胶原性关节炎大鼠CD4~+CD25~+调节性T细胞对腹腔巨噬细胞的调控机制及来氟米特的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
类风湿性关节炎(rheumatoid arthritis, RA)是一种以关节滑膜炎为特征的慢性、全身性、自身免疫性疾病,其病因及发病机制目前仍不清楚。近年来,人们发现CD4+CD25+调节性T细胞(CD4+CD25+ regulatory T cells, CD4+CD25+Tregs)是一群具有独特作用方式和功能特征的T细胞亚群,具有免疫调节作用。其在RA中的作用受到人们的广泛关注,有望成为治疗RA和筛选抗RA药物的靶点之一。
     大量研究表明,CD4+CD25+Tregs能够抑制自身反应性T细胞的活化与效应功能,以“主动”方式维持免疫耐受和自身稳定。越来越多的证据表明,RA患者体内CD4+CD25+Tregs存在异常,CD4+CD25+Tregs的数量和/或功能不足可能与RA的发生、发展有关。CD4+CD25+Tregs在自身免疫性疾病中的表达已成为目前研究的热点,但有关CD4+CD25+Tregs在RA中的表达与作用机制尚不明确,值得进一步深入研究。因此,本课题选用大鼠胶原性关节炎(collagen-induced arthritis, CIA)这种国际公认的RA动物模型,在成功提取纯化CⅡ、建立大鼠CIA模型的基础上,动态监测外周血中CD4+CD25+Tregs的比例变化,分析其在关节炎病程中的作用。并且以CD4+CD25+Tregs的主要细胞因子TGF-β1为切入点,探讨CD4+CD25+Tregs对腹腔巨噬细胞的调控机制及抗关节炎药来氟米特的作用,为研究RA的发病机制和治疗提供新的理论依据。
     研究内容主要包括以下三个部分:
     1.提取和纯化鸡Ⅱ型胶原,建立大鼠胶原性关节炎模型
     采用酸性条件下蛋白酶解与中性条件下层析洗脱的双重方法,成功获得乙酸可溶性鸡Ⅱ型胶原蛋白(Collagen TypeⅡ, CⅡ),得率约为0.17%。经SDS-PAGE和全波长紫外扫描检测,确定其与Sigma公司CⅡ标准品一致。采用CⅡ建立大鼠胶原性关节炎(Collagen-induced arthritis,CIA)模型,从体重、足爪肿胀度、多发性关节炎评分、血清中抗CⅡ抗体浓度、病理等几个方面评价,确定模型制备成功。经4次反复实验,造模成功率约为42%。
     2.研究CIA大鼠CD4+CD25+调节性T细胞对腹腔巨噬细胞的调控机制
     动态监测大鼠CIA病变过程中外周血CD4+CD25+Foxp3+T细胞的比例,与足爪肿胀做相关性分析。结果表明:CIA大鼠足爪肿胀与CD4+CD25+调节性T细胞(CD4+CD25+Tregs)的比例呈负相关,相关系数为-0.786。免疫荧光和RT-PCR结果显示,CIA大鼠CD4+CD25+调节性T细胞(CD4+CD25+Tregs)和腹腔巨噬细胞(Peritoneal macrophage,PMΦ)上分别表达TGF-β和TGF-βRII(Tβ-RII),说明TGF-β是CD4+CD25+Tregs的重要细胞因子,CD4+CD25+Tregs可通过TGF-β对巨噬细胞(macrophage, MΦ)起作用,与文献报道的结果相一致。
     采用TGF-β与CIA大鼠PMΦ体外共培养,研究TGF-β对CIA大鼠PMΦ免疫功能的影响及作用机制。结果表明:TGF-β(5ng/ml, 36h)可抑制LPS刺激的CIA大鼠PMΦ炎性细胞因子TNF-α和IL-6的分泌及mRNA的表达;促进抑炎性细胞因子IL-10的分泌和mRNA的表达;抑制NO的分泌及iNOSmRNA的表达。RT-PCR、流式细胞术及Western blot结果表明,TGF-β(5ng/ml, 36h)可抑制LPS刺激的CIA大鼠PMΦTLR4 mRNA和蛋白的表达,以上结果表明TGF-β可通过LPS-TLR4通路影响CIA大鼠PMΦ的免疫功能。
     3.探讨来氟米特对CIA大鼠CD4+CD25+调节性T细胞调控腹腔巨噬细胞的影响
     首先,来氟米特可以直接对CIA大鼠CD4+CD25+Tregs产生影响。体内实验结果表明,来氟米特(Lef 2 mg/kg,d12-d33)对CIA大鼠具有治疗作用,可升高CIA大鼠脾淋巴细胞中CD4+CD25+Tregs的比例及Foxp3 mRNA的表达。体外ConA诱导的CIA大鼠脾淋巴细胞增殖体系中,A771726(0.1、1、10μM)可促进脾淋巴细胞向CD4+CD25+Tregs分化,增加TGF-β的分泌,从而抑制ConA介导的脾淋巴细胞增殖活性。
     其次,来氟米特可以直接抑制CIA大鼠腹腔巨噬细胞的功能。体外实验结果表明,A771726(0.1、1、10μM)通过LPS-TLR4通路抑制CIA大鼠PMΦ的分泌功能。
     第三,来氟米特可以加强CD4+CD25+Tregs对PMΦ的调控作用。具体表现为:体外实验中,A771726(0.1、1、10μM)可加强TGF-β对CIA大鼠PMΦ分泌炎性细胞因子的抑制作用、促进抑炎性细胞因子的分泌;加强TGF-β对PMΦ产生NO的抑制作用。RT-PCR及Western blot结果表明,A771726可通过进一步抑制CIA大鼠PMΦTLR4的表达,从而加强TGF-β对PMΦ的调控作用。
     结论:
     ①制备CⅡ建立大鼠CIA模型,在临床表现、免疫学和组织病理学方面均与人类RA类似,提示模型制备成功。
     ②CIA大鼠CD4+CD25+Tregs对PMΦ的调控机制:CD4+CD25+Tregs可通过TGF-β与PMΦ上的Tβ-RII结合,抑制PMΦ表面TLR4的表达,从而抑制LPS刺激的CIA大鼠PMΦ的免疫功能。
     ③来氟米特对CIA大鼠具有治疗作用,其机制可能有三:提高CIA大鼠抑制性细胞CD4+CD25+Tregs的比例;直接抑制PMΦ的免疫功能;通过LPS-TLR4途径加强CD4+CD25+Tregs对PMΦ的调控作用。
Rheumatoid arthritis is a chronic, systemic and self-immunological disease, whose origin and pathogenesis is still unknown. In recent years, CD4+CD25+ regulatory T cells (CD4+CD25+Tregs) that possess unique functions on regulating immunity have been founnd. Its role in RA have been emphasized a lot which show that it could be a new target point of anti-arthritic drugs.
     Many studies demonstrated that CD4+CD25+Tregs could inhibit the activity and function of autoreactive T cells, which maintain immunologic tolerance and homoiostasis in a positive way. The abnormality of CD4+CD25+Tregs in quantity and function related to the development of autoimmune disease. More and more evidence indicate that CD4+CD25+Tregs are abnormal in RA patients and its disability is related to the occurrence and development of RA. The expression of CD4+CD25+Tregs in autoimmune disease has been focused on, but the expression and mechanism of CD4+CD25+Tregs in RA is still not well-known and need further studying. In this study, collagen-induced arthritis (CIA) in rats which well represents RA is chosen, based on abstracting and purification of collagen type II. The kinetics of CD4+CD25+Tregs population was determined to analyze its effect in CIA course. The main cytokine TGF-β1 was chose to investigate the mechanism of regulation of CD4+CD25+Tregs on peritoneal macrophages in CIA rats and the effects of anti-arthritic drug leflunomide on the regulation, to clarify the mechanism of RA and to find new pathways in cure RA. The study contains three sections:
     1. Extract and purify collagen type II, and induce collagen-induced arthritis in rats.
     Soluble collagen typeⅡ(CⅡ) was released from the chicken sternums with pepsin digestion and passed over a DE-52 column. Soluble collagen typeⅡ(CⅡ) was released from the chicken sternums with pepsin digestion and passed over a DE-52 column. The yield of CⅡis 0.17%. SDS-PAGE and Ultra-violet scanning results of the sample and standard CⅡfrom Sigma Company were the same. Collagen-induced arthritis in rats was induced with this product, and the animal model was successful by determing body weight, paw swelling, polyarthritis index, anti-CⅡantibody in serum and histopathology examination. The achievement ratio of 4 experiments is 42%.
     2. Study the mechanism of regulation of CD4+CD25+ regulatory T cells on peritoneal macrophages in CIA rats.
     Detect the kinetics of CD4+CD25+Foxp3+ T cell ratio during the course of CIA in peripheral blood of rats, and analyze it with paw swelling. The results indicated that the paw swelling is negatively related to the percentage of CD4+CD25+Tregs in CIA rats, and the coefficient correlation is -0.786. The results in immunofluorescence and RT-PCR showed that CD4+CD25+Tregs and peritoneal macrophages (PMΦ) in CIA rats express TGF-βand Tβ-RII, respectively. This indicated that CD4+CD25+Tregs could effect on macrophages through TGF-β, which is in accordance with the literature.
     TGF-βwas incubated with PMΦfrom CIA rats in vitro to study the effects and mechanism of it on the immune function of CIA rats. The results showed that TGF-β(5 ng/ml, 36h) could suppress the secretion and mRNA expression of TNF-αand IL-6, improve the secretion and mRNA expression of anti-inflammatory IL-10, and inhibit the secretion of NO and mRNA expression of iNOS in PMΦfrom CIA rats. The results of RT-PCR, flow cytometry and Western blot indicated that TGF-β(5 ng/ml, 36h) inhibits mRNA and protein expression of TLR 4 in PMΦof CIA rats, which suggests that TGF-βcould regulate the immune function of PMΦfrom CIA rats through LPS-TLR4 pathway.
     3. Investigate the effects of leflunomide on the regulation of CD4+CD25+Tregs on PMΦof CIA rats.
     Firstly, leflunomide has effects on CD4+CD25+Tregs of CIA rats. The results in vivo experiment showed that leflunomide (2 mg/kg, d12-d33) has therapeutic effect on CIA rats, could increase the percentage of CD4+CD25+T cell and the expression of Foxp 3 mRNA. In in vitro Con A-induced splenic lymphocytes proliferation system, A771726 (0.1, 1, 10μM) promoted lymphocytes differentiation to CD4+CD25+Tregs and increased the secretion of TGF-β, which results in inhibiting the proliferation in Con A-stimulated splenic lymphocytes system.
     Secondly, leflunomide directly inhibited the immune function of PMΦfrom CIA rats. In vitro, A771726 (0.1, 1, 10μM) suppressed the secretion function of PMΦfrom CIA rats by inhibiting LPS-TLR4 pathway.
     Thirdly, leflunomide could enhance the regulation of CD4+CD25+Tregs on PMΦof CIA rats. In vitro, A771726 (0.1, 1, 10μM) reinforced the suppression of TGF-βon secretion of PMΦfrom CIA rats, and enhanced the anti-inflammatory cytokine secretion. The results in RT-PCR and Western-blot indicated that A771726 strengthened the regulation of TGF-βon PMΦof CIA rats by inhibiting TLR4 expression in PMΦof CIA rats.
     Conclusion:
     ①C IA rat model induced with our production of CⅡis successful as indicated the similarities in clinical manifestation, immunology and histopathology with human RA.
     ②T he mechanisms of regulation of CD4+CD25+Tregs on PMΦof CIA rats: CD4+CD25+Tregs combined with PMΦthrough TGF-β/Tβ-RII, inhibiting TLR 4 expression of PMΦwhich leads to suppression of the immune function of LPS-stimulated PMΦof CIA rats.
     ③Leflunomide has therapeutic effects on CIA rats, and the mechanisms contains three aspects: improving the percentage of suppressive CD4+CD25+Tregs, directly inhibiting the immune function of PMΦ, and enhancing the regulation of CD4+CD25+Tregs on PMΦby LPS-TLR4 pathway.
引文
[1] Harris ED Jr. Pathogenesis of rheumatoid arthritis. Clin Orthop Relat Res 1984, 182: 14-23.
    [2] Pratt AG, Isaacs JD, Mattey DL. Current concepts in the pathogenesis of early rheumatoid arthritis. Best Pract Res Clin Rheumatol 2009, 23(1): 37-48.
    [3] Rose NR, Mackay IR. The Autoimmune Diseases, Fourth Edition. Published by Academic Press 2006, 1067-1110.
    [4] van Amelsfort JM, Jacobs KM, Bijlsma JW, et al. CD4(+)CD25(+) regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 2004, 50(9): 2775-2785.
    [5] Mudd PA, Teague BN, Farris AD. Regulatory T cells and systemic lupus erythematosus. Scand J Immunol 2006, 64(3): 211-218.
    [6] Gallimore A, Sakaguchi S. Regulation of tumour immunity by CD25+ T cells. Immunology 2002, 107(1): 5-9.
    [7] Lundgren A, Suri-Payer E, Enarsson K, et al. Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect Immun 2003, 71(4): 1755-1762.
    [8] Morgan ME, Sutmuller RP, Witteveen HJ, et al. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum 2003, 48(5): 1452-1460.
    [9] Morgan ME, Flierman R, van Duivenvoorde LM, et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum 2005, 52(7): 2212-2221.
    [10] Maloy KJ, Salaun L, Cahill R, et al. CD4+CD25+ T(R) cells suppress innate immune pathology through cytokine-dependent mechanisms. J Exp Med 2003, 197(1): 111-119.
    [11] Liu H, Hu B, Xu D, et al. CD4+CD25+ regulatory T cells cure murine colitis: the role of IL-10, TGF-beta, and CTLA4. J Immunol 2003, 171(10): 5012-5017.
    [12] Kubo T, Hatton RD, Oliver J, et al. Regulatory T cell suppression and anergy are differentially regulated by proinflammatory cytokines produced by TLR-activated dendritic cells. J Immunol 2004, 173(12): 7249-7258.
    [13] Ghiringhelli F, Ménard C, Terme M, et al. CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 2005, 202(8): 1075-1085.
    [14] Taams LS, van Amelsfort JM, Tiemessen MM, et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 2005, 66(3): 222-230.
    [15] Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 2003, 425(6958): 577-584.
    [16] Liu Y, Zhang P, Li J, et al. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T cells. Nat Immunol 2008, 9(6): 632-640.
    [17] Wei HX, Chuang YH, Li B, et al. CD4+CD25+Foxp3+ regulatory T cells protect against T cell-mediated fulminant hepatitis in a TGF-beta-dependent manner in mice. J Immunol 2008, 181(10): 7221-7229.
    [18] Huber S, Stahl FR, Schrader J, et al. Activin a promotes the TGF-beta-induced conversion of CD4+CD25- T cells into Foxp3+ induced regulatory T cells. J Immunol 2009, 182(8): 4633-4640.
    [19] Cohen S, Cannon GW, Schiff M, et al. Two-year, blinded, randomized, controlled trial of treatment of active rheumatoid arthritis with leflunomide compared with methotrexate. Arthritis Rheum 2001, 44(9): 1984-1992.
    [20] Waldman WJ, Bickerstaff A, Gordillo G, et al. Inhibition of angiogenesis-related endothelial activity by the experimental immunosuppressive agent leflunomide. Transplantation 2001, 72(9): 1578-1582.
    [21] Tam LS, Li EK, Wong CK, et al. Double-blind, randomized, placebo-controlledpilot study of leflunomide in systemic lupus erythematosus. Lupus 2004, 13(8): 601-604.
    [22]金涌,李俊,丁长海,等.来氟米特对佐剂性关节炎大鼠的治疗作用及部分机制研究.中国药理学通报2001, 17(1): 62-65.
    [23] Magari K, Miyata S, Nishigaki F, et al. Comparison of anti-arthritic properties of leflunomide with methotrexate and FK506: Effect on T cell activation-induced inflammatory cytokine production in vitro and rat adjuvant-induced arthritis. Inflamm Res 2004(10), 53: 544-550.
    [24] Dimitrova P, Ivanovska N. Host resistance to Candida albicans infection of mice with collagen-induced arthritis treated with leflunomide. Res Microbiol 2006, 157(6): 525-530.
    [25] Campo GM, Avenoso A, Campo S, et al. Efficacy of treatment with glycosaminoglycans on experimental collagen-induced arthritis in rats. Arthritis Res Ther 2003, 5(3): R122-131.
    [26] Gu WZ, Sydney R. Brandwein. Inhibition of type II collagen-induced arthritis in rats by triptolide. Int J Immunopharmacol 1998, 20(8): 389-400.
    [27] Ngocy DDT, Catrina AI, Lundberg K, et al. Inhibition by artocarpus tonkinensis of the development of collagen-induced arthritis in rats. Scand J Immunol 2005, 61(3): 234-241.
    [28] Cuzzocrea S, Mazzon E, Paola RD, et al. Effects of combination M40403 and dexamethasone therapy on joint disease in a rat model of collagen-induced arthritis. Arthritis Rheum 2005, 52(6): 1929-1940.
    [29] Tsai CU, Liu TK. Lymphocyte subsets and mitogen induced proliferation in adjuvant arthritis. Part III. Numbers and Functions of T Lymphocytes in Spleen. Tohoku J Exp Med 1992, 166(3): 289-296.
    [30] Han JZ, Li C, Liu H, et al. Inhibition of lipopolysaccharide-mediated rat alveolar macrophage activation in vitro by antiflammin-1. Cell Biol Int. 2008, 32(9): 1108-1115.
    [31] Ishimaru N, Yamada A, Kohashi M, et al. Development of inflammatory bowel disease in Long-Evans Cinnamon rats based on CD4+CD25+Foxp3+ regulatory T cell dysfunction. J Immunol 2008, 180(10): 6997-7008.
    [32] Staines NA, Hardingham T, Smith M, et al. Collagen-induced arthritis in the rat: modification of immune and arthritic responses by free collagen and immune anti-collagen antiserum. Immunology 1981, 44(4): 737-747.
    [33] Moder KG, Nabozny GH, Luthra HS, et al. Immunogenetics of collagen induced arthritis in mice: a model for human polyarthritis. Reg Immunol 1992, 4(5): 305-313.
    [34] Trentham DE, Townes AS, Kang AH. Autoimmunity to TypeⅡcollagen: an experimental model of arthritis. J Exp Med 1977, 146(3): 857-868.
    [35] Weiner HL. Oral tolerance, immune mechanisms and treatment of autoimmune diseases. Immunol Today 1997, 18(7): 335-343.
    [36] Thompson SJ, Thompson HSG, Harper N, et al. Prevention of pristane-induced arthritis by the oral administration of typeⅡcollagen. Immunology 1993, 79(1): 152-157.
    [37] Zhang ZY, Lee CS, Lider O, et al. Suppression of adjuvant arthritis in Lewis rats by oral administration of typeⅡcollagen. J Immunol 1990, 145(8): 2489-2493.
    [38] Barnett ML, Kremer JM, St Clair EW, et al. Treatment of rheumatoid arthritis with oral type II collagen. Results of a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum 1998, 41(2): 290-297.
    [39] Sieper J, Sony K, S?rensen H, et al. Oral TypeⅡcollagen treatment in early rheumatoid arthritis. Arthritis Rheum 1996, 39(1): 41-51.
    [40] Collagen-Induced Arthritis. In: Current Protocols in Immunology. Edited by: Coligan JE, Kruisbeek AM, Margulies DH, Shevach EM, Strober W. New York: Wiley 1996, 3:15.5.1-15.5.19.
    [41]李斯明,叶春婷,邹海燕,等.高纯度猪软骨Ⅱ型胶原的制备和检测.生物医学工程学杂志2001, 18(4): 592-594.
    [42]钱娴娟,胡永秀,赵文明.用FPLC系统提纯可溶性Ⅱ型胶原蛋白.免疫学杂志2001, 17(3) : 228-230.
    [43]王彦宏,朱平,冷南,等.Ⅱ型胶原蛋白的提取纯化和鉴定.第四军医大学学报2002, 23(19): 1820-1821.
    [44] Watson WC, Cremer MA, Wooley PH, et al. Assessment of the potential pathogenicity of type II collagen autoantibodies in patients with rheumatoid arthritis. Evidence of restricted IgG3 subclass expression and activation of complement C5 to C5a. Arthritis Rheum 1986, 29(11): 1312-1316.
    [45]周茹,杨以阜,左建平.II型胶原诱导的小鼠关节炎动物模型的建立及影响因素.中国药理学通报2006, 22(12): 1532-1535.
    [46] Staines NA, Hardingham T, Smith M, et al. Collagen-induced arthritis in the rat: modification of immune and arthritic responses by free collagen and immune anti-collagen antiserum. Immunology 1982, 44(4): 437-447.
    [47] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995, 155(3): 1151-1164.
    [48] Miyara M, Sakaguchi S. Natural regulatory T cells: mechanisms of suppression. Trends Mol Med 2007, 13(3): 108-116.
    [49] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4(4): 330-360.
    [50] Sarah EA, George X, Zhao S, et al. Inducible reprogramming of human T cells into Treg cells by a conditionally active form of FOXP3. Eur J Immunol 2008, 38(12): 3282-3289.
    [51] Tran DQ, Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007, 110(8):2983-2990.
    [52] Sakaguchi S, Ono M, Setoguchi R, et al. Foxp3+CD25+CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006, 212: 8-27.
    [53] Sakaguchi S, Sakaguchi N. Regulatory T cells in immunologic self-tolerance and autoimmune disease. Int Rev Immunol 2005, 24(3-4): 211-226.
    [54] Lawson CA, Brown AK, Bejarano V. Early rheumatoid arthritis is associated with a deficit in the CD4+CD25high regulatory T cell population in peripheral blood. Rheumatology (Oxford) 2006, 45(10): 1210-127.
    [55] Toubi E, Kessel A, Mahmudov Z, et al. Increased spontaneous apoptosis of CD4+CD25+ T cells in patients with active rheumatoid arthritis is reduced by infliximab. Ann N Y Acad Sci 2005, 1051: 506-514.
    [56] Liu MF, Wang CR, Fung LL, et al. The presence of cytokine-suppressive CD4+CD25+ T cells in the peripheral blood and synovial fluid of patients with rheumatoid arthritis. Scand J Immunol 2005, 62(3): 312-317.
    [57] M?tt?nen M, Heikkinen J, Mustonen L, et al. CD4+CD25+ T cells with the phenotypic and functional characteristics of regulatory T cells are enriched in the synovial fluid of patients with rheumatoid arthritis. Clin Exp Immunol 2005, 140(2): 360-367.
    [58] Han GM, O'Neil-Andersen NJ, Zurier RB, et al. CD4+CD25high T cell numbers are enriched in the peripheral blood of patients with rheumatoid arthritis. Cell Immunol 2008, 253(1-2): 92-101.
    [59] Cao D, Malmstr?m V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 2003, 33(1): 215-223.
    [60] van Amelsfort JM, van Roon JA, Noordegraaf M. Proinflammatory mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated suppression inrheumatoid arthritis. Arthritis Rheum 2007, 56(3): 732-742.
    [61] Kao JK, Hsue YT, Lin CY. Role of new population of peripheral CD11c(+)CD8(+) T cells and CD4(+)CD25(+) regulatory T cells during acute and remission stages in rheumatoid arthritis patients. J Microbiol Immunol Infect 2007, 40(5): 419-427.
    [62] Kozlowska E, Biernacka M, Ciechomska M, et al. Age-related changes in the occurrence and characteristics of thymic CD4(+)CD25(+) T cells in mice. Immunology 2007, 122(3): 445-453.
    [63] Buckner JH, Ziegler SF. Functional analysis of FOXP3. Ann N Y Acad Sci 2008, 1143: 151-169.
    [64] van Amelsfort JM, van Roon JA, Noordegraaf M, et al. Proinflammatory mediator-induced reversal of CD4+, CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum 2007, 56(3): 732-742.
    [65] Behrens F, Himsel A, Rehart S, et al. Imbalance in distribution of functional autologous regulatory T cells in rheumatoid arthritis. Ann Rheum Dis 2007, 66(9): 1151-1156.
    [66] Hoves S, Krause SW, Schutz C, et al. Monocyte-derived human macrophages mediate anergy in allogeneic T cells and induce regulatory T cells. J Immunol 2006, 177(4): 2691-2698.
    [67] Gopinath VK, Musa M, Samsudin AR, et al. Role of interleukin-1 and tumour necrosis factor-αon hydroxyapatiteinduced phagocytosis by murine macrophages (RAW264.7 cells). Br J Biomed Sci 2006, 63(4): 176-178.
    [68] Orita M, Yamamoto S, Katayama N, et al. Macrophage migration inhibitory factor and the discovery of tautomerase inhibitors. Curr Pharm Des 2002, 8(14): 1297-1317.
    [69] Zhen Y, Zheng J, Zhao Y. Regulatory CD4+CD25+ T cells and macrophages: communication between two regulators of effector T cells. Inflamm Res 2008, 57(12): 564-570.
    [70] Taams LS, van Amelsfort JM, Tiemessen MM, et al. Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 2005, 66(3): 222-230.
    [71] Kryczek I, Wei S, Zou L, et al. Cutting edge: induction of B7-H4 on APCs through IL-10: novel suppressive mode for regulatory T cells. J Immunol 2006, 177(1): 40-44.
    [72] Tiemessen MM, Jagger AL, Evans HG, et al. CD4+CD25+Foxp3+ regulatory T cells induce alternativeactivation of human monocytes/macrophages. Proc Natl Acad Sci USA 2007, 104(49): 19446-19451.
    [73] Kelchtermans H, Geboes L, Mitera T, et al. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann Rheum Dis 2009, 68(5): 744-750.
    [74] Miwa N, Hayakawa S, Miyazaki S, et al. IDO expression on decidual and peripheralblood dendritic cells and monocytes/macrophages after treatment with CTLA-4 or interferon-gamma increase in normal pregnancy but decrease in spontaneous abortion. Mol Hum Reprod 2005, 11(12): 865-870.
    [75] Gorczynski RM, Kai Y, Miyake K. MD1 expression regulates development of regulatory T cells. J Immunol 2006, 177(2): 1078-1084.
    [76] Venet F, Pachot A, Debard AL, et al. Human CD4+CD25+ regulatory T lymphocytes inhibit lipopolysaccharide-induced monocyte survival through a Fas/Fas ligand-dependent mechanism. J Immunol 2006, 177(9): 6540-6547.
    [77] Mahajan D, Wang Y, Qin X, et al. CD4+CD25+ regulatory T cells protect against injury in an innate murine model of chronic kidney disease. J Am Soc Nephrol 2006, 17(10): 2731-2741.
    [78] Huber S, Schramm C. TGF-beta and CD4+CD25+ regulatory T cells. Front Biosci 2006, 11: 1014-1023.
    [79] Horwitz DA, Zheng SG, Wang J, et al. Critical role of IL-2 and TGF-beta in generation, function and stabilization of Foxp3+CD4+ Treg. Eur J Immunol 2008, 38(4): 912-915.
    [80] Shevach EM, Davidson TS, Huter EN, et al. Role of TGF-Beta in the induction of Foxp3 expression and T regulatory cell function. J Clin Immunol 2008, 28(6): 640-646.
    [81] Huber S, Schramm C, Lehr HA, et al. Cutting edge: TGF-beta signaling is required for the in vivo expansion and immunosuppressive capacity of regulatory CD4+CD25+ T cells. J Immunol 2004, 173(11): 6526-6531.
    [82] Kinsley DM. The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 1994, 8(2): 133-146.
    [83] Roberts AB. TGF-beta signaling from receptors to the nucleus. Microbes Infect 1999, 1(15): 1265-1273.
    [84] ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends Biochem Sci 2004, 29(5): 265-273.
    [85] Santambrogio L, Hochwald GM, Leu CH, et al. Antagonistic effects of endogenous and exogenous TGF-beta and TNF on auto-immune diseases in mice. Immunopharmacol Immunotoxicol 1993, 15(4): 461-478.
    [86] Bucht A, Larsson P, Weisbrot L, et al. Expression of interferon-gamma (IFN-gamma), IL-10, IL-12 and transforming growth factor-beta (TGF-beta) mRNA in synovial fluid cells from patients in the early and late phases of rheumatoid arthritis (RA). Clin Exp Immunol 1996, 103(3): 357-367.
    [87] Kuruvilla AP, Shah R, Hochwald GM, et al. Protective effect of transforming growth factor beta 1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci USA 1991, 88(7): 2918-2921.
    [88] Song XY, Gu M, Jin WW, et al. Plasmid DNA encoding transforming growth factor-beta 1 suppresses chronic disease in a streptococcal cell wall-induced arthritis model. J Clin Invest 1998, 101(12): 2615-2621.
    [89] Chernajovsky Y, Adams G, Triantaphyllopoulos K, et al. Pathogenic lymphoid cells engineered to express TGF beta 1 ameliorate disease in a collagen-induced arthritis model. Gene Ther 1997, 4(6): 553-559.
    [90] Nadkarni S, Mauri C, Ehrenstein MR. Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med 2007, 204(1): 33-39.
    [91] Youn J, Hwang SH, Ryoo ZY, et al. Metallothionein suppresses collagen-induced arthritis via induction of TGF-beta and down-regulation of proinflammatory mediators. Clin Exp Immunol 2002, 129(2): 232-239.
    [92] Akira S, Hemmi H. Recognition of pathogen-associated molecular patterns by TLR family. Immunol Lett 2003, 85(2): 85-95.
    [93] Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004, 4(7): 499-511.
    [94] Beutler B. Interferences, questions and possibilities in toll-like receptor signalling. Nature 2004, 430(6996): 257-263.
    [95] Vogel SN, Fitzgerald KA, Fenton MJ. TLRs: differential adapter utilization by toll-like receptors mediates TLR-specific patterns of gene expression. Mol Interv 2003, 3(8): 466-477.
    [96] Lu YC, Yeh WC, Ohashi PS. LPS/TLR4 signal transduction pathway. Cytokine 2008, 42(2): 145-151.
    [97] Choe JY, Crain B, Wu SR, et al. Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by Toll-like receptor 4 signaling. J Exp Med 2003, 197(4): 537-542.
    [98] Zhai Y, Shen XD, O’Connell R, et al. Cutting edge: TLR4 activation mediates liver ischemia/reperfusion inflammatory response via IFN regulatory factor 3-dependent MyD88-independent pathway. J Immunol 2004, 173(12): 7115-7119.
    [99] Boule MW, Broughton C, Mackay F, et al. Toll-like receptor 9-dependent and -independent dendritic cell activation by chromatin-immunoglobulin G complexes. J Exp Med 2004, 199(12): 1631-1640.
    [100] Iwahashi M, Yamamura M, Aita T, et al. Expression of Toll-like receptor 2 onCD16t blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 2004, 50(5): 1457-1467.
    [101] Gutiêrrez- Ca?as Y, Juarranz B, Santiago A, et al. VIP down-regulates TLR4 expression and TLR4-mediated chemokine production in human rheumatoid synovial fibroblasts. Rheumatology 2006, 45(5): 527-532.
    [102] Tobias PS, Ulevitch RJ. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology 1993, 187(3-5): 227-232.
    [103] Zhang XJ, Li Y, Tai GX, et al. Effects of activin A on the activities of mouse peritoneal macrophages. Cell Mol Immunol 2005, 2(1): 63-67.
    [104] Drozina G, Kohoutek J, Nishiya T, et al. Sequential modifications in class II transactivator isoform 1 induced by lipopolysaccharide stimulate major histocompatibility complex class II transcription in macrophages. J Biol Chem 2006, 281(52): 39963-39970.
    [105] Crume KP, Miller JH, La Flamme AC. Peloruside A, an antimitotic agent, specifically decreases tumour necrosis factor-{alpha} production by lipopolysaccharide-stimulated murine macrophages. Exp Biol Med(Maywood) 2007, 232(5): 607-613.
    [106] McCartney-Francis N, Jin W, Wahl SM. Aberrant toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-beta 1 signaling pathway. J Immunol 2004, 172(6): 3814-3821.
    [107] Roes J, Choi BK, Cazac BB. Redirection of B cell responsiveness by transforming growth factorβreceptor. Proc Natl Acad Sci USA 2003, 100(12): 7241-7246.
    [108] Liu X, Zhang YL, Yu YZ, et al. SOCS3 promotes TLR4 response in macrophages by feedback inhibiting TGF-β1/Smad3 signaling. Mol Immunol 2008, 45(5): 1405-1413.
    [109] Naiki Y, Michelsen KS, Zhang W, et al. Transforming growth factor-betadifferentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide- induced TLR4 signaling. J Biol Chem 2005, 280(7): 5491-5495.
    [110] Wang SY, Tai GX, Zhang PY, et al. Inhibitory effect of activin A on activation of lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Cytokine 2008, 42(1): 85-91.
    [111] Eisenstein TK, Huang D, Meissler JJ Jr, et al. Macrophage nitric oxide mediates immunosuppression in infectious inflammation. Immunobiology 1994, 191(4-5): 493-502.
    [112] Gayathri B, Manjula N, Vinaykumar KS, et al. Pure compound from Boswellia serrata extract exhibits anti-inflammatory property in human PBMCs and mouse macrophages through inhibition of TNF alpha, IL-1beta, NO and MAP kinases. Int Immunopharmacol 2007(4), 7: 473-482.
    [113] Min HY, Kim MS, Jang DS, et al. Suppression of lipopolysaccharide-stimulated inducible nitric oxide synthase (iNOS) expression by a novel humulene derivative in macrophage cells. Int Immunopharmacol 2009, 9(7-8): 844-849.
    [114] Takaki H, Minoda Y, Koga K, et al. TGF-beta1 suppresses IFN-gamma-induced NO production in macrophages by suppressing STAT1 activation and accelerating iNOS protein degradation. Genes Cells 2006, 11(8): 871-882.
    [1] Quayle AJ, Chomarat P. Rheumatoid inflammatory T-cell clones express mostly Th1 but also Th2 and mixed (Th0- like) cytokine patterns. Scand J Immunol 1993, 38(1): 75.
    [2] Firestein GS, Zvaifler NJ. How important are T cell in chronic rheumatoid synovitis. Arthritis Reheum 1990, 33(6): 768.
    [3] Gershon RK, Kondo K. Infectious immunological tolerance. Immunology 1971, 21: 903-914.
    [4] Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of asingle mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995, 155: 1151-1164.
    [5] Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998, 188: 287-296.
    [6] Turka LA, Walsh PT. IL-2 signaling and CD4+CD25+Foxp3+ regulatory T cells. Front Biosci 2008, 13: 1440-1446.
    [7] Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001, 167: 1137-1140.
    [8] Zwar TD, Read S, van Driel IR, et al. CD4+CD25+ regulatory T cells inhibit the antigen-dependent expansion of self-reactive T cells in vivo. J Immunol 2006, 176: 1609-1617.
    [9] DiPaolo RJ, Glass DD, Bijwaard KE, et al. CD4+CD25+ T cells prevent the development of organ specific autoimmune disease by inhibiting the differentiation of autoreactive effector T cells. J Immunol 2005, 175: 7135-7142.
    [10] Klein L, Khazaie K, von Boehmer H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc Natl Acad Sci USA 2003, 100: 8886-8891.
    [11] Martin B, Banz A, Bienvenu B. Suppression of CD4+ T lymphocyte effector functions by CD4+CD25+ cells in vivo. J Immunol 2004, 172: 3391-3398.
    [12] Tang Q, Adams JY, Tooley AJ, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006, 7: 83-92.
    [13] Sarween N, Chodos A, Raykundalia C, et al. CD4+CD25+ cells controlling a pathogenic CD4 response inhibit cytokine differentiation, CXCR-3 expression, and tissue invasion. J Immunol 2004, 173: 2942-2951.
    [14] McHugh RS, Shevach EM. Cutting edge: depletion of CD4+CD25+ regulatory T cells is necessary, but not sufficient, for induction of organ-specific autoimmune disease.J Immunol 2002, 168: 5979-5983.
    [15] Mottet C, Uhlig HH, Powrie F. Cutting edge: cure of colitis by CD4+CD25+ regulatory T cells. J Immunol 2003, 170: 3939-3943.
    [16] Takahashi T, Kuniyasu Y, Toda M, et al. Immunologic self-tolerance maintained by CD4+CD25+ naturally anergic and suppressive T cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998, 10: 1969-1980.
    [17] Papiernik M, de Moraes ML, Pontoux C, et al. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol 1998, 10: 371-378.
    [18] Pace L, Pioli C, Doria G. IL-4 modulation of CD4+CD25+ T regulatory cell-mediated suppression. J Immunol 2005, 174(12): 7645-7653.
    [19] Nakamura K, Kitani A, Strober W. Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta. J Exp Med 2001, 194: 629-644.
    [20] Piccirillo CA, Letterio JJ, Thornton AM. CD4(+)CD25(+) regulatory T cells can mediate suppressor function in the absence of transforming growth factor beta1 production and responsiveness. J Exp Med 2002, 196: 237-246.
    [21] Gil-Guerrero L, Dotor J, Huibregtse IL, et al. In vitro and in vivo down-regulation of regulatory T cell activity with a peptide inhibitor of TGF-beta1. J Immunol 2008, 181(1): 126-135.
    [22] Khattri R, Cox T, Yasayko SA and Ramsdell F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003, 4: 337-342.
    [23] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4: 330-336.
    [24] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299: 1057-1061.
    [25] Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+CD25- naive Tcells to CD4+CD25+ regulatory T cells by TGF-b induction of transcription factor Foxp3. J Exp Med 2003, 198: 1875-1886.
    [26] Mamura M, Lee W, Sullivan TJ, et al. CD28 disruption exacerbates inflammation in Tgf-b1-/- mice: in vivo suppression by CD4+CD25+ regulatory T cells independent of autocrine TGF-b1. Blood 2004, 103: 4594-4601.
    [27] Schramm C, Huber S, Protschka M, et al. TGFb regulates the CD4+CD25+T-cell pool and the expression of Foxp3 in vivo. Int Immunol 2000, 16(9): 1241-1249.
    [28] Huang X, Zhu J, Yang Y. Protection against autoimmunity in nonlymphopenic hosts by CD4+CD25+ regulatory T cells is antigen-specific and requires IL-10 and TGF-beta. J Immunol 2005, 175(7): 4283-4291.
    [29] Igarashi H, Cao Y, Iwai H, et al. GITR ligand-costimulation activates effector and regulatory functions of CD4+ T cells. Biochem Biophys Res Commun 2008, 16; 369(4): 1134-1138.
    [30] McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002, 16: 311.
    [31] Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002, 3:135.
    [32] Thornton AM, Piccirillo CA, Shevach EM. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur J Immunol 2004, 34: 366-376.
    [33] Piccirillo CA, Shevach EM. Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells. J Immunol 2001, 167: 1137-1140.
    [34] Tang Q, Adams JY, Tooley AJ, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol 2006, 7: 83-92.
    [35] D’Cruz LM, Klein L. Development and function of agonistinduced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 2005, 6: 1152-1159.
    [36] Fontenot JD, Rasmussen JP, Gavin MA, et al. A function for interleukin 2 in Foxp3-expressing regulatory T cells. Nat Immunol 2005, 6: 1142-1151.
    [37] Sojka DK, Hughson A, Fowell DJ. CTLA-4 is required by CD4(+)CD25(+) Treg to control CD4(+) T-cell lymphopenia-induced proliferation. Eur J Immunol 2009, 39(6): 1544-1551.
    [38] Takahashi T, Tagami T, Yamazaki S, et al. Immunologic selftolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000, 192: 303-310.
    [39] Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25+CD4+ regulatory cells that control intestinal inflammation. J Exp Med 2000, 192: 295-302.
    [40] McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4+CD25+ immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002, 16: 311-323.
    [41] Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002, 3: 135-142.
    [42] Manish P , Xu D, Pete K, et al. Glucocorticoid-induced TNFR family-related protein (GITR) activation exacerbates murine asthma and collagen-induced arthritis Eur J Immunol 2005, 35: 3581-3590.
    [43] Ronchetti S, Zollo O, Bruscoli S, et al. GITR, a member of the TNF receptor superfamily, is costimulatory to mouse T lymphocyte subpopulations. Eur J Immunol 2004, 34: 613-622.
    [44] Tone M, Tone Y, Adams E, et al. Mouse glucocorticoid-induced tumor necrosis factor receptor ligand is costimulatory for T cells. Proc Natl Acad Sci USA 2003, 100: 15059-15064.
    [45] Shimizu J, Yamazaki S, Takahashi T, et al. Stimulation of CD25(+)CD4(+)regulatory T cells through GITR breaks immunological self-tolerance. Nat Immunol 2002, 3: 135-142.
    [46] McHugh RS, Whitters MJ, Piccirillo CA, et al. CD4(+)CD25(+) immunoregulatory T cells: gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Immunity 2002, 16: 311-323.
    [47] Kohm AP, Williams JS, Miller SD. Cutting edge: ligation of the glucocorticoid-induced TNF receptor enhances autoreactive CD4+ T cell activation and experimental autoimmune encephalomyelitis. J Immunol 2004, 172: 4686-4690.
    [48] Ronchetti S, Nocentini G, Riccardi C, et al. Role of GITR in activation response of T lymphocytes. Blood 2002, 100: 350-352.
    [49] Lehmann J, Huehn J, de la Rosa M. Expression of the integrin alpha Ebeta 7 identifies unique subsets of CD25+ as well as CD25- regulatory T cells. Proc Natl Acad Sci USA 2002, 99: 13031-13036.
    [50] Huang CT, Workman CJ, Flies D. Role of LAG-3 in regulatory T cells. Immunity 2004, 21: 503-513.
    [51] Workman CJ, Vignali DA. The CD4-related molecule, LAG-3 (CD223), regulates the expansion of activated T cells. Eur J Immunol 2003, 33: 970-979.
    [52] Li N, Workman CJ, Martin SM, et al. Biochemical analysis of the regulatory T cell protein lymphocyte activation gene-3 (LAG-3; CD223). J Immunol 2004, 173: 6806-6812.
    [53] Gavin MA, Clarke SR, Negrou E, et al. Homeostasis and anergy of CD4+CD25+ suppressor T cells in vivo. Nat Immunol 2002, 3: 33-41.
    [54] Okazaki T, Iwai Y, Honjo T. New regulatory co-receptors: Inducible co-stimulator and PD-1. Curr Opin Immunol 2002, 14: 779-782.
    [55] Baecher-Allan C, Brown JA, Freeman GJ, et al. CD4+CD25high regulatory cells in human peripheral blood. J Immunol 2001, 167: 1245-1253.
    [56] Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells inimmunological tolerance to self and nonself. Nat Immunol 2005, 6: 345-352.
    [57] Gambineri E, Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, and X-linked inheritance (IPEX), a syndrome of systemic autoimmunity caused by mutations of FOXP3, a critical regulator of T-cell homeostasis. Curr Opin Rheumatol 2003, 15: 430-435.
    [58] Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4: 330-336.
    [59] Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003, 4: 337-342.
    [60] Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299: 1057-1061.
    [61] Baecher-Allan C, Hafler DA. Suppressor T cells in human diseases. J Exp Med 2004, 200: 273-276.
    [62] Morgan ME, Sutmuller RP, Witteveen HJ, et al. CD25+ cell depletion hastens the onset of severe disease in collagen-induced arthritis. Arthritis Rheum 2003, 48(5): 1452-1460.
    [63] Morgan ME, Flierman R, van Duivenvoorde LM, et al. Effective treatment of collagen-induced arthritis by adoptive transfer of CD25+ regulatory T cells. Arthritis Rheum 2005, 52(7): 2212-2221.
    [64] van Amelsfort JM, Jacobs KM, Bijlsma JW, et al. CD4+CD25+ regulatory T cells in rheumatoid arthritis: differences in the presence, phenotype, and function between peripheral blood and synovial fluid. Arthritis Rheum 2004, 50: 2775-2785.
    [65] Cao D, van Vollenhoven R, Klareskog L, et al. CD25brightCD4+ regulatory T cells are enriched in inflamed joints of patients with chronic rheumatic disease. Arthritis Res Ther 2004, 6: 335-346.
    [66] Ehrenstein MR, Evans JG, Singh A, et al. Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFαtherapy. J Exp Med 2004, 200:277-285.
    [67] Cao D, Malmstrom V, Baecher-Allan C, et al. Isolation and functional characterization of regulatory CD25brightCD4+ T cells from the target organ of patients with rheumatoid arthritis. Eur J Immunol 2003, 33: 215-223.
    [68] Iellem A, Mariani M, Lang R, et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+CD25+ regulatory T cells. J Exp Med 2001, 194: 847-853.
    [69] Radstake TR, van Der Voort R, ten Brummelhuis M, et al. Increased expression of CCL18, CCL19, and CCL17 by dendritic cells from patients with rheumatoid arthritis and regulation by Fc gamma receptors. Ann Rheum Dis 2005, 64(3): 359-367.
    [70] Suzuki N, Nakajima A, Yoshino S, et al. Selective accumulation of CCR5+ T lymphocytes into inflamed joints of rheumatoid arthritis. Int Immunol 1999, 11: 553-559.
    [71] Buckley CD, Amft N, Bradfield PF, et al. Persistent induction of the chemokine receptor CXCR4 by TGF-beta 1 on synovial T cells contributes to their accumulation within the rheumatoid synovium. J Immunol 2000, 165: 3423-3429.
    [72] Nanki T, Hayashida K, El-Gabalawy HS, et al. Stromal cell-derived factor-1-CXC chemokine receptor 4 interactions play a central role in CD4+T cell accumulation in rheumatoid arthritis synovium. J Immunol 2000, 165: 6590-6598.
    [73] Zou L, Barnett B, Safah H, et al. Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 2004, 64: 8451-8455.
    [74] Belkaid Y, Piccirillo CA, Mendez S, et al. CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity. Nature 2002, 420: 502-507.
    [75] Montagnoli C, Bacci A, Bozza S, et al. B7/CD28-dependent CD4+CD25+ regulatory T cells are essential components of the memory-protective immunity to Candida albicans. J Immunol 2002, 169: 6298-6308.
    [76] Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998, 188: 287-296.
    [77] Petersen J, Andersen V, Ingemann-Hansen T, et al. Synovial fluid and blood monocyte influence on lymphocyte proliferation in rheumatoid arthritis and traumatic synovitis. Scand J Rheumatol 1983, 12: 299-304.
    [78] Black AP, Bhayani H, Ryder CA, et al. T-cell activation without proliferation in juvenile idiopathic arthritis. Arthritis Res 2002, 4: 177-183.
    [79] Salmon M, Scheel-Toellner D, Huissoon AP, et al. Inhibition of T cell apoptosis in the rheumatoid synovium. J Clin Invest 1997, 99: 439-446.
    [80] Taams LS, Smith J, Rustin MH, et al. Human anergic/suppressive CD4+CD25+ T cells: a highly differentiated and apoptosis-prone population. Eur J Immunol 2001, 31: 1122-1131.
    [81] van Amelsfort JM, van Roon JA, Noordegraaf M, et al. Proinflammatory mediator-induced reversal of CD4+,CD25+ regulatory T cell-mediated suppression in rheumatoid arthritis. Arthritis Rheum 2007, 56(3): 732-742.
    [82] Hirano T, Matsuda T, Turner M, et al. Excessive production of interleukin 6/B cell stimulatory factor- 2 in rheumatoid arthritis. Eur J Immunol 1988, 18: 1797-1801.
    [83] Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003, 299: 1033-1036.
    [84] Weiner HL. Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 2001, 3: 947-954.
    [1]刘军,陈礼清,唐茜.优良退耕还林树种老鹰茶.四川林业科技2001, 22(2):44-45.
    [2]唐茜,齐桂年.毛豹皮樟饮料资源的开发利用.四川林业科技1998, 19(4): 66-68.
    [3]许乾丽,茅向军,周雪松.老鹰茶和虫茶的6种生命元素分布状态和存在形态研究.贵州科学1999, 17(2): 140-143.
    [4]郁建平,叶辉,古练权.贵州老鹰茶Litsea coreana的黄酮类化合物.中山大学学报(自然科学版) 2001, 40(6): 110-111.
    [5]叶辉,郁建平,王建光.老鹰茶提取物抗氧化作用的研究.时珍国医国药2004, 15(4): 198-200.
    [6]陈琳,程文明,胡成穆,等.豹皮樟总黄酮抗炎作用及部分机制研究.安徽医科大学学报2004, 39 (6): 439-442.
    [7]於传斌.免疫性炎症模型[M]//徐叔云,卞如濂,陈修.药理实验方法学.第2版.北京:人民卫生出版社, 1991:723-724.
    [8]汤文璐,李俊,徐叔云.丹皮总苷的抗炎免疫作用及部分机制研究.中国药理学通报2002, 18(6): 656-660.
    [9] Li WD, Ran GX, Teng HL. Dynamic effects of leflunomide on IL-1, IL-6, and TNF-αactivity produced from peritoneal macrophages in adjuvant arthritis rats. Acta Pharmacologica Sinica 2002, 23(8): 752-756.
    [10]董惟佳,朱平,樊春梅等.CD147分子和基质金属蛋白酶在类风湿关节炎滑膜中的表达.中华风湿病学杂志2004, 8(3): 135-138.
    [11] Goldbach-Mansky R, Lee JM, Hoxworth JM, et al. Active synovial matrix metalloproteinase-2 is associated with radiographic erosions in patients with early synovitis. Arthritis Res 2000, 2: 145-153.
    [12] Jacobson PB, Borgan SJ, Wilcox DM, et al. A new spin on an old model: in vivo evaluation of disease progression by magnetic resonance imaging with respect to standard inflammatory parameters and histopathology in the adjuvant arthritic rat. Arthritis Rheum 1999, 42(10): 2060-2073.
    [13] Lewis AJ, Carlson RP. In: Pharmacology of inflammation. Glymn IE. Houch IC. Weissmann ends. Elsevier Science Puli, Amsterdam, 1985: 376-378.
    [14] Feldmann M, Brennan FM, Maini RN. Role of cytokines in rheumatoid arthritis. Annu Rev Immunol 1996, 14: 397-440.
    [15] Ahrens D, Koch AE, Pope RM, et al. Expression of matrix metalloproteinase 9 (96-kd gelatinase B) in human rheumatoid arthritis. Arthritis Rheum 1996, 39: 1576-1587.
    [16] Borden P, Heller RA. Transcriptional contral of matrix metalloproteinase and the tissue inhibitors of matrix metalloproteinase. Crit Rev Eukaryot Gene Expr 1997, 7: 159-178.
    [17] Hirose T, Reife RA, Smith JG, et al. Characterization of typeV collagenase (gelatinase) in synovial fluid of patients with inflammatory arthritis. J Rheumatol 1992, 19(4): 593-599.
    [18] Murphy G, Knauper V, Atkinson S, et al. Matrix metalloproteinases in arthritic disease. Arthritis Res 2002, Suppl 3: 39-49.
    [19] Cunnane G, FitzGerald O, Hummel KM, et al. Synovial tissue protease gene expression and joint erosions in early rheumatoid arthritis. Arthritis Rheum 2001, 44: 1744-1753.
    [20] Ribbens C, Martin Y, Porra M, et al. Increased matrix metalloproteinase-3 serum levels in rheumatic diseases: relationship with synovitis and steroid treatment. Ann Rheum Dis 2002, 61: 161-166.