope ratio(δ~(13)C) SLA, LDMC and nutrient content of different age leaves were investigated along the altitudinal distribution gradient of dominant species in Castanopsis carlessi forests in Lingshi shan National Forest Park. The variation ofδ~(13)C and the leaf traits such as concentration of mineral nutrients, specific leaf area(SLA), leaf dry matter content(LDMC) between dominant species, leaf age and the different altitude gradient were analyzed. The relationship between foliarδ~(13)C and leaf traits was studied by regression analysis and principal component. Also the influence of environmental factors on the value of foliarδ~(13)C was analyzed. Meanwhile the correlation between leaf traits and its relation to environmental factors such as soil nutrient status, elevation and slope was studied. The main content of this paper were concluded as follows:
     The range of foliarδ~(13)C value was between -34.52‰and -28.377‰, with an average of -30.885‰for Castanopsis carlessi forest in Lingshishan National Forest Park. The variance analysis showed that there was significant difference between dominant species at each altitude gradient except for A7 and A8. And there no significant difference for different age leaves. The frequency distribution of foliarδ~(13)C become single along altitude gradient. Regression analysis showed the value of foliarδ~(13)C was more positive with the increasing altitude, with an average change of 3.2‰? km-1.
     Closely related to photosynthesis, chloroplast pigments are vital factors to measure the intensity of photosynthesis. Quantification of chloroplast pigment content could supply the important information about the correlation between plants and environment. The variation of chloroplast pigments between different age leaves and the change patterns of different age leaf chloroplast pigments along elevation gradients were analyzed. The results showed that there were significant or very significant differences of chlorophyll a, chlorophyll b, and chlorophyll(a+b) between different age leaves. Generally, the content of chlorophyll a, chlorophyll b, and chlorophyll (a+b) in two–year-old leaves was higher than in one-year-old leaves and the variations are more substantial at middle and high elevation gradients than at low elevation gradients. Yet the variation of chlorophyll a/b and carotenoid between different age leaves was complicated, and it indicated the adaptation of plants to environment. There were significant variations of the chlorophyll a, chlorophyll b, and chlorophyll (a+b) between different elevation gradients and some certain change patterns were presented. With the increase of elevation gradients, the chlorophyll a, chlorophyll b, and chlorophyll (a+b) content of seven dominant species among the dominant populations become higher, reaching a maximum at the elevation of A5 or A6 and then become lower. And the change patterns of chlorophyll a/b were more diversified with the increase of elevation gradients. As a type of functional pigment, the function of carotenoid was complicated, the response patterns to elevation were diversified too. The results of this research indicated that as an important environment factors elevation had vital and significant impacts on plants and that the dominant species had different adaptation strategies.
     The data analysis of leaf nutrient concentration showed generally wide concentration ranges for most mineral nutrients except P and Na. And most tree species were clustered at the lower or middle end of the concentration ranges indicating they have low nutrient status. Among the macronutrients, P and Na had the lowest and narrowest foliar concentration, with the range of 0.259~2.026 g·kg-1 for P, 0.150~1.804 g·kg-1 for Na. Concentration of Ca had widest range. The nutrient concentration of different age leaves was different. The concentration of N, P, K for one-year-old leaves was higher than two-year-old leaves and the concentration of Na, Ca, Fe, Mn, Zn was opposite. A few tree species were observed to accumulate (called‘‘accumulator species’’) some mineral nutrients like N, P, K, Na.
     The variation of leaf traits along altitude gradient showed that leaf traits of SLA,C, K, Mg content were lower with the increasing altitude and LDMC was higher. It indicated the adaptation strategies to habitat of the dominant species. The variation of SLA and LDMC demonstrated the adaptation to nutrient inadequate.
     The results of regression analysis showed that leaf traits except for leaf organic carbon content had significant linear relationship with the value of foliarδ~(13)C. Theδ~(13)C value of different age leaves was positively correlated with LDMC and the concentration of P, Ca, and negatively correlated with the concentration of N, K, Na, Mg, Ash and chlorophyll. The correlation ofδ~(13)C value and the concentration of Fe, Mn, Zn were multiform at different altitude gradients. For the data all the altitude gradients, theδ~(13)C value wasn’t correlated with the concentration of Fe and Zn and positively correlated with the concentration of Mn of one-year-old leaves, negatively correlated with the concentration of Mn of two-year-old leaves. The results indicated that species, leaf age and environmental factors could influence the relationship ofδ~(13)C and leaf traits.
     Results of PCA(Principal Component Analysis) for 13 leaf trait factors effecting foliarδ~(13)C showed that the first five principal components composited 80 percent leaf traits and the eigenvalue of each primary component was greater than 1. Principal component regression analysis showed that the correlation ofδ~(13)C and leaf traits was different for different age leaves. The strength sequence of relevance ofδ~(13)C with leaf traits factors for one-year-old leaves was LDMC, Na, P, Ca, Mn, SLA, Fe, Ash, chlorophyll, Zn, K, Mg and N declining. And the strength sequence for two-year-old leaves was Ca, SLA, N, P, chlorophyll, LDMC, K, Mg, Mn, Zn, Fe, Ash.This showed that the role of factors playing on plant growth was in dynamic change. SLA, LDMC, concentration of P and Ca played important roles on plant growth. Compared with two-year-old leaves, concentration of Fe, Mn and Ash played more important roles on two-year-old leaves. And concentration of chlorophyll was vital forδ~(13)C value of two-year-old leaves.
     The Pearson correlation was analyzed between foliarδ~(13)C and environmental factors such as soil nutrient status at different depth, elevation and slope was studied. Soil nutrient status at each depth could influence value of foliarδ~(13)C.The correlation between foliarδ~(13)C and soil nutrient content was mainly on positive. We could conclude that soil nutrients can reduce the isotope discrimination of plant leaves and improve water use efficiency of plants. Topographical factors could influence value of foliarδ~(13)C too.
     Portable chlorophyll meter SPAD-502 was used to measure the greenness (SPAD) of different age leaves of dominant species at different altitude gradients. There was different variation of SPAD value between the different age leaves, different dominant species and different altitude gradients. And the correlation between SPAD value and chlorophyll and foliar N concentration showed that significant correlations between SPAD value and concentration of chlorophyll and foliar N were observed,indicating that SPAD value could not only well reflect the chlorophyll concentration measured by spectrophotometry method, but also a useful tool for nondestructively assessing foliar N status. In the case of comparison in a relative value instead of real magnitude, SPAD value could be indicators for foliar chlorophyll and nitrogen, which may have efficient application for forest assessments in decision-making and operational nutrient management programs.
     Variance analysis showed that there was significant variation between dominant species for leaf traits such as SLA, LDMC, the concentration of C, N, P, K, Ca, Mg, Fe, Mn, Zn and the ratio of C/N, C/P, N/P. And there was significant variation between different age leaves for SLA,LDMC the concentration of P, K, Ca, Fe, Zn and C/P. The correlation between SLA, LDMC and leaf nutrient content were analyzed. SLA was positively correlated with concentration of N, P, K, Na, Mg, Zn, Ash for different age leaves and positively correlated with concentration of Ca, Fe, Mn and ratio of N/P for two-year-age leaves. And it was negatively correlated with LDMC, Ca, C/N and C/P. There was significant regression relation between leaf nutrient concentrations and nutrient structures too. We can conclude that the leaf traits were the representation of adaptation to environment long-term.
     Redundancy analysis (RDA) of environmental variables and foliar nutrient concentration showed that foliar mineral nutrient concentration of the trees was generally correlated with the environmental factors. However, the effects were interrelated and difficult to isolate from each other. The influence of environmental factors on different dominant species and was different. The strategy of resources use was different for dominant species, which was benefit to coexistence of species long-term.
引文
1. Farquhar G D, Ehleringer J R, Hubick k T. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 1989, 40:530-536.
    2.陈世苹,白永飞,韩兴国.稳定性碳同位素技术在生态学研究中的应用.植物生态学报,2002,26(5):549-560.
    3. Ghasghaire J, Badeck F W, Lanigan G, Nogués S, Tcherkez G, Deléens E, Cornic G, Griffiths H. Carbon isotope fractionation during dark respiration and photorespiration in C3 plants. Phytochemistry Reviews, 2003, 2:145–161.
    4. Kennedy S, DhubháináN, Ferguson J. Potential use of leaf carbon isotope discrimination for the selection of shade-tolerant species. Forest Ecology and Management.2006,237:394-403.
    5.郑兴波,张岩,顾广虹.碳同位素技术在森林生态系统碳循环研究中的应用.生态学杂志,2005,24 (11):1334-1338.
    6.侯爱敏,彭少麟,周国逸等.通过树木年轮δ13C重建大气CO2碳同位素比δa的可靠性探讨.生态学杂志,2001,20(1):13-17.
    7. Francey R J, Tans P P, Allison C F,et al. Changes in oceanic and terrestrial carbon uptake since 1982.Nature, 1995,373:326-330.
    8. Feng Xiahong. Long-term Ci/Ca responds of trees in western North America to atmospheric CO2 concentration derived from carbon isotopes chronologies.Oecologia, 1998, 117:19-25.
    9. Tieszen L L. Archer S. Isotopic assessment of vegetation changes in grassland and woodland systems. In: Osmond C B. Pitelka L F. Hidy G M(Eds.) plant biology of the basin and range. Springer-Verlag, New York.1990:293-321.
    10. Tieszen L L, Boutton T W. Stable carbon isotopes in terrestrial ecosystem research. In: Rundel P W, Ehleringer J R, Nagy K A(Eds.) Stable Isotopes in Ecological Research,1988:.167-195.
    11. Raven P H. Evert R F. Curtis H. Biology of plants. Worth Publishers, Inc. New York. 1981:106-112.
    12. Salisbury F B. Ross, C W. Plant physiology.3rd edition 1985:197-225.
    13. Wells P V. Macrofossil analysis of wood rat(Neotoma) middens as a key to the Quaternary vegetation history of arid America. Quaternary Research, 1976,6: 223-248.
    14. Nobel P S. Physicochemical and environmental plant.Physiology.Acdemic press,1991.
    15. Polley H W, Johnson H B, Marino B D, et al. Increase in C3 plant water use efficiency and biomass over glacial to present CO2 concentrations.Nature, 1993,361:61-64.
    16. Francey R J, Gifford R M, Sharkey T A, et al. Physiological influences on carbon isotope discrimination in huon pine (Lagastrobos franklin-nu).Oecologia, 1985,44:241-247.
    17. Neil O, McCormac F G.. High-resolutionδ13C measurements of oak show a previously unobservedspring depletion. Geophys ResLett ,1994,21:2373-2375.
    18. Leavitt S W, Lara A. South American tree rings showδ13C declining trend. Tellus, 1994, 46 : 152-157.
    19. Feng X H, Samuel E. Carbon isotopes of trees from arid environments and implications for reconstructing atmospheric CO2 concentration. Geochemicaet Cosmochimica Acta, 1995,59(2):2599-2608.
    20. Waterhouse J s, Switsur V R, Barker A C et al. Northern European tree show a progressively diminishing response to increasing atmospheric carbon dioxide concentrations. Quaternary Sciences Reviews, 2004,23:803-810.
    21.蒋高明.植物生理生态学研究中的稳定碳同位素技术及其应用.生态学杂志,1996,15(2):49-54.
    22. Anderson J E, J. William P. Kriedemann M P, et al. Correlations between carbon isotope discrimination and climate of native habitats for diverse eucalypt taxa growing in a common garden. Australian Journal of Plant Physiology, 1996,23:311–321.
    23. Ehleringer J R, Cooper T A. Correlation between carbon isotope ratio and microhabitat in desert plants . Ecologia, 1988,76:562 -566.
    24. Zimmerman J K, Ehleringer J R. Carbon isotope ratios are correlated with irradiance levels in the Panamanian orchid Catasetum viridiavum. Oecologia,1990,83:247-285.
    25. Naidu P D, Niitsuma N. Atypical deltaδ(13) C signature in Globigerina bulloides at the ODP site 723A (Arabian Sea): Implications of environmental changes caused by upwelling, Marine Micropaleontology,2004,53:1-10.
    26. Osmond D P,Schmidt A M,Livingston N J. Effect of UV-B radiation on the shoot dry matter production of stable carbon isotope composition of two Arabidopsis thaliana genotypes. Physiol plant,1997,101:497-502.
    27. Morecroft M D , Woodward F I , Marrs R H. Altitudinal trends in leaf nutrient contents, leaf size andδ13C of Alchemilla alpine . Functional Ecology, 1992, 6: 730– 740.
    28. Saurer M, Siegenthaler U. Schweingruber, F. The climate-carbon isotope relationship in tree rings and the significance of site conditions. Tellus, 1995,47:320-330.
    29. Stuiver M, Braziunas T F. Tree cellulose 13C /12C isotope ratios and climate change. Nature, 1987,328: 58-60.
    30.马利民,刘禹,赵建夫.贺兰山油松年轮中稳定碳同位素含量和环境的关系,环境科学,2003,24(5):49-53.
    31.史作民,程瑞梅,刘世荣.高山植物叶片δ13C的海拔响应及其机理.生态学报, 2004,24(12):2901-2906.
    32. Smith B, Madhaven S. Carbon isotope ratios in obligate and facultative CAM plants. In: Ting, I.P. & M. Gibbs eds. Crassulacean Acid Metabolism. Rockville: American Society of PlantPhysiologists, 1982:231-243.
    33. O’leary M H. Carbon isotope fractionation in plants. Phytochemistry, 1981,20(4):553-567.
    34. Warren C R, Mcgrath J F, Adams M.A. Water availability and carbon isotope discrimination in conifers. Oecologia, 2001,127(4):476-486.
    35. Saurer M ,Borella S , Schweingruber F , et al . Stable carbon isotopes in tree rings of beech : Climatic versus site related influences. Trees Structure Function , 1997,11 :291-297.
    36. Jaggi M, Saurer M, Volk M, Fuhrel J.E?ects of elevated ozone on leafδ13C and leaf conductance of plant species grown in semi-natural grassland with or without irrigation. Environmental Pollution ,2005,134:209–216.
    37.王国安,韩家懋.中国西C3植物的碳同位素组成与年降水量关系初探.地质科学,2001,36(4):494-499.
    38. Araus J L,Amaro T,Zuhair Y,et al. Effect of leaf structure and water status on carbon isotope discrimination in field grown durum wheat.Plant Cell and Environment,1997,20:1484-1494.
    39.陈英华,胡俊,李裕红等.碳稳定同位素技术在植物水分胁迫研究中的应用.生态学报,2004,24(5):1027-1033.
    40. Poss J A, Grattan S R, Suarez D L, et al. Stable carbon isotope discrimination: an indicator of cumulative salinity and boron stress in Eucalyptus camaldulensis. Tree Physiology, 2000,20(16):1121-1127.
    41. Goldstein G, Drake D R,Alpha C, et al. Growth and photosynthetic responses of Scaevola sericea, A Hawaiian Coastal Shrub, to substrate salinity and salt spray. International Journal of Plant Sciences,1996,167(2):171-179.
    42.韦莉莉,严重玲,叶彬彬等. C3植物稳定碳同位素组成与盐分的关系.生态学报,2008,28(3):1270-1278.
    43. Ish-Shalom-Gordon N, Lin G, Sternberg L D S L. Isotopic fractionation during cellulose synthesis in two mangrove species: Salinity effects. Phytochemistry, 1992,31(8):2623-2626.
    44. Gibberd M R, Turner N C,Storey R. Influence of saline irrigation on growth, ion accumulation and partitioning, and leaf gas exchange of carrot(Daucus carota L.).Annals of Botany,2002,90(6):715-724.
    45.旺罗,吕厚远,吴乃琴.青藏高原现生禾本科植物的δ13C与海拔高度的关系.第四纪研究,2003,2(35):573-580.
    46.刘光琇,陈拓,安黎哲等.青藏高原北部植物叶片碳同位素组成特征的环境意义.地球科学进展,2004,19(5):749-753.
    47.陈拓,杨梅学,冯虎元,等.青藏高原北部植物叶片碳同位素组成的空间特征.冰川冻土,2003,25(1):83-87.
    48.徐世健,陈拓,冯虎元.新疆乌鲁木齐上游植物叶片δ13C空间分异的环境分析.自然科学进展,2002,12(6):617-620.
    49.郑淑霞,上官周平.陆生植物稳定碳同位素组成与全球变化.应用生态学报,2006,17(4):733-739.
    50. Trewavas A. A pivotal role for nitrate and leaf growth in plant development. In: Baker N R, Davies W J and Ong C K.eds. Control of leaf growth. New York: Cambridge University Press, 1985:77-91.
    51. Chen Y Z, Murchie E H, Hubbar S, et al. Effects of season-dependent irradiance levels and nitrogen deficiency on photosynthesis and photo inhibition in field grown rice(Oryzasativa).Plant physiology,2003,117(3):343-351.
    52. Schafer C, Heim R.Nitrogen deficiency exacerbates the effects of light stress in photoautrophic suspension cultured cells of Chenopodum rubrum. Photosynthetica, 1992,27: 545-561.
    53. Markow T A, Anwar S, Pfeiler E. Stable isotope ratios of carbon and nitrogen in natural populations of Drosophila species and their hosts. Functional Ecology,2000,14:261-266.
    54. Picon-Cochard C , Nsourou-Obame A, Collet C, et al. Competition for water between walnut seedlings ( Juglans regia) and rye grass ( Lolium perenne) assessed by carbon isotope discrimination andδ18O enrichment. Tree Physiology , 2001, 21 : 183-191.
    55. Couteaux M M, Bottner P, Anderson J M,et al. Decomposition of 13C-labelled standard plant material in a latitudinal transect of European coniferous forests: Differential impact of climate on the decomposition of soil organic matter compartments. Biogeochemistry,2001,54:14-170.
    56. Hamerlynck E P, Huxman T E, McAuliffe J R, Smith, S D. Carbon isotope discrimination and foliar nutrient status of Larrea tridentate (creosote bush) in contrasting Mojave Desert soils. Oecologia, 2004,138,210-215.
    57. Cordell S , Goldstein G, Meinzer F C, et al. Regulation of leaf life- span and nutrient- use efficiency of Metrosidero polymorpha trees at two extremes of a long chronosequence in Hawaii. Oecologia , 2001,127: 198-206.
    58. Hanba Y T, Miyazama S, Terashima. The influence of leaf thickness on the CO2 transfer conductance and leaf stable carbon isotope ratio for some evergreen tree species in Japanese warm temperate forests. Functional Ecology, 1999,13:632-639.
    59. Hopley P H, Weedon G P, Marshall J D, et al. High- and low-latitude orbital forcing of early hominin habitats in South Africa. Earth and Planetary Science Letters, 2007, 256:419-432.
    60. Wright I J, Reich P B, Westoby M.. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low- rainfall and high- and low- nutrient habitats. Functional Ecology , 2001,15:423-434.
    61. Hikosaka K. Interspecific difference in the photosynthesis nitrogen relationship: patterns, physiological causes and ecological importance. Journal of Plant Research, 2004,117: 481-494.
    62. Bowling D R, McDowell N G, Bond B J, et al.δ13C content of ecosystem respiration is linked to precipitation and vapor pressure deficit. 2002,Oecologia,131: 113-124.
    63. Duquesnay A,Breda N,Stievenard M , et al . Changes of tree ringδ13C and water use efficiency of beech ( Fagus sylvat ica L. ) in north-eastern France during the past century. Plant Cell Environ, 1998,21 :565-572.
    64. McDowell N ,Brooks J R ,Fitzgerald S A , et al . Carbon isotope discrimination and growth response of old Pinusponderosa trees to stand density reductions. Plant Cell Environ, 2003.,26 :631-644.
    65. Ziegler H. Stable isotopes in plant physiology and ecology .Progress in Botany, 1995,56: 1-2.
    66. Marshall J D, Zhang J. Carbon isotope discrimination and water -use efficiency in native plants of the north - central Rockies. Ecology, 1994, 75 (7): 1887-1895.
    67. Francey R J, Farquhar G D. An explanation of 13C/ 12C variations in tree rings. Nature, 1982, 297:28-31.
    68.上官周平.小麦~(13)C分辨率和水分利用效率对氮素与水分的响应.植物营养与肥料学报,2000,6(3): 345-348.
    69.孙谷畴,林植芳,林桂珠,李双顺.亚热带人工林松树13C/12C比率和水分利用效率.应用生态学报, 1993, 4(3):325-327.
    70.陈拓,马健,冯虎元,等.阜康典型荒漠C3植物稳定碳同位素值的环境分析.干旱区地理,2002,25(4):342-345.
    71.殷立娟,王萍.中国东北草原植物中的C3和C4光合作用途径.生态学报,1997, 17 (2):113 - 123.
    72.周海燕,赵爱芬.科尔沁沙地几种乔灌木光合和水分生理生态特性的研究.中国沙漠,1998 ,18 (增2) :27 - 31
    73.冯起,程国栋,谭志刚.荒漠绿洲植被生长与生态地下水位的研究.中国沙漠,1998,18 (增) :106 - 109
    74.陈拓,冯虎元,徐世建,等.荒漠植物叶片碳同位素组成及其水分利用效率.中国沙漠,2002,22(3):288-291.
    75. Osório J, Osório M L, Chaves M M, Pereira J S. Effects of water deficits onδ13C discrimination and transpiration efficiency of Eucalyptus globulus clones. Australian Journal of Plant Physiology,1998,25:645-653.
    76. Ashok I S, Aftab Hussain T G, Prasad M, Udaya Kumar R C, Nageswara R, Wright G C. Variation in transpiration efficiency and carbon isotope discrimination in cowpea. Australian Journalof Plant Physiology, 1999,26:503-510.
    77. Johnson R C , Li Y Y. Water relations, forage production, and photosynthesis in tall fescue divergently selected for carbon isotope discrimination. Crop Science, 1999,39:1663-1670.
    78. Zhang J W, Cregg B M. Variation in stable carbon isotope discrimination among and within exotic conifer species grown in eastern Nebraska, USA. Forest Ecology and Management,1996, 83:181-187.
    79. Huang Z Q, Xu Z H, Blumfield T J,et al. Effects of mulching on growth, foliar photosynthetic nitrogen and water use efficiency of hardwood plantations in subtropical Australia. Forest Ecology and Management. 2008, 255:3447–3454.
    80. Huang Z Q. Soil and tree physiological responses to establishment silviculture in hardwood plantation. Ph.D. Thesis. Griffith School of Environment Griffith University, Brisbane, Australia, 2008, 28:30–50.
    81. Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007:The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the IPCC. Cambridge University Press, Cambridge,2007, ISBN:978 0521 88009-1.
    82. Battipaglia G, Saurer M, Cherubini P, et al. Tree rings indicate different drought resistance of a native (Abies alba Mill.)and a nonnative (Picea abies (L.) Karst.) species co-occurring at a dry site in Southern Italy. Forest Ecology and Management,2009,257(3):820-828.
    83. Voltas J, Chambel M R, Prada M A et al. Climate-related variability in carbon and oxygen stable isotopes among populations of Aleppo pine grown in common-garden tests. Trees structure and function,2008,22(6):759-769.
    84. Dyer A R, Goldberg D E, Turkington R, et al. Effects of growing conditions and source habitat on plant traits and functional group definition. Functional Ecology, 2001,15: 85- 95.
    85. Gitay H, Noble I R. What are functional types and how should we seek them ? In : Smith T M, Shugart H H, Woodward F I. eds. Plant functional types: their relevance to ecosystem properties and global change. Cambridge: Cambridge University Press. 1997,3-19.
    86.李明财,罗天祥,孔高强等.色季拉山林线不同生活型植物稳定碳同位素组成特征.生态学报,2008,28(7):3160-3167.
    87. Brooks J R, Flanagan L B, Buchmann N, Ehleringer J R. Carbon isotope composition of boreal plants functional grouping of life forms. Oecologia, 1997,110:301-311.
    88. Guehl J M, Domenach A M, Bereau M, Barigah T S, Casabianca H, Ferhi A, Garbaye J. Functional diversity in an Amazonian rainforest of French Guyana: a dual isotope approachδ15N andδ13C. Oecologia, 1998, 116:316-330.
    89. Bonal D D, Sabatier P. Montpied D,et al. Interspecific variability ofδ13C among trees inrainforests of French Guiana : functional groups and canopy integration. Oecologia, 2000,124:454-468.
    90. Kloeppel B D, Gower S T,Treichel I W, Kharuk S. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers:a global comparison. Oecologia, 1998, 114:153-159.
    91. Schulze E D,Williams R J, Farquhar G D, et al . Carbon and nitrogen isotope discrimination and nitrogen nutrition of trees along a rainfall gradient in northern Australia. Aust J Plant Physiol, 1998,25:413-425.
    92. Pe?uelas J, Filella I, Terradas J. Variability of plant nitrogen and water use in a 100-m transect of a subdesertic depression of the Ebro valley (Spain) characterized by leafδ13C andδ15N. Acta Oecologica, 1999,20:119-123.
    93. Donovan L A, Ehleringer J R. Potential for selection on plants for water use efficiency as estimated by carbon isotope discrimination. Am. J. Bot. 1994, 81:927–935.
    94. Prasolova N V, Xu Z H. Genetic variation in branchlet nutrient concentration at different canopy positions in relation to branchletδ13C andδ18O, and tree growth of 8–9 years old hoop pine (Araucaria cunninghamii) families in two contrasting environments. Tree Physiol, 2003,23, 675–684.
    95. West A G,Midgley J J, Bond W J. The evaluation ofδ13C isotopes of tress to determine past regeneration environments. Forest Ecology and Management, 2001, 147:139-149.
    96. Huc R , Ferhi A , Guehl J M. Pioneer and late stage tropical rain forest tree species ( French guiana) growing under common conditions differ in leaf gas exchange regulation, carbon isotope discrimination and leaf water potential. Oecologia, 1994, 99:297-305.
    97.赵其国.发展与创新现代土壤科学.土壤学报, 2003, 40(3):321- 327.
    98.于贵瑞,王绍强,陈泮勤等.碳同位素技术在土壤碳循环研究中的应用,地球科学进展,2005,20(5):568-577.
    99. Bird M I, Veenendaal E M, Lloyd J J . Soil carbon inventories andδ13C along a moisture gradient in Botswana. Global Change Biology, 2004, 10:342-349.
    100. Bernoux M, Cerri C C, Neill C, et al. The use of stable carbon isotopes for estimating soil organic matter turnover rate. Geoderma, 1998, 82:43- 58.
    101.刘卫国,宁有丰,安芷生,等.黄土高原现代土壤和古土壤有机碳同位素对植被的响应.中国科学(D辑) ,2002 , 32 (10) :830-836.
    102. Boutton T W, Archer S R, Midwood A J.δ13C values of soil organic carbon and their use in documenting vegetation change in a subtropical savanna ecosystem. Geoderma, 1998, 82: 5-41.
    103. Hsieh Y P. Pool size and mean age of stable organic carbon in cropland. Soil Science Society of American Journal, 1992, 56:460-464.
    104. Balesdent J, Wagner G H, Mariotti A. Soil organic mattre turnover in long-termfield experiments as revealed by carbon 213 natural abundance. Soil Science Society of American Journal,1988, 52:118-124.
    105.窦森,张晋京,曹亚澄,等.用δ13C方法研究玉米秸秆分解期间土壤有机质数量动态变化.土壤学报,2003,40(3):328-334.
    106. Rochette P, Flanagan L B, Gregorich E G. Separating soil respiration into plant and soil components using analyses of the natural abundance of carbon. Soil Science Society of American Journal, 1999, 63:1207-1213.
    107. Keeling C D. The concentration and isotopic abundances of carbon dioxide in rural areas. Geochimica et Cosmochimica Acta, 1958, 3:322-334.
    108. Sternberg L S L. A model to estimate carbon dioxide recycling in forest using12 C/ 13C ratios and concentrations of ambient carbon dioxide. Agricultural and Forest Meteorology, 1989, 48:163-173.
    109. Lloyd J, Kruijt B, Hollinger J Y. Vegetation effects on the isotopic composition of atmospheric CO2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and arboreal forest in Siberia. Australian Journal of Plant Physiology, 1996, 23:371-399.
    110. Ciais P, Tans P P, Trolier M, et al. A large northern hemisphere terrestrial CO2 sink indicated by the13 C/ 12C ratio of atmospheric CO2.Science, 1995,269:1098-1101.
    111. Buchmann N J, Brooks R L, Flanagan B, et al. Carbon isotope discrimination of terrestrial ecosystems. In : Griffiths, H. ed. Stable isotopes: integration of biological, ecological and geochemical processes. Oxford : BIOS Scientific Publishers Ltd.1998,203-221.
    112. Lin G H, Ehleringer J R. Carbon isotopic fractionation does not occur during dark respiration in C3 andC4 plants. Plant Physiology, 1997,114:391-39.
    113. Kikuzawa K. A cost- benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. The American Naturalist, 1991, 138:1250-1263.
    114. Kikuzawa K. Leaf phenology as an optimal strategy for carbon gain in plants. Canadian Journal of Botany, 1995a,73:158-163.
    115. Kikuzawa K. The basis for variation in leaf longevity of plants. Vegetatio, 121: 1995b,89-100.
    116. Kikuzawa K, Ackerly D. Significance of leaf longevity in plants. Plant Species Biology, 1999,14:39-45.
    117.黄建军,王希华.浙江天童32种常绿阔叶树叶片的营养及结构特征.华东师范大学学报(自然科学版),2003,1,92-97.
    118. ChapinⅢ, Bloom A J, Field C B, Waring R H. Plant response to multiple environmental factors.BioScience, 1987,37: 49-57.
    119.刘福德,王中生,张明等.海南岛热带山地雨林幼苗幼树光合与叶氮、叶磷及比叶面积的关系.生态学报,2007,27(11):4651-4661.
    120.李少安,彭少麟.我国热带亚热带几种人工林体内营养结构特征.生态学杂志,2001,20 (4) :1-4.
    121. Boerner R E J. Foliar nutrient dynamics and nutrient use efficiency of four deciduous tree species in relation to site fertility .Journal of Applied Ecology,1984,21:1029-1040.
    122. Jonasson S. Implication of leaf longevity,leaf nutrient re - absorption and translocation for the resource economy of five evergreen plant species . Oikos,1989,56:121-131.
    123.白宝璋,徐克章,赵景阳主编.植物生理学.北京:中国农业科技出版社,2001, 46-47.
    124. K?rner C. Some overlooked plant characteristics as determinants of plant growth: a reconsideration. Functional Ecology, 1991,5 :162-173.
    125. Schulze E D , Kelliher F M, Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate ,and plant nitrogen nutrition : a global ecology scaling exercise. Annual Review of Ecology and Systematics, 1994, 25 : 629-660.
    126.王希华,张婕,张正祥.浙江天童国家森林公园主要常绿阔叶树种叶子寿命的研究.植物生态学报,2000, 24(5):625-629.
    127. Reich P B , M. B. Walters & D. S. Ellsworth. Leaf life- span in relation to leaf , plant , and stand characteristics among diverse ecosystems. Ecological Monographs , 1992, 62 : 365 -392.
    128. Reich P B, Ellsworth D S, Walters M B, et al.Generality of leaf trait relationships : a test across six biomes. Ecology, 1999, 80:1955-1969.
    129. Wright I J, Reich P B, Westoby M. Strategy shifts in leaf physiology, structure and nutrient content between species of high- and low- rainfall and high- and low-nutrient habitats. Functional Ecology, 2001, 15: 423-434.
    130. Ellsworth D S, Reich P B. Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest. Oecologia, 1993,96: 169-178.
    131.祁建,马克明,张育新.北京东灵山不同坡位辽东栎(Quercus liao tun gensis)叶属性的比较.生态学报2008,28(1):122-128.
    132. Wilson P, Thompson K, Hodgson J. Specific leaf area and leaf dry matter content as alternative predictors of plant strategies. New Phytologist, 1999, 143:155-162.
    133.严昌荣,韩兴国,陈灵芝.北京山区落叶阔叶林优势种叶片特点及其生理生态特性.生态学报, 2000, 20 (1):53-60.
    134. Wright I J, Reich P B, Westoby M D. et al. 2004. The worldwide leaf economics spectrum. Nature, 428:821-827.
    135. Wright I J, Phili P K, Groom, et al. Leaf trait relationship s in Australian plant species. Functional Plant Biology, 2004,31:551 - 558.
    136. Reich P B, Walters M B, Ellsworth D S, et al. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life- span: a test across biomes and functional groups. Oecologia, 1998, 114: 471-482.
    137. Reich P B, Kloeppel B D, Ellsworth D S, et al. Different photosynthesis–nitrogen relations in deciduous hardwood and evergreen coniferous tree species. Oecologia, 1995, 104: 24-30.
    138. Reich P B, Oleksyn J, Modrzynski M, Tjoelker G. Evidence that longer needle retention of sprule and pine populations at high elevations and high latitudes in langely a phenotypic response. Tree Physiology, 1996,16:643-647.
    139. Sparks J P, Ehleringer J R. Leaf carbon isotope discrimination and nitrogen content for riparian trees along elevational transects. Oecologia, 1997,109: 362-367.
    140. Friend A D, Woodward F I, Switsur V R. Field measurements of photosynthesis, stomatal conductance, leaf nitrogen andδ13C along altitudinal gradients in Scotland. Functional Ecology, 1989,3:11-122
    141. Woodward F I. Ecophysiological studies on the shrub Vaccinium myrtillus L. taken from a wide altitudinal range. Oecologia, 1986,70:580-586.
    142.马书荣,阎秀峰,陈柏林,等.不同海拔裂叶沙参和泡沙参气孔形态的对比研究.东北林业大学学报, 1999,27 (6):94-97.
    143.段喜华,孙立夫,马书荣,等.不同海拔高度泡沙参叶片形态研究.植物研究,2003,23 (3):334-337.
    144.贺金生,王勋陵.高山栎叶的形态结构及其与生态环境的关系.植物生态学报,1994, 18(3):219-227.
    145.周党卫,朱文琰,滕中华,等.不同海拔珠芽蓼抗氧化系统的研究.应用与环境生物学报, 2003, 9 (5) : 489-492.
    146.韩发,贲桂英,师生波.青藏高原不同海拔矮蒿草抗逆性的比较研究.生态学报, 1998, 18 (6): 654-659.
    147. Kao W Y, Chang K W. Altitudinal trends in photosynthetic rate and leaf characteristics of Miscanthus populations from central Taiwan.Australian Journal of Botany, 2001, 49:509-514.
    148. Kao W Y, Tsai H C, Tsai T T. Effect of Nacl and nitrogen availability on growth and photosynthesis of seedlings of a mangrove species, Kandelia candel(L.) Druce. Journal of Plant Physiology, 2001,158:841-846.
    149. Cordell S, Goldstein G, Meinzer F C, et al. Allocation of nitrogen and carbon in leaves of Metrosideros polymorpha regulates carboxylation capacity andδ13C along an altitudinal gradient. Functional Ecology, 1999,13: 811-818.
    150. Hikosaka K, Nagamatsu D, Ishii H S, et al. Photosynthesis2nitrogen relationship s in speciesat different altitudes on Mount Kinabalu, Malaysia.Ecological Research, 2002, 17: 305-313.
    151. Hultine K R, Marshall J D. Altitude trends in conifer leaf morphology and stable carbon isotope composition. Oecologia, 2000, 123: 32-40.
    152. Zhang S B, Zhou Z K, Hu H, et al. Photosynthetic performances of Quercus pannosa vary with altitude in the Hengduan Mountains, southwest China. Forest Ecology andManagement, 2005, 212: 291-301
    153. Kogami H, Hanba Y T, Kibe T,et al. CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatumleaves from low and high altitudes. Plant, Cell and Environment, 2001, 24:529-538.
    154. Li C Y, Zhang X J, Liu X L, et al. Leaf morphological and physiological responses of Quercus aquifolioides along an altitudinal gradient. Silva Fennica, 2006, 40 (1): 5-13.
    155. Wright I J, Reich P B, Cornelissen J H C, et al. Assessing the generality of global leaf trait relationship. New Phytologist, 2005, 166: 485-496.
    156.张林,罗天祥.植物叶寿命及其相关叶性状的生态学研究进展.植物生态学报,2004,28(6):844-852.
    157. Vitousek P M. Nutrient cycling and nutrient use efficiency. The American Naturalist, 1982, 119:553-572.
    158. Shaver G R. Mineral nutrition and leaf longevity in Ledum palustre: the role of individual nutrients and the timing of leaf mortality. Oecologia, 1983, 56: 160-165.
    159. Aerts R. The advantages of being evergreen. Trends in Ecology and Evolution, 1995,10 : 402-40
    160.林植芳.稳定性碳同位素在植物生理生态研究中的应用.植物生理学通讯,1990,(3):1-6.
    161.梁银丽,康绍忠,山仓.水分和氮磷水平对小麦碳同位素分辨率和水分利用效率的影响.植物生态学报,2000,24(3),289-292.
    162.沈承德,易惟熙,孙彦敏.鼎湖山森林土壤~(14)C表观年龄及δ~(13)C分布特征.第四季研究,2000,20(4):335-344.
    163.渠春梅,韩兴国,苏波,等.云南西双版纳片断化热带雨林植物叶δ13C值的特点及其对水分利用效率的指示.植物学报,2001,43(2):186-192.
    164.苏波,韩兴国,李凌浩,等.中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应.植物生态学报,2000,2 4(6):648-655.
    165.郑淑霞,上官周.近7 0年来黄土高原典型植物δ13C值变化研究.植物生态学报, 2005,29(2):289-295.
    166.马剑英,陈发虎,夏敦胜.荒漠植物红砂叶片δ13C值与生理指标的关系.应用生态学报, 2008, 19 (5):1166- 1171.
    167.苏培玺,严巧娣.内陆黑河流域植物稳定碳同位素变化及其指示意义.生态学报, 2008 28(4):1616-1624.
    168.高三平,李俊祥,徐明策.天童常绿阔叶林不同演替阶段常见种叶片N、P化学计量学特征.生态学报,2007,27(3):947-952.
    169.祁建,马克明,张育新.辽东栎(Quercus liaotungensis )叶特性沿海拔梯度的变化及其环境解释生态学报,2007,27(3):930-937.
    170.刘学炎,肖化云,刘丛强,等.苔藓新老组织及其根际土壤的碳氮元素含量和同位素组成(δ13C和δ15N)对比.植物生态学报,2007,31(6):1168-1173.
    171.孙书存,陈灵芝.不同生境中辽东栎的构型差异.生态学报,1999,19(3):359-364.
    172.郝占庆,邓红兵,姜萍等.长白山北坡植物群落间物种共有度的海拔梯度变化.生态学报,2001,21(9): 1421-1426.
    173.王新功,洪伟,吴承祯等.武夷山米槠林优势种种间联结性研究.中国农业生态学报, 2003, 11(3): 25-28.
    174.王新功,洪伟,吴承祯等.武夷山米槠林主要种群生态位研究.中南林学院学报,2003, 5(3):20-25.
    175.闫淑君,洪伟,吴承祯等.武夷山米槠林优势种群的竞争格局及动态模拟.福建林学院学报,2002,22 (1):1-3.
    176.闫淑君,洪伟,吴承祯等.武夷山天然米槠林优势种群结构与分布格局.热带与亚热带植物学报,2002,10(1):15-21
    177.毕晓丽,洪伟,吴承祯等.武夷山米槠种群生命表分析.热带与亚热带植物学报,2001,9 (3):243-247.
    178. LY/T 1210~1275-1999.中华人民共和国林业行业标准,国家林业局,1999,274-294.
    179.张宪政.植物叶绿素含量测定——丙酮乙醇混合液法,辽宁农业科学,1986,(3):26-28.
    180.唐延林,黄敬峰,王人潮.水稻不同发育时期高光谱与叶绿素和类胡萝卜素的变化规律.中国水稻科学2004,18(1):59-66.
    181.柏军华,王克如,初振东,等.叶面积测定方法的比较研究.石河子大学学报(自然科学版),2005,23(2):216-218.
    182.于顺利,马克平,陈灵芝.蒙古栎群落叶型的分析.应用生态学报,2003,14(1):151-153.
    183.王永坤,吕芳芝.植物叶面积测定的研究.农业与技术, 1997, 98( 3):15-17.
    184. Garnier E, Shipley B, Roumet C, et al. Standardized protocol for the determination of specific leaf area and leaf dry matter content. Functional Ecology, 2001, 15: 688- 695.
    185.刘肃,李酉开.Mehlich3通用浸提剂的研究.土壤学报,1995,32(2):132-141.
    186.郭显光.如何用SPSS软件进行主成分分析.统计与信息论坛,1998,(2):60-64.
    187.刘润幸,萧灿培,宫齐,侯晓莉.利用SPSS进行主成分回归分析.数理医药学杂志, 2001,14(2): 103-105.
    188. Jan L, Petr S.Multivariate Analysis of Ecological Data using Canoco.Cambridege: Cambridege university press.2003, 26-32.
    189. Xu Z H,Prasolova N,Lundkvist K et al. Genetic variation in branchlet carbon and nitrogen isotope composition and nutrient concentration of 11-year-old hoop pine families in relation to tree growth in subtropical Australia. Forest Ecology and Management, 2003, 186:359–371.
    190.杨成,刘丛强,宋照亮,等.贵州喀斯特山区植物叶片碳同位素组成研究.地球与环境,2007,35(1): 33-38.
    191.冯虎元,安黎哲,陈拓,等.马先蒿属植物稳定碳同位素组成与环境因子之间的关系.冰川冻土,2003,25(1):88-93
    192.严昌荣,韩兴国,陈灵芝,等.暖温带落叶阔叶林主要植物叶片中δ13C值的种间差异及时空变化.植物学报,1998,40(9):853-859.
    193.严昌荣,韩兴国,陈灵芝,等.中国暖温带落叶阔叶林中某些树种的13C自然丰度:13C值及其生态学意义.生态学报,2002,22(12):2163-2166。
    194.洪伟,黄锦湖,李键等.不同桉树品种稳定碳同位素研究.福建林学院学报,2008, 28 (3) : 193– 197.
    195. Li H T,Xia J,Xiang L,et al.Seasonal Variation ofδ13C of Four Tree Species:A Biological Integrator of Environmental Variables.Journal of Integrative Plant Biology, 2005, 47(12): 1459-1469.
    196. Tamir K, Deborah H, Tongbao L ,et al.Association between tree-ring and needleδ13C and leaf gas exchange in Pinus halepensis under semi-arid conditions. Oecologia, 2005,144:45–54.
    197. Robert D, GuyDiane L H.Population differences in stable carbon isotope ratio of Pinus contorta Dougl.ex Loud.:relationship to environment,climate of origin,and growth potential.Canadian Journal of Botany,2001,79(3):274-283.
    198. Toft N L, Anderson J E,Nowak R S.Water use efficiency and carbon isotope composition of plants in a cold desert environment.Oecologia,1989,80:11-18.
    199. Zhang J W, Marshall J D, Jaquish B C.Genetic differentiation in carbon isotope discrimination and gas exchange in Pseudotsuga menziesii. Oecologia, 1993, 93: 80-87.
    200. Zhang J W, Marshall J D, Fins L, Correlated population differences in dry matter accumulation, allocation and water use efficiency in three sympatric conifer species. For.Sci. 1996, 42(2): 242-249.
    201. Vitousek P M, Field C B, Matson P A. Variation in foliarδ13C in Hawaiian Metrosideros polymorpha : a case of internal resistance. Oecologia, 1990, 84: 362– 370.
    202. Kogami H, Hanba Y T, Kibe T, et al. CO2 transfer conductance, leaf structure and carbon isotope composition of Polygonum cuspidatum leaves from low and high altitudes. Plant, Cell and Environment, 2001, 24: 529– 538.
    203. K rner C, Farquhar G D, Wong S C. Carbon isotope discrimination by plants follows latitudinaland altitudinal trends. Oecologia, 1991, 88:30-40.
    204. Ares A, Fownes J H. Productivity, nutrient and water-use efficiency of Eucalyptus saligna and Toona ciliata in Hawaii. Forest Ecology and Management, 2000,139, 227-236.
    205.陈拓,陈发虎,安黎哲,等.不同海拔祁连园柏树轮和叶片δ13C值的变化.冰川冻土,2004,26(6):767-771.
    206. Ackerly D D, Knight C A, and Weiss S B, et al. Leaf size, specific leaf area and microhabitat distribution of chaparral plans: contrasting patterns in species level and community level analyses. Oecologia, 2002, 130: 449-457.
    207.刘明华,范君华.四个栽培棉种花铃期功能叶生理生化特性的比较.棉花学报, 2007,19 (6) :477-481.
    208.师生波,贲桂英,韩发.不同海拔地区紫外线B辐射状况及植物叶片紫外线吸收.植物生态学报, 1999,23(6):529-535.
    209. Kourill R, Ilikl P, Nausl J, et al. On the limits of applicability of spectrophotometer and spectrofluorime tricmethods for the determination of chlorophyll a/b ratio. Photosynth Research, 1999,62: 107-116.
    210. Friend A D, Woodward F I. Evolutionary and ecophysiological responses of mountain plants to the growing season environment. Advances in Ecological Research, 1990, 20: 59-124.
    211. Woodward F I. The significance of interspecific differences in specific leaf area to the growth of selected herbaceous species from different altitudes. New Phytol, 1983, 95: 313-323.
    212.沈淞海,许复华.四个栽培棉种叶片光合色素特性研究.中国棉花, 1992,19 (5) :10-12.
    213.蒋德安,徐银发.水稻光合速率、气孔导度和Rabisco活力的日变化.植物生理学报, 1996,22 (1) : 94-100.
    214.王继永,王文全,刘勇.林药间作系统中药用植物光合生理适应性规律研究.林业科学研究, 2003,16 (2):129-134
    215. Voronin P Y, Ivanova L A, Ronzhina D A, et al. Structural and functional changes in the leaves of plants from steppe communities as affected by aridization of the Eurasian climate. Russian Journal of Plant Physiology, 2003, 50: 604-611.
    216.赵广东,王兵,李少宁.江西大岗山常绿阔叶林优势种丝栗栲和苦槠栲不同叶龄叶片光合特性研究.江西农业大学学报, 2005,27(2):161-165.
    217.胡哲森,李荣生.油茶不同叶龄叶片生理生化指标差异的研究.林业科技开发, 2000,14(1):30-31.
    218. González J.A, Gallardo M.G, Boero C. Altitudinal and seasonal variation of protective and photosynthetic pigments in leaves of the world’s highest elevation trees Polylepis tarapacana (Rosaceae). Acta Oecologica, 2007,32:36 - 41.
    219. George K, Artemios M B, Michael M. Combined effects of altitude and season on leafcharacteristics of Clinopodium vulgare L. (Labiatae).Environmental and Experimental Botany, 2007,60(2): 69–76.
    220. Masunaga T,Kubota D,Hotta M,Shinmura Y,Wakatsuki T. Distribution characteristics of mineral elements in trees of tropical rain forest, West Sumatra,Indonesia. In: Schulte A, Ruhiyat D (Eds.), Soil of Tropical Forest Ecosystems. Springer, Heidelberg, 1998a: 168-174.
    221. Masunaga T, Kubota D, Hotta M, Wakatsuki T.Nutritional characteristics of mineral elements in leaves of tree species in tropical rain forest, west Sumatra, Indonesia. Soil Sci.Plant Nutr, 1998b:44,315-329.
    222. Masunaga T, Kubota D, William U. Spatial distribution pattern of trees in relation to soil edaphic status in tropical rain forest in west Sumatra, Indonesia.I.Distribution of accumulation. Tropics, 1998c, 7:209-222.
    223. Vitousek P M, Sanford R L, Nutrient cycling in moist tropical forests. Ann. Rev .Ecol. Syst., 1986,17:137-167.
    224. Wu C C, ,Tsui C C, Hseih C F. Mineral nutrient status of tree species in relation to environmental factors in the subtropical rain forest of Taiwan. Forest Ecology and Management, 2007,239:81-91.
    225. Nussbaum R, Anderson J, Spencer T. Factors limiting the growth of indigenous tree seedlings planted on degraded rain forest soils in Sabah, Malaysia. Forest Ecology and Management,1995, 74: 149–159.
    226. Susaya J P,Asio V B.Status of phosphorus in the rain forest of Mt.Pangasugan, Leyte. Philippines. Ann.Trop.Res., 2005:27,70-82.
    227. Zikeli S,Asio V B,Jahn R, Nutrient characteristics of soil in the rain Forest of Mt.Pangasugan, Leyte, Philippines. Ann.Trop.Res., 2000, 22:78-88.
    228. Wardle D A, Walker L R, Bardgett R D, Ecosystem properties and Forest decline in contrasting long-term chronosequences. Science, 2004,305:509-513
    229. Grubb P J. Control of forest growth and distribution on wet tropical mountains: with special reference tomineral nutrition. Ann. Rev. Ecol. Syst. 1977, 8: 83–107.
    230. Shipley B, Almeida-cortez J. Interspecific consistency and intraspecific variability of specific leaf area with respect to irradiance and nutrient availability. Ecoscience, 2003, 10 (1):74 - 79.
    231. Vile D, Garnieré, Shipley B, et al. Specific leaf area and dry matter content estimate thickness in Laminar Leaves. Annals of Botany, 2005, 96:1129 -1136.
    232. Cornelissen J H C, Lavorel S, Garnier E, et al. A handbook of protocols for standardized and easy measurement of plant functional traits worldwide. Australian Journal of Botany,2003, 51, 335– 380
    233.胡启武,宋明华,欧阳华,刘贤德.祁连山青海云杉叶片氮、磷含量随海拔变化特征.西北植物学报,2007,27(10): 2072-2079.
    234. Tanner E V, Vitousek P M, Cuevas E. Experimental investigation of nutrient limitation of forest growth on wet tropicalmountains. Ecology, 1998,79: 10- 22.
    235. Leigh E G. Structure and climate in tropical rain forest. Annual Review of Ecol- ogy and Systematics, 1975, 6: 67-86.
    236. Garnier E, Laurent G, Bellmann A, et al. Consistency of species ranking based on functional leaf traits. New Phytologist, 2001, 152: 69-83.
    237. Poorter H and de Jong R. A comparison of specific leaf area, chemical composit ion and leaf construction costs of field plants from 15habitats differing in productivity. New Phytologist,1999, 143: 163-176
    238. Shipley B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Functional Ecology, 2002,16(5): 682-689.
    239. Li C, Berninger F, Koskela J, Sonninen E. Drought responses of Eucalyptus microtheca provenances depend on seasonality of rainfall in their place of origin, Aust. J. Plant Physiol. 2000,27, 231–238.
    240. Ponton S, Dupouey J L, Breda N, Dreyer E. Comparison of water-use efficiency of seedlings from two sympatric oak species: genotype×environment interactions, Tree Physiology, 2002, 22: 413–422.
    241. Brodribb T, Hill R S. The photosynthetic drought physiology of a diverse group of southern hemisphere conifer species is correlated with minimum seasonal rainfall, Funct. Ecol. 1998, 12,465–471.
    242. Li C,Liu S,Berninger F. Picea seedlings show apparent acclimation to drought with increasing altitude in the eastern Himalaya. Trees 2004, 18,277-283.
    243. Qiang W, Wang X L, Chen T, Feng H Y, et al. Variation in stomatal density and carbon isotope values in Picea crassifolia at different altitudes in Qi lian Mountains. Trees, 2003,17: 258-262.
    244. Luo J X, Zang R G, Li Chunyang. Physiological and morphological variations of Picea asperata populations originating from different altitudes in the mountains of southwestern China. Forest Ecology and Management, 2006, 221: 285–290.
    245. Shipley B, Lechowicz M J. the functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Ecoscience, 2000, 7:183-194.
    246. Westoby M, Wright I J. Land-plant ecology on the basis of functional traits. Trends in Ecology and Evolution, 2006, 21(5): 261-268.
    247. Lamont B B, Groom P K, Cowling R M.High leaf mass per area of related species assemblages may reflect low rainfall and carbon isotope discrimination rather than low phosphorus and nitrogen concentrations.Functional Ecology, 2002, 16: 403-412.
    248. Moorcroft P R,Hurtt G C,Pacala S W. A method for scaling vegetation dynamics: the ecosystem demography model (ED).Ecology Monograohs, 2001, 71(4): 557-586.
    249. Kikuzawa K, Lechowicz M J.Towards synthesis of relationships of among leaf longevity, instaneous photosynthetic rate, lifetime leaf carbon gain, and the gross primary production of forests. The American Naturalist, 2006, 168(3): 373-383.
    250. Poorter H, Evans J R. Photosynthetic nitrogen use efficiency of species that differ inherently in specific area. Oecologia, 1998, 116: 26-37.
    251. Taub D R, Lerdau M T. Relationship between leaf nitrogen and photosynthetic rate for three NADME and three NADPME C4 grasses. American Journal of Botany, 2000, 87: 412-417.
    252.赵平,张志权.欧洲3种常见乔木幼苗在两种光环境下叶片的气体交换、叶绿素含量和氮素含量.热带亚热带植物学报,1999, 7 (2):133-139.
    253.郑淑霞,上官周平.不同功能型植物光合特性及其与叶氮含量、比叶重的关系.生态学报,2007,27(1):171-181.
    254.王玉涛,李吉跃,程炜等.北京城市绿化树种叶片碳同位素组成的季节变化及与土壤温湿度和气象因子的关系.生态学报,2008,28(7):3143-3151
    255. Xue H Q, Gan X M, Sun M H et al. Study on the relatioship between water use efficiency and carbon isotope discrimination in drought condition. Chinese Journal of Oil Crop Science, 1999, 21 (1):27- 34.
    256. Garnier E, Cordonnier P, Guillerm J L, et al. Specific leaf area and leaf nitrogen concentration in annual and perennial grass species growing in Mediterranean old-fields. Oecologia, 1997, 111: 490- 498.
    257. Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant and Soil, 1998, 199: 213-227.
    258. Juhrbandt J, Leuschner C, H?lscher D. The relationship between maximal stomatal conductance and leaf traits in eight Southeast Asian early successional tree species, Forest Ecology and Management,2004,202 :245–256.
    259. Bort J, Araus J L, Hazzam H et al. Relationships between early vigour, grain yield, leaf structure and stable isotope composition in field grown barley. Plant Physiol. Biochem, 1998, 36(12):889-897.
    260. Feng H Y,An L Z,Chen T. The effect of enhanced ultraviolet-B radiation on growth, photosynthesis and stable carbon isotope composition (δ13C) of two soybean cultivars (Glycine max) under field conditions. Environmental and Experimental Botany, 2003, 49:1-8.
    261. Ares A, Fownes JH. Water supply regulates structure,p roductivity, and water use efficiency of Acacia koa in Hawaii. Oecologia, 1999, 121 (4): 458- 466.
    262. DesRochers A, vandenDriessche R. Thomas B R. NPK fertilization at planting of three hybrid poplar clones in the Boreal region of Alberta. Forest Ecology and Management, 2006,232: 216-225.
    263. Takashima T, Hikosake K, Hirose T. Photosynthesis or persistence: nitrogen all location in leaves of evergreen and deciduous Quercus species .Plant Cell and Environment, 2004, 27: 1047- 1054.
    264. Warren C R, Adams M A. Evergreen trees do not maximize instantaneous photosynthesis. Trends in Plant Science, 2004, 9: 270- 274.
    265. Welker J M, Jónsdóttir I S, Fahnestock J T . Leaf isotopic (δ13C andδ13N) and nitrogen contents of Carex plants along the Eurasian Coastal Arctic: Results from the Northeast Passage expedition. Polar Biology, 2003, 27(1): 29- 37.
    266. Ripley B S, Muller E, Behenna M. Biomass and photosynthetic productivity of water hyacinth (Eichhornia crassipes) as affected by nutrient supply and mirid (Eccritotarus catarinensis) biocontrol .Biological control, 2006,3,392-400.
    267.任书杰,于贵瑞,陶波等.中国东部南北样带654种植物叶片氮和磷的化学计量学特征研究.环境科学,2007,28(12):2665-2673.
    268. Brown K R, Vanden Driessche R. Effects of nitrogen and phosphorus fertilization on the growth and nutrition of hybrid poplars on Vancouver Island. New For. 2005,29,89-104.
    269. Humble G D, Raschke K. Stomatal opening quantita-ively related topotassium transport. PlantPhysiol, 1971, 48, 447-453.
    270. Hutmacher R B.Krieg D R. Photosynthetic rate control in cotton: Stomatal and non stomatal factors.Plant Physiol. 1983, 73:658-661.
    271. Longstreth D J, Nobel P S.Nutrient influences on leaf photosynthesis. Effects of nitrogen, phosphorous,and potassium for Gossypium hirsutum L.Plant.Physiol., 1980,65, 541-543.
    272. Tsialtas J T, Tokatlidis I S, Tsikrikoni C et al. Leaf carbon isotope discrimination, ash content and K relationships with seed cotton yield and lint quality in lines of Gossypium hirsutum L., Field Crops Research, 2007, 107(1):70-77.
    273.李三相,周向睿,王锁民. Na +在植物中的有益作用,中国沙漠, 2008 ,28(3):485- 490.
    274. Very A A,Robinson M F,Mansfield T A ,et al. Guard cell cation channel s are involved in Na+induced stomatal closure in a halophyte. Plant J,1998,14 :509 -521
    275. Raghavendra A M, Rao J M, Das V S R. Replaceability of potassium by sodium for stomatal opening in epidermal strips of stomatal opening in epidermal strips of Commelina benghalensis. ZPflanzenphysiol, 1976, 80: 36 - 42.
    276. Terry N, Ulrich A. Effect s of potassium deficiency on t he photosynthesis and respiration of leaves of sugar beet. Plant Physiology, 1973, 51:783– 786.
    277. Wang S M, Wan C G, Wang Y R ,et al . The characteristics of Na +, K+ and free praline distribution in several drought - resistant plants of the Alxa Desert, China. Journal of Arid Environment, 2004, 56: 525 - 539.
    278.李景平,杨鑫光,傅华.阿拉善荒漠区3种旱生植物体内主要渗透调节物质的含量和分配特征.草业科学,2005,22 (19) :35- 38.
    279. Araus J L, Casadesus J, Asbatia, Nachit M M. Basis of the relationship between ash content in the flag leaf and carbon isotope discrimination in kernels of durum wheat .Photosynthetica, 2001, 39: 591-596.
    280.郭笃,王秋兵.主成分分析法对土壤养分与小麦产量关系的研究,土壤学报,2005,42(3):523-527
    281.段晓男,王效科,冯兆忠,等.乌梁肃海野生芦苇光合和蒸腾特性研究,干旱区地理,2004 27(4): 637-641.
    282.孙莉,陈曦,包安,等.棉花各生育期高光谱数据与叶片生物物理生物化学量的相关分析.干旱区地理2004,27(1):124-127.
    283. Martinelli L A. Stable carbon isotope variation in C3 and C4 plants along the Amazon River. Nature, 1991, 353, 57-59.
    284. Dacidson G R. The stable isotopic composition and measurement of carbon in soil CO2. Geochimica of comochimica Acta. 1995, 59(12): 2485-2489.
    285. Manetas Y, Grammatikopoulos G, Kyparissis A. The use of the portable, non-destructive, SPAD-502 (Minolta) chlorophyll meter with leaves of varying trichome density and anthocyanin content. Journal of Plant Physiology, 1998, 153: 513-516.
    286. Netto A T, Campostrini E, Oliveira DJ, Bressan-Smith RE. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Scientia Horticulturae, 2005, 104: 199-209.
    287. Tobias D J, Yosihkawa K, Ikemoto A. Seasonal changes of leaf chlorophyll content in the crowns of several broad-leaved tree species. J Jap Soc Reveget Technol, 1994, 20 (1):21-32.
    288. Chang S X, Robison D J. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecology and Management, 2003, 181(3): 331-338.
    289. Chapman S C, Barreto H J. Using a chlorophyll meter to estimate specific leaf nitrogen oftropical maize during vegetative growth. Agron J, 1997, 89: 557-562.
    290. HRC (Hardwood Research Cooperative). Growth and foliar nitrogen response of plantations to fertilization: region-wide study no. 46—4th year results. In: Proceedings of the 37th Annual Report Hardwood Research Cooperative. Department of Forestry, North Carolina State University, Raleigh, NC, 2000: 38-44.
    291. Harrisa J R, Day S D, Kane B. Nitrogen fertilization during planting and establishment of the urban forest: A collection of five studies. Urban Forestry & Urban Greening, 2008, 7: 195-206.
    292. Pinkard EA, Patel V, Mohammed C. Chlorophyll and nitrogen determination for plantation-grown Eucalyptus nitens and E. globulus using a non-destructive meter. Forest Ecology and Management, 2006,223: 211-217.
    293. Close D C, Battaglia M, Davidson N J. Within-canopy gradients of nitrogen and photosynthetic activity of Eucalyptusnitens and Eucalyptus globulus in response to nitrogen nutrition. Australian Journal of Botany. 2004, 52: 133-140.
    294.姜丽芬,石福臣,王化田.叶绿素计SPAD-502在林业上应用.生态学杂志2005,24 (12) :1543-1548.
    295.王婷,胡亮,郭晓敏.毛竹叶片N含量与SPAD值的相关性研究.安徽农业科学2006,34(15) :3670– 3671.
    296.王文杰,李雪莹,王慧梅,等.便携式测定仪在测定叶片衰老过程中氮和叶绿素含量上的应用.林业科学,2006,42(6):20-25
    297. Richardson, A D, Duigan, S P, Berlyn, G P. An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol. 2002, 153: 185-194.
    298. Sandoval-Villa M, Wood CW, Guertal EA. Tomato leaf chlorophyll meter readings as affected by variety, nitrogen form, and night-time nutrient solution strength. Journal of Plant Nutrition, 2002, 25: 2129-2142.
    299. Wu F B, Wu L H., Xu F H. Chlorophyll meter to predict nitrogen sidedress requirements for short-season cotton (Gossypium hirsutum L.). Filed Crop Research. 1998, 56: 309-314.
    300. Peng S, Laza R C, Garcia F V. Chlorophyll meter estimates leaf area based nitrogen concentration of rice. Commun Soil Sci Plant Anal 1995, 26: 927-935.
    301. Thompson J A, Schweitzer L E, Nelson R L. Association of specific leaf weight, an estimate of chlorophyll, and chlorophyll concentration with apparent photosynthesis in soybean. Photosynth Research, 1996, 49: 1-10.
    302. Kim D S, Yoon Y H, Shin J C. Varietal differences in relationship between SPAD value and chlorophyll and nitrogen concentration in rice leaf. Korean J Crop Sci, 2002, 47: 263-267.
    303. Sandoval-Villa M, Wood C W, Guertal E A. Tomato leaf chlorophyll meter readings as affectedby variety, nitrogen form, and night-time nutrient solution strength. Journal of Plant Nutrition. 2002, 25: 2129-2142.
    304. Campbell R J, Mobley K N, Marini R P. Growing conditions alter relationship between SPAD-502 values and apple leaf chlorophyll. HortScience, 1990, 25: 330-331.
    305. Wu J D, Wang D, Rosen C J.Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research, 2007, 101: 96-103.
    306. Sibley, J L, Eakes D J, Gilliam C H. Foliar SPAD-502 meter values, nitrogen levels, and extractable chlorophyll for red maple selections. HortScience,1996,31: 468~470.
    307. Niinemetsülo, Kull Kalevi. Leaf structure vs. nutrient relationships vary soil conditions in temperate shrubs and trees. Acta Oecologica, 2003, 24(4): 209-219.
    308.韦兰英,上官周平,黄土高原不同退耕年限坡地植物比叶面积与养分含量的关系. 2008, 28(6):2526-2535.
    309. Hendrik P, Rob DE J. A comparison of specific leaf area, chemical composition and leaf construction costs of field plants from 15 habitats differing in productivity. New Phytol, 1999, 143, 163 - 176.
    310. HoffmannW A, et al. Specific leaf area explains differences in leaf traits between congeneric savanna and forest trees. Functional Ecology, 2005,19 (6), 932– 940
    311. McJannet C L, Keddy P A, Pick F R. Nitrogen and phosphorus tissue concentrations in 41 wetland plants: a comparison across habitats and functional groups. Function. Ecology. 1995,9, 231–238.
    312. Kayama M, Sasa K, Koike T. Needle life span, photosynthetic rate and nutrient concentration of Picea glehnii, P. jezoensis and P. abies planted on serpentine soil in northern Japan. Tree Physiology, 2002, 22 (10): 707-716.
    313. Tognett R, Peňuelas J. Nitrogen and carbon concentrations, and stable ratios in Mediterranean shrubs growing in the proximity of CO2 spring. Biologia Plantarum, 2003,46(3):411-418.
    314.郑淑霞,上官周平,黄土高原地区植物叶片养分组成的空间分布格局.自然科学进展. 2006, 16(8):965-973.
    315. Kocrselman W, Meuleman A F M. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. The journal of Applied Ecology, 1996, 33(6): 1441-1450.
    316. Meziane D, Shipley B. Interacting determinants of specific leaf area in 22 herbaceous species : effects of irradiance and nutrient availability. Plant, Cell & Environment, 1999, 22 (5), 447– 459.
    317.李玉霖,崔建垣,苏永中.不同沙丘生境主要植物SLA和叶LDMC的比较.生态学报, 2005, 25 (2) :304-311.
    318. Burns K C. Patterns in s pecific leaf area and the structure of a temperate heath community. Diversity and Distributions, 2004, 10, 105 -112.
    319. Shipley B, Thi-Tam V u. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytologist, 2002, 153: 359-364.
    320.张金屯.数量生态学.北京:科学出版社,2004:130-135.