KIR基因型对异基因造血干细胞移植结果的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杀伤细胞的免疫球蛋白样受体(Killer cell immunoglobulin-like receptor,KIR)是主要表达于人NK细胞及部分T细胞表面的一类受体。编码KIR的基因位于人19号染色体(19q13.4),该基因家族包括15个基因和2个假基因。KIR家族基因呈现高度遗传多态性,不同种族间KIR基因型的分布存在着很大的差异。依照KIR基因数量和种类,人类KIR主要分为两种单倍型:A和B。KIR主要通过与靶细胞表面的HLAⅠ类分子结合,传递抑制或活化信号,从而调控NK细胞的功能。在抗感染免疫、肿瘤免疫、清除老化变异细胞、造血干细胞移植以及自身免疫性疾病等领域发挥重要的调节作用。
     异基因造血干细胞移植(allo-HSCT)是治疗多种恶性病及一些非恶性病的有效方法,尤其在治疗急性白血病方面,可使50%以上患者长期无病生存。但allo-HSCT治疗就像一把双刃剑,在有效发挥造血重建、移植物抗白血病(GVL)等作用的同时,也会出现一些严重的并发症而导致病人死亡。引起病人死亡的主要原因是移植物抗宿主病(GVHD)和移植后复发。因此,如何减少GVHD和防止复发成为异基因造血干细胞移植迫切需要解决的关键问题。
     动物实验和临床观察提示allo-HSCT后,由KIR-配体不相合引起的NK细胞异源反应性能通过释放多种促造血因子促进骨髓植入和造血重建,通过杀伤受者来源的抗原递呈细胞(APC)从而阻止T细胞介导的GVHD,同时由于活化NK细胞具有强大的抗肿瘤效应,因此还能增强GVL效应,避免移植后复发。这一重大发现提示KIR不相合所引起的异源反应性NK将为从根本上解决骨髓移植中GVHD和GVL的矛盾问题带来新的希望。
     上述现象最初发现于半相合移植,而后研究提示在HLA相合的亲缘或非亲缘移植中均有发现。但也有研究发现,KIR-配体不相合引起的NK细胞异源反应性与TRM升高及总存活率下降有关,故在这方面的研究仍是热点,仍存在许多争议。目前国内关于KIR的临床研究较少,我们将探讨KIR基因型对异基因造血干细胞移植的影响及抑制性KIR功能修饰后对NK细胞功能的影响,并研究KIR的人群分布情况。研究共分为3章:
     第1章:在非亲缘、亲缘异基因造血干细胞移植中KIR与HLA基因型对移植结果的影响
     本研究第1章中分析KIR与HLA基因型对亲缘及非亲缘移植结果的影响。抽提供者与受者外周血或骨髓的DNA,并采用序列特异性引物PCR法(PCR-SSP)对其进行KIR与HLA-C位点基因检测。HLA-C位点分为两组:C1组(基因Cw1、3、7及8)和C2组(基因为Cw2、4、5及6),HLA-B位点分为Bw4与Bw6。KIR2DLl的配体为HLA-C2,KIR2DL2/2DL3的配体为HLA-C1,KIR3DL1的配体为HLA-Bw4。供受者KIR-配体不相合指供者存在上述抑制性基因,而受者缺乏上述一个或一个以上的相应配体。供者KIR可被分为三类基因型AA、AB及BB,研究时分为两组:AA及Bx(AB和BB)。
     结果显示,在无关供者移植的病人中,KIR不相合与复发风险减少密切相关(p=0.019;HR=0.329,95%CI 0.131-0.830),尤其是在髓系白血病病人,KIR不相合除了与复发的减少相关外(p=0.003;HR=0.193,95%CI 0.066-0.563),还能改善5年总生存(p=0.031;HR=0.423,95%CI 0.194-0.924)及无病生存(p=0.024;HR=0.445,95%CI 0.221-0.897),而在淋系白血病病人,KIR不相合对移植结果没有影响;供者KIR基因型为AA相对于Bx累积复发率更低,分别为12.9%与28.6%(p=0.024),进一步发现供者KIR含有更多的激活性受体基因与移植后复发风险增高密切相关(p=0.005;HR=1.463,95%CI 1.123-1.906);对髓系白血病病人来说,供者KIR基因中含有KIR2DS3,是个重要的预后危险因素:复发风险增加(p=0.003;HR=5.045,95%CI 1.746-14.575),而且5年总生存(p=0.006;HR=3.046,95%CI 1.378-6.732)及无病生存(p=0.003;HR=2.919,95%CI 1.430-5.959)降低。在亲缘移植病人中,病人HLA-C位点为杂合型C1C2,Ⅱ-Ⅳ度aGVHD发生增高(p=0.032;HR=2.685,95%CI1.087-6.635),在亲缘髓系病人中,也有类似的结果(p=0.024;HR=4.178,95%CI1.206-14.475)。在亲缘移植淋系白血病病人中,供者含有激活性受体KIR2DS1基因与Ⅱ-Ⅳ度aGVHD密切相关(p=0.023;HR=11.86,95%CI 1.415-99.432)。
     第2章:中国华东地区汉族与台湾汉族人群中KIR基因型和单倍型分布情况
     本研究第2章中随机选择116名华东地区汉族与97台湾汉族无血缘关系的健康志愿者作为研究对象,分析两人群的KIR分布情况,以及对移植的影响。KIR检测方法同第1章,并根据Hsu等的标准进行基因型和单倍型分析。
     结果显示:这两个人群能检出所有目前已知的17个KIR基因,KIR2DL4、KIR3DL2、KIR3DL和3KIR3DP1基因存在于所有个体中,基因频率均为1.00。除了KIR3DS1与2DS4*003两个基因频率在这两个人群间有显著性差异外,其它KIR基因频率都很类似,在华东地区汉族人群可检测到35种基因型,在台湾人群有29种。以(2,2)和(1,2)两种基因型最为常见,在华东汉族人群中的频率分别为23.6%与19.8%;而在台湾汉族分别为20.6%与24.7%。两个人群均有10种基因型可同时在其它多个人群中检测到,约占所有华东研究个体的65%,台湾个体的71%。华东汉族人群的A单倍型频率为68.1%,台湾汉族A单倍型频率为74.1%,均明显高于B单倍型。每个人群均有4种基因型无法根据Hsu等的标准模式分析出单倍型。
     第3章:KIR功能修饰对NK细胞的功能影响
     本研究第3章应用单克隆抗体CD158a和CD158b封闭KIR两个重要的抑制性受体KIR2DL1与KIR2DL3后,对NK细胞的功能影响,进一步去阐明KIR功能修饰后NK细胞实现GVL与GVHD分离的可能机制。应用Rosettesep人NK分选试剂盒分选人外周血NK细胞,使用乳酸脱氢酶释放法检测NK细胞对不同白血病细胞(人肿瘤细胞株NB4、Raji细胞和K-562)及同种异体的成熟或未成熟的DC的杀伤活性,并观察单克隆抗体封闭后,NK细胞杀伤活性的改变。应用CCK-8试剂检测混合淋巴细胞反应中NK细胞对T淋巴细胞增殖的影响。应用ELISA法检测混合淋巴细胞反应中细胞因子TGF-β1的表达水平。
     结果显示,任何一个抗体封闭KIR后,NK细胞杀伤NB4活性均增强,并与抗体浓度呈现量效关系(p<0.05),两个封闭抗体联用能增强NK细胞的杀伤活性;对淋系白血病Raji细胞的杀伤活性则改变较小,仅0μg/ml组与20μ/ml组有统计学差异(p<0.05);NK细胞本身对K-562细胞具有很强的杀伤活性,但经抗体封闭后,这种活性并没有提高。抗体作用后,对NB4细胞克隆形成的抑制率增高,并与封闭抗体浓度呈现量效关系(7.55%±4.43%vs.28.68%±2.31%,p<0.05)。对同种异体未成熟DC具有一定的杀伤作用,但抗体封闭后,NK细胞的杀伤活性改变较小,各浓度组间没有显著性差异。成熟DC几乎耐受NK细胞的杀伤,但经抗体封闭KIR后,NK细胞对成熟DC的杀伤活性明显增强,并与抗体浓度呈现量效关系(2.20%±1.10%vs.37.59%±5.06%),各组间比较p<0.05。经抗体封闭后的NK细胞在混合淋巴细胞反应中能明显提高对T细胞的增殖抑制(77.85%±8.31%vs.43.05%±5.95%,p<0.05),检测上清液中的细胞因子TGF-β1含量增加。
     综上所述,本研究目前得出结论如下:
     1)在非亲缘造血干细胞移植后的髓系白血病病人,在GVH方向的KIR-配体不相合与移植后病人5年生存的改善密切相关,而且复发风险也显著降低。
     2)在非亲缘移植中,供者含有更多的KIR激活性受体基因与病人的复发风险增高密切相关;在髓系白血病病人,供者KIR中含有KIR2DS3是个预后不良的因素。
     3)在亲缘移植中,病人HLA-C位点为杂合型C1C2与aGVHD发生密切相关;在淋系白血病病人中,供者含有激活性受体KIR2DS1基因也与aGVHD发生密切相关。
     4)华东地区汉族与台湾汉族人群KIR基因分布表现出中国汉族人群KIR基因遗传多态性的一些共同特点。
     5)华东地区汉族与台湾汉族人群KIR分布的部分差异可能与“遗传漂移”有关。
     6)在移植前通过检测KIR基因可以来筛选供者及预测移植风险。
     7)KIR抑制性受体体外封闭后,能明显提高NK细胞杀伤急性髓系白血病细胞的能力,这在体外论证了,KIR功能修饰后,能提高NK细胞的GVL作用。
     8)KIR抑制性受体体外封闭后,能明显提高NK细胞杀伤同种异体成熟DC的能力,并通过分泌TGF-β1,抑制T细胞的增殖、活化,可能是阻止了T细胞介导的GVHD发生机理之一。
Killer cell immunoglobulin—like receptors(KIRs ) are a family of inhibitory and activating receptors expressed on natural killer(NK) cells and some T lymphocytes. They belong to the Ig superfamily,and are encoded by a compact cluster of genes located on chromosome 19q13.4.To date,at least 15 functional KIR genes and two pseudogenes have been identified.KIR gene family shows a high degree of genetic polymorphism.Significant differences in KIR genotypes exist among different ethnic populations.In general,two kinds of KIR haplotypes are recognized:group A and group B.KIRs interact with HLA I molecules,which transmit inhibitory or activating signal,thereby regulating the function of NK cells.KIRs play an important regulatory role in a variety of processes,including anti-infective immunity,tumor immunity,the clearance of aging cells,autoimmune diseases as well as hematopoietic stem cell transplantation.
     Allogeneic hematopoietic stem cell transplantation(allo-HSCT) is a successful curative therapy for a variety of hematological malignancies and non-hematologic malignancies.Especially for acute leukemia,more than 50%patients obtain a long-term disease-free survival after allogeneic hematopoietic stem cell transplantation.But allo-HSCT therapy is just a double-edged sword.On one hand,the transplant can effectively establish hematopoietic reconstitution and graft-versus-leukemia(GVL);on the other hand,it can also arouse a series of serious complications and result in patient's death.There are two major reasons for the patient's death:graft-versus-host disease (GVHD) and relapse after transplantation.Therefore,how to reduce GVHD and prevent relapse in allogeneic hematopoietic stem cell transplantation is in urgent need and addressing the key issues involved in it is of great importance.
     Some animal trials and clinical observation identify alloreactive NK cells caused by KIR-ligand mismatch can promote the implantation of bone marrow and hematopoietic reconstitution by releasing a variety of hematopoietic promoting factors and eliminate recipient antigen presenting cells(APC) which have been demonstrated to initiate T cell-mediated aGVHD.Meanwhile,alloreactive NK cells can kill residual leukemia cells,thereby can make patient avoid post-transplant relapse.These major discoveries indicate KIR-ligand mismatch will fundamentally solve the problem of contradiction between GVHD and GVL in bone marrow transplantation and bring new hope.
     The above-mentioned phenomenon was first discovered in haploidentical hematopoietic stem cell transplant.It was also observed in HLA-match unrelated donor transplantation and sibling transplantation in the following research.However,other studies have arrived at the opposite conclusion,particularly in unrelated donor HSCT (URD-HSCT),and have shown a deleterious effect of KIR-ligand mismatch.For example,KIR-ligand mismatch was associated with increased transplant- related mortality(TRM).
     In short,it is a hot area for research worldwide,but there are still many controversies over it.At present,KIR is not well studied in China.In order to investigate the effects of KIR genotype on outcome following hematopoietic stem cell transplantation as well as the mechanism.We conducted this study to address the following questions:a) Whether KIR genotype has the same effect on outcome in sibling or unrelated transplantation? b) What is the mechanism? c) How about the distribution of KIR genes in Eastern Chinese Han and Taiwanese Han populations?
     Section 1:The Effects of KIR and HLA Genotypes on Clinical Outcome Following Unrelated Donor or Sibling Allogeneic Hematopoietic Stem Cell Transplantation
     In section 1,the effects of KIR and HLA genotypes on clinical outcome following unrelated-donor and sibling hematopoietic stem cell transplantation were investigated. Patient and donor DNA were prepared from peripheral blood or bone marrow mononuclear cells prior to transplantation.HLA-C loci genes were analyzed using a PCR-SSP kit.HLA-C and HLA-B alleles were segregated into the epitope groups: HLA-C group 1,HLA-C group 2 and HLA-Bw4.KIR genotype analysis was performed by the PCR-SSP technique,using a KIR genotyping PCR-SSP kit.KIR genotyping was performed according to methods described previously.
     The inhibitory KIRs identified with HLA ligands are as follows: KIR2DL2/KIR2DL3,which bind group 1 HLA-C molecules(HLA-C1) characterized by serine at position 77 and asparagine at position 80,(Cw*01,03,07,08);KIR2DL1, which recognizes group 2 HLA-C molecules(HLA-C2) characterized by asparagine 77 and lysine 80(Cw*02,04,05,06);and KIR3DL1,which recognizes the HLA-Bw4 alleles.KIR-ligand mismatch was defined as the absence of one or more recipient HLA epitopes for the corresponding donor-inhibitory KIRs.Samples containing either one (A/B heterozygotes) or two(B/B homozygotes) group B haplotypes were assigned the genotype designation B/x.Samples that lacked all KIR B loci were assigned the genotype A/A.
     The results showed that in the setting of URD-HSCT,KIR-ligand mismatch was significantly associated with a decreased leukemic relapse risk(p=0.019;HR=0.329, 95%CI 0.131-0.830),mainly in myeloid disease(p=0.003;HR=0.193,95%CI 0.066-0.563).In myeloid disease,KIR-ligand mismatch also improved 5-year overall survival(OS)(p=0.031;HR=0.423,95%CI 0.194-0.924) and disease-free survival (DFS)(p=0.024;HR=0.445,95%CI 0.221-0.897).In lymphoid disease,KIR-ligand mismatch had not any beneficial effect on outcome.AA in the donor significantly decreased the cumulative incidence of relapse compared with Bx(12.9%vs.28.6%, P=0.024).We further found that more activating KIR genes in the donor resulted in an increased relapse risk(p=0.005;HR=1.463,95%CI 1.123-1.906).Meanwhile,the presence of donor activating KIR2DS3 was an independent factor associated with increased relapse risk(p=0.003;HR=5.045,95%CI 1.746-14.575) and decreased 5-year OS(p=0.006;HR=3.046,95%CI 1.378-6.732) and DFS(p=0.003;HR=2.919,95%CI 1.430-5.959) in myeloid disease.
     In the setting of sibling HSCT,KIR-ligand mismatch was not any beneficial effect on clinical outcome.In a multivariate analysis,heterozygous C1C2 in the patient resulted in increasedⅡ-ⅣaGVHD(p=0.032;HR=2.685,95%CI 1.087-6.635).This outcome also could be found in myeloid disease(p=0.024;HR=4.178,95%CI 1.206-14.475).The presence of donor activating KIR2DS1 was an independent factor associated with increasedⅡ-ⅣaGVHD(p=0.023;HR=11.86,95%CI 1.415-99.432) in the lymphoid disease.
     Section 2:Distribution of KIR Genes in Eastern Chinese Han and Taiwanese Han Populations
     In section 2,we randomly selected 106 healthy unrelated individuals from Eastern Chinese Han and 97 from Taiwanese Han in order to detect the diversity of KIR gene content and the combination of haplotypes.KIR genotype analysis was performed by the PCR-SSP technique and the genotypes and haplotypes were assigned according to standard modal of Hsu et al.
     The results showed that all 17 KIR genes were observed in the two populations. Framework genes KIR2DL4,KIR3DL2,KIR3DL3 and KIR3DP1 were present in all individuals.The two populations had very similar frequencies for most loci,however, significant differences were noted in the frequencies of KIR3DS1 and KIR2DS4*003.
     A total of 35 genotypes were identified in the individuals from Eastern Chinese Han and 29 in the Taiwanese Han.Ten genotypes were also shared with other populations. These genotypes contained the most commonly observed genotypes,which were possessed by over 65%of Eastern Chinese Han and 71%of Taiwanese Han individuals. The most common KIR genotypes were(2,2)and(1,2),with frequencies of 23.6%and 19.8%,respectively,in the Eastern Chinese Han population;20.6%and 24.7%, respectively,in the Taiwanese Han population.
     Our data are consistent with the broad classification of KIR regions into A and B haplotypes,with a predominance of the group A haplotypes in our two populations. Group A outnumbered group B haplotypes with a frequency of 68.1%in the population of Eastern Chinese Han and 74.1%in the Taiwanese Han.Four new KIR genotypes in every population could not be assigned to the haplotypes,according to standard method of Hsu.
     Section 3:Effects on Activity of Human NK Cells by KIR Functional Modification
     In section 3,the effect of human NK cells on leukemic cells and allogeneic dendritic cells(DC) by blocking the inhibitory receptors KIR2DL1 and KIR2DL2/2DL3 with monoclonal antibody was observed.And we aim to further clarify the possible mechanism about NK cells achieving the separation of GVL and GVHD through KIR functional modification.
     Human peripheral blood NK cells are isolated by Rosettesep human NK sorting kit. Using lactate dehydrogenase(LDH) release assay is to detect NK cells killing activity against different leukemic cells(human tumor cell lines NB4,K-562 and Raji cells) and against allogeneic mature or immature DC.And to observe the effect on killing activity of NK cells by KIR2DL1 and KIR2DL2/2DL3 blockade,we established NK cell and T lymphocyte reaction system in vitro.The proliferation of T lymphocytes was detected using CCK-8 reagent.The level of TGF-β1 were detected by ELISA method.
     The results showed that the cytotoxicity of NK cells to NB4 cells was augmented, and the clone-forming capacity of NB4 cells was inhibited remarkably with the increase of concentration of the antibody.Combination with both antibodies can enhance NK cell killing activity.NK cells have a strong ability of killing K-562 cells.However,the cytotoxicity to K-562 cells was not a little of amplification with the inhibitory receptors blockade.The cytotoxicity to Raji cells was not evidently augmented,and statistical difference was observed only between groups of 0μg/ml and 20μg/ml,p<0.05.The cytotoxicity to immature DC was also not evidently augmented,and statistical difference was not observed.But the cytotoxicity of NK cells to mature DC was augmented remarkably with the increase of concentration of the antibodies (2.20%±1.10%vs.37.59%±5.06%,p<0.05).In mixed lymphocyte reaction,NK cells by the two antibodies blockade can evidently inhibit T cell proliferation(77.85%±8.31% vs.43.05%±5.95%,p<0.05).The content of TGF-β1 in the supernatant was increased with the increase of concentration of the antibodies.
     In summary:
     1) In the setting of unrelated HSCT for myeloid leukemia,KIR-ligand mismatch was associated with a long-term survival advantage and decreased relapse.
     2) In the setting of unrelated HSCT,low number of activating KIRs genes in the donor could reduce the risk of relapse;The presence of KIR2DS3 in the donor was an important risk factor for myeloid leukemia.
     3) In the setting of sibling HSCT,heterozygous C1C2 in the patient was associated increasedⅡ-ⅣaGVHD;The presence of donor activating KIR2DS1 was also an independent factor associated with increasedⅡ-ⅣaGVHD for lymphoid leukemia.
     4) The KIR gene polymorphisms in Eastern Chinese Han and Taiwanese Han populations were similar to those of other Chinese Han populations.
     5) Some differences of the distribution of KIR genes in Eastern Chinese Han and Taiwanese Han populations may be related to "genetic drift".
     6) The study of the distribution of KIR genes will help choose a suitable donor and predict risks of transplantation in the two communities.
     7) The cytotoxic effects of human NK cells by the inhibitory receptors KIR2DL1 and KIR2DL2/2DL3 blockade against leukemic cells,especially acute myeloid leukemia, were significantly enhanced.This is demonstrated in vitro,alloreactive NK cells by KIR functional modification have a stronger GVL effect;
     8) Human NK cells by KIR2DL1 and KIR2DL2/2DL3 blockade significantly enhanced the cytotoxic effects against allograft mature DC and also secreted the protein of TGF-β1,which further inhibited T cells proliferation.This might be one of the mechanisms in preventing the T cell-mediated aGVHD.
引文
1.Ruggeri L,Capanni M,Urbani E,et al.Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.Science.2002,295 (5562):2097-2100.
    2.Giebel S,Locatelli F,Lamparelli T,et al.Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors.Blood.2003,102 (3):814-819.
    3.Miller JS,Cooley S,Parham P,et al.Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT.Blood.2007,109 (11):5058-5061.
    4.Schaffer M,Malmberg KJ,Ringden O,Ljunggren HG,Remberger M.Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation.Transplantation.2004,78 (7):1081-1085.
    5.Malmberg KJ,Schaffer M,Ringden O,Remberger M,Ljunggren HG.KIR-ligand mismatch in allogeneic hematopoietic stem cell transplantation.Mol Immunol.2005,42 (4):531-534.
    6.Yen JH,Moore BE,Nakajima T,et al.Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis.J Exp Med.2001,193(10):1159-1167.
    7.Martin MP,Nelson G,Lee JH,et al.Cutting edge:susceptibility to psoriatic arthritis:influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles.J Immunol.2002,169 (6):2818-2822.
    8.Flores AC,Marcos CY,Paladino N,et al.KIR genes polymorphism in Argentinean Caucasoid and Amerindian populations.Tissue Antigens.2007,69 (6):568-576.
    9.Alter G,Martin MP,Teigen N,et al.Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes.J Exp Med.2007,204 (12):3027-3036.
    10.Khakoo SI,Thio CL,Martin MP,et al.HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection.Science.2004,305 (5685):872-874.
    11.Cook M,Briggs D,Craddock C,et al.Donor KIR genotype has a major influence on the rate of cytomegalovirus reactivation following T-cell replete stem cell transplantation.Blood.2006,107 (3):1230-1232.
    12.Momot T,Koch S,Hunzelmann N,et al.Association of killer cell immunoglobulin-like receptors with scleroderma.Arthritis Rheum.2004,50 (5):1561-1565.
    13.Hsu KC,Liu XR,Selvakumar A,Mickelson E,O'Reilly RJ,Dupont B.Killer Ig-like receptor haplotype analysis by gene content:evidence for genomic diversity with a minimum of six basic framework haplotypes,each with multiple subsets.J Immunol.2002,169 (9):5118-5129.
    14.Verheyden S,Schots R,Duquet W,Demanet C.A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation.Leukemia.2005,19(8):1446-1451.
    15.Koh CY,Blazar BR,George T,et al.Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo.Blood.2001,97 (10):3132-3137.
    16.Marsh SG,Parham P,Dupont B,et al.Killer-cell immunoglobulin-like receptor (KIR) nomenclature report,2002.Tissue Antigens.2003,62 (1):79-86.
    17.Hsu KC,Keever-Taylor CA,Wilton A,et al.Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes.Blood.2005,105 (12):4878-4884.
    18.McQueen KL,Dorighi KM,Guethlein LA,Wong R,Sanjanwala B,Parham P.Donor-recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched,sibling donor hematopoietic cell transplantation.Hum Immunol.2007,68 (5):309-323.
    19.French AR,Yokoyama WM.Natural killer cells and viral infections.Curr Opin Immunol.2003,15(1):45-51.
    20.Lanier LL.NK cell recognition.Annu Rev Immunol.2005,23:225-274.
    21.Karre K.Immunology.A perfect mismatch.Science.2002,295 (5562):2029-2031.
    22.Farag SS,Fehniger TA,Ruggeri L,Velardi A,Caligiuri MA.Natural killer cell receptors:new biology and insights into the graft-versus-leukemia effect.Blood.2002,100(6):1935-1947.
    23.Elmaagacli AH,Ottinger H,Koldehoff M,et al.Reduced risk for molecular disease in patients with chronic myeloid leukemia after transplantation from a KIR-mismatched donor.Transplantation.2005,79 (12):1741-1747.
    24.Kroger N,Binder T,Zabelina T,et al.Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation.Transplantation.2006,82 (8):1024-1030.
    25.Sivula J,Volin L,Porkka K,et al.Killer-cell immunoglobulin-like receptor ligand compatibility in the outcome of Finnish unrelated donor hematopoietic stem cell transplantation.Transpl Immunol.2007,18 (1):62-66.
    26.Chen C,Busson M,Rocha V,et al.Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders.Bone Marrow Transplant. 2006,38(6):437-444.
    27.Romanski A,Bug G,Becker S,et al.Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia.Exp Hematol.2005,33(3):344-352.
    28.El Marsafy S,Dosquet C,Coudert MC,Bensussan A,Carosella E,Gluckman E.Study of cord blood natural killer cell suppressor activity.Eur J Haematol.2001,66(4):215-220.
    29.Cook MA,Moss PA,Briggs DC.The distribution of 13 killer-cell immunoglobulin-like receptor loci in UK blood donors from three ethnic groups.Eur J Immunogenet.2003,30(3):213-221.
    30.Schellekens J,Rozemuller EH,Petersen EJ,van den Tweel JG,Verdonck LF,Tilanus MG.Patients benefit from the addition of KIR repertoire data to the donor selection procedure for unrelated haematopoietic stem cell transplantation.Mol Immunol.2008,45(4):981-989.
    31.Frassati C,Touinssi M,Picard C,et al.Distribution of killer-cell immunoglobulin-like receptor(KIR) in Comoros and Southeast France.Tissue Antigens.2006,67(5):356-367.
    32.Williams F,Meenagh A,Sleator C,et al.Activating killer cell immunoglobulin-like receptor gene KIR2DS1 is associated with psoriatic arthritis.Hum Immunol.2005,66(7):836-841.
    33.Dou LP,Zheng de H,Wang C,et al.The diversity of KIR gene in Chinese Northern Han population and the impact of donor KIR and patient HLA genotypes on outcome following HLA-identical sibling allogeneic hematopoietic stem cell transplantation for hematological malignancy in Chinese people.Int J Hematol.2008,87(4):422-433.
    34.苏品璨,杨通汉,邹海等.云南汉族人群KIR基因多态性研究.中国输血杂志.2008,2l(4):268-272
    35.Yawata M,Yawata N,McQueen KL,et al.Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression.Immunogenetics.2002,54 (8):543-550.
    36.Norman PJ,Stephens HA,Verity DH,Chandanayingyong D,Vaughan RW.Distribution of natural killer cell immunoglobulin-like receptor sequences in three ethnic groups.Immunogenetics.2001,52 (3-4):195-205.
    37.Niokou D,Spyropoulou-Vlachou M,Darlamitsou A,Stavropoulos-Giokas C.Distribution of killer cell immunoglobulin-like receptors in the Greek population.Hum Immunol.2003,64 (12):1167-1176.
    38.Pavlova Y,Kolesar L,Striz I,Jabor A,Slavcev A.Distribution of KIR genes in the Czech population.Int J Immunogenet.2008,35 (1):57-61.
    39.Middleton D,Meenagh A,Moscoso J,Arnaiz-Villena A.Killer immunoglobulin receptor gene and allele frequencies in Caucasoid,Oriental and Black populations from different continents.Tissue Antigens.2008,71 (2):105-113.
    40.Toneva M,Lepage V,Lafay G,et al.Genomic diversity of natural killer cell receptor genes in three populations.Tissue Antigens.2001,57 (4):358-362.
    41.Wilson MJ,Torkar M,Haude A,et al.Plasticity in the organization and sequences of human KIR/ILT gene families.Proc Natl Acad Sci USA.2000,97 (9):4778-4783.
    42.Moretta A,Bottino C,Mingari MC,Biassoni R,Moretta L.What is a natural killer cell? Nat Immunol.2002,3(1):6-8.
    43.Uhrberg M,Valiante NM,Shum BP,et al.Human diversity in killer cell inhibitory receptor genes.Immunity.1997,7 (6):753-763.
    44.Gardiner CM,Guethlein LA,Shilling HG,et al.Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism.J Immunol.2001,166 (5):2992-3001.
    45.Kwon D,Chwae YJ,Choi IH,Park JH,Kim SJ,Kim J.Diversity of the p70 killer cell inhibitory receptor (KIR3DL) family members in a single individual.Mol Cells.2000,10(1):54-60.
    46.Rayes R,Bazarbachi A,Khazen G,Sabbagh A,Zaatari G,Mahfouz R.Natural killer cell immunoglobulin-like receptors (KIR) genotypes in two arab populations:will KIR become a genetic landmark between nations? Mol Biol Rep.2008,35 (2):225-229.
    47.Jiang K,Zhu FM,Lv QF,Yan LX.Distribution of killer cell immunoglobulin-like receptor genes in the Chinese Han population.Tissue Antigens.2005,65 (6):556-563.
    48.Whang DH,Park H,Yoon JA,Park MH.Haplotype analysis of killer cell immunoglobulin-like receptor genes in 77 Korean families.Hum Immunol.2005,66(2):146-154.
    49.Uhrberg M.The KIR gene family:life in the fast lane of evolution.Eur J Immunol.2005,35 (1):10-15.
    50.Jiang Z,Mi H,Zhang Y.An estimation of the out-migration from mainland China to Taiwan:1946-1949.Chin J Popul Sci.1996,8 (4):403-419.
    51.Ewerton PD,Leite Mde M,Magalhaes M,Sena L,Melo dos Santos EJ.Amazonian Amerindians exhibit high variability of KIR profiles.Immunogenetics.2007,59 (8):625-630.
    52.Mavoungou E,Sall A,Poaty-Mavoungou V,et al.Alloreactivity and association of human natural killer cells with the major histocompatibility complex.Clin Diagn Lab Immunol.1999,6 (2):254-259.
    53.Ljunggren HG,Karre K.In search of the 'missing self:MHC molecules and NK cell recognition.Immunol Today.1990,11 (7):237-244.
    54.Chen BJ,Cui X,Liu C,Chao NJ.Prevention of graft-versus-host disease while preserving graft-versus-leukemia effect after selective depletion of host-reactive T cells by photodynamic cell purging process.Blood.2002,99 (9):3083-3088.
    55.张彩,田志刚,侯桂华等.肿瘤细胞HLA I类分子表达对NK抗性的影响及INF-γ的调节作用.中华肿瘤杂志.2001,23(5):369-372.
    56.Ferlazzo G,Tsang ML,Moretta L,Melioli G,Steinman RM,Munz C.Human dendritic cells activate resting natural killer(NK) cells and are recognized via the NKp30 receptor by activated NK cells.J Exp Med.2002,195(3):343-351.
    57.Tambur AR,Yaniv I,Stein J,et al.Cytokine gene polymorphism in patients with gaft-versus-host disease.Transplant Proc.2001,33(1-2):502-503.
    58.Visentainer JE,Lieber SR,Persoli LB,et al.Serum cytokine levels and acute graft-versus-host disease after HLA-identical hematopoietic stem cell transplantation.Exp Hematol.2003,31(11):1044-1050.
    59.Seaman WE.Natural killer cells and natural killer T cells.Arthritis Rheum.2000,43(6):1204-1217.
    60.Mou HB,Lin MF,Cen H,Huang H,Cai Z.Prevention of murine acute graft-versus-host disease by recipient-derived TGFbetal-treated dendritic cells.Transplant Proc.2004,36(5):1604-1606.
    61.Hattori H,Matsuzaki A,Suminoe A,et al.Polymorphisms of transforming growth factor-betal and transforming growth factor-betal type Ⅱ receptor genes are associated with acute graft-versus-host disease in children with HLA-matched sibling bone marrow transplantation.Bone Marrow Transplant.2002,30(10):665-671.
    62.Longhurst HJ,Taussig D,Haque T,et al.Non-myeloablative bone marrow transplantation in an adult with Wiskott-Aldrich syndrome.Br J Haematol.2002,116(2):497-499.
    63.Colucci F,Di Santo JP,Leibson PJ.Natural killer cell activation in mice and men:different triggers for similar weapons? Nat Immunol.2002,3(9):807-813.
    1.Horowitz MM,Gale RP,Sondel PM,et al.Graft-versus-leukemia reactions after bone marrow transplantation.Blood.1990,75 (3):555-562.
    2.Goker H,Haznedaroglu IC,Chao NJ.Acute graft-vs-host disease:pathobiology and management.Exp Hematol.2001,29 (3):259-277.
    3.Cooper MA,Fehniger TA,Caligiuri MA.The biology of human natural killer-cell subsets.Trends Immunol.2001,22 (11):633-640.
    4.Smyth MJ,Hayakawa Y,Takeda K,Yagita H.New aspects of natural-killer-cell surveillance and therapy of cancer.Nat Rev Cancer.2002,2 (11):850-861.
    5.Cerwenka A,Lanier LL.Natural killer cells,viruses and cancer.Nat Rev Immunol.2001,1(1):41-49.
    6.Farag SS,Fehniger TA,Ruggeri L,Velardi A,Caligiuri MA.Natural killer cell receptors:new biology and insights into the graft-versus-leukemia effect.Blood.2002,100(6):1935-1947.
    7.Yoon SR,Chung JW,Choi I.Development of natural killer cells from hematopoietic stem cells.Mol Cells.2007,24 (1):1-8.
    8.Sivori S,Falco M,Marcenaro E,et al.Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation.Proc Natl Acad Sci USA.2002,99 (7):4526-4531.
    9.Abi-Rached L,Parham P.Natural selection drives recurrent formation of activating killer cell immunoglobulin-like receptor and Ly49 from inhibitory homologues.J Exp Med.2005,201 (8):1319-1332.
    10.Hsu KC,Liu XR,Selvakumar A,Mickelson E,O'Reilly RJ,Dupont B.Killer Ig-like receptor haplotype analysis by gene content:evidence for genomic diversity with a minimum of six basic framework haplotypes,each with multiple subsets.J Immunol.2002,169 (9):5118-5129.
    11.Gardiner CM,Guethlein LA,Shilling HG,et al.Different NK cell surface phenotypes defined by the DX9 antibody are due to KIR3DL1 gene polymorphism.J Immunol.2001,166(5):2992-3001.
    12.朱蓉,侯健.杀伤细胞KIR与造血干细胞移植.现代免疫学.2005,25(4):341-343.
    13.Shilling HG,McQueen KL,Cheng NW,Shizuru JA,Negrin RS,Parham P.Reconstitution of NK cell receptor repertoire following HLA-matched hematopoietic cell transplantation.Blood.2003,101(9):3730-3740.
    14.Brooks AG,Boyington JC,Sun PD.Natural killer cell recognition of HLA class I molecules.Rev Immunogenet.2000,2(3):433-448.
    15.Verheyden S,Schots R,Duquet W,Demanet C.A defined donor activating natural killer cell receptor genotype protects against leukemic relapse after related HLA-identical hematopoietic stem cell transplantation.Leukemia.2005,19(8):1446-1451.
    16.Trowsdale J,Barten R,Haude A,Stewart CA,Beck S,Wilson MJ.The genomic context of natural killer receptor extended gene families.Immunol Rev.2001,181:20-38.
    17.Toubert A,Dulphy N,Tieng V,Tamouza R,Charron D.[Natural killer lymphocyte activation in response to stress].Transfus Clin Biol.2003,10(3):109-112.
    18.Cosman D,Fanger N,Borges L,et al.A novel immunoglobulin superfamily receptor for cellular and viral MHC class Ⅰ molecules.Immunity.1997,7(2):273-282.
    19.Shiroishi M,Tsumoto K,Amano K,et al.Human inhibitory receptors Ig-like transcript 2(ILT2) and ILT4 compete with CD8 for MHC class Ⅰ binding and bind preferentially to HLA-G.Proc Natl Acad Sci U S A.2003,100(15):8856-8861.
    20.Campbell KS,Yusa S,Kikuchi-Maki A,Catina TL.NKp44 triggers NK cell activation through DAP 12 association that is not influenced by a putative cytoplasmic inhibitory sequence.J Immunol.2004,172 (2):899-906.
    21.Fauriat C,Just-Landi S,Mallet F,et al.Deficient expression of NCR in NK cells from acute myeloid leukemia:Evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction.Blood.2007,109 (1):323-330.
    22.Mavoungou E,Bouyou-Akotet MK,Kremsner PG.Effects of prolactin and Cortisol on natural killer (NK) cell surface expression and function of human natural cytotoxicity receptors (NKp46,NKp44 and NKp30).Clin Exp Immunol.2005,139 (2):287-296.
    23.Wang H,Grzywacz B,Sukovich D,et al.The unexpected effect of cyclosporin A on CD56+CD16-and CD56+CD16+ natural killer cell subpopulations.Blood.2007,110(5):1530-1539.
    24.Biassoni R,Cantoni C,Marras D,et al.Human natural killer cell receptors:insights into their molecular function and structure.J Cell Mol Med.2003,7 (4):376-387.
    25.Costello RT,Fauriat C,Sivori S,Marcenaro E,Olive D.NK cells:innate immunity against hematological malignancies? Trends Immunol.2004,25 (6):328-333.
    26.Borrego F,Masilamani M,Kabat J,Sanni TB,Coligan JE.The cell biology of the human natural killer cell CD94/NKG2A inhibitory receptor.Mol Immunol.2005,42 (4):485-488.
    27.Bakker AB,Wu J,Phillips JH,Lanier LL.NK cell activation:distinct stimulatory pathways counterbalancing inhibitory signals.Hum Immunol.2000,61 (1):18-27.
    28.Diefenbach A,Tomasello E,Lucas M,et al.Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D.Nat Immunol.2002,3 (12):1142-1149.
    29.Coudert JD,Held W.The role of the NKG2D receptor for tumor immunity.Semin Cancer Biol.2006,16 (5):333-343.
    30.Verneris MR,Karami M,Baker J,Jayaswal A,Negrin RS.Role of NKG2D signaling in the cytotoxicity of activated and expanded CD8+ T cells.Blood.2004,103 (8):3065-3072.
    31.Takaki R,Hayakawa Y,Nelson A,et al.IL-21 enhances tumor rejection through a NKG2D-dependent mechanism.J Immunol.2005,175 (4):2167-2173.
    32.Vankayalapati R,Garg A,Porgador A,et al.Role of NK cell-activating receptors and their ligands in the lysis of mononuclear phagocytes infected with an intracellular bacterium.J Immunol.2005,175 (7):4611-4617.
    33.Doubrovina ES,Doubrovin MM,Vider E,et al.Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma.J Immunol.2003,171 (12):6891-6899.
    34.Epling-Burnette PK,Bai F,Painter JS,et al.Reduced natural killer (NK) function associated with high-risk myelodysplastic syndrome (MDS) and reduced expression of activating NK receptors.Blood.2007,109 (11):4816-4824.
    35.Wu JD,Higgins LM,Steinle A,Cosman D,Haugk K,Plymate SR.Prevalent expression of the immunostimulatory MHC class I chain-related molecule is counteracted by shedding in prostate cancer.J Clin Invest.2004,114 (4):560-568.
    36.Coudert JD,Zimmer J,Tomasello E,et al.Altered NKG2D function in NK cells induced by chronic exposure to NKG2D ligand-expressing tumor cells.Blood.2005,106 (5):1711-1717.
    37.Armeanu S,Bitzer M,Lauer UM,et al.Natural killer cell-mediated lysis of hepatoma cells via specific induction ofNKG2D ligands by the histone deacetylase inhibitor sodium valproate.Cancer Res.2005,65(14):6321-6329.
    38.Chalupny N J,Rein-Weston A,Dosch S,Cosman D.Down-regulation of the NKG2D ligand MICA by the human cytomegalovirus glycoprotein UL142.Biochem Biophys Res Commun.2006,346(1):175-181.
    39.郭坤元.免疫耐受与HLA半匹配造血免疫细胞移植.第九界全国实验血液学会议.2003:53-59.
    40.Ruggeri L,Capanni M,Urbani E,et al.Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants.Science.2002,295(5562):2097-2100.
    41.Ruggeri L,Capanni M,Casucci M,et al.Role of natural killer cell alloreactivity in HLA-mismatched hematopoietic stem cell transplantation.Blood.1999,94(1):333-339.
    42.Romanski A,Bug G,Becker S,et al.Mechanisms of resistance to natural killer cell-mediated cytotoxicity in acute lymphoblastic leukemia.Exp Hematol.2005,33(3):344-352.
    43.Ruggeri L,Mancusi A,Capanni M,et al.Donor natural killer cell allorecognition of missing self in haploidentical hematopoietic transplantation for acute myeloid leukemia:challenging its predictive Value.Blood.2007,110(1):433-440.
    44.Velardi A,Ruggeri L,Capanni M,et al.Immunotherapy with alloreactive natural killer cells in haploidentical haematopoietic transplantation.Hematol J.2004,5Suppl 3:S87-90.
    45.Bishara A,De Santis D,Witt CC,et al.The beneficial role of inhibitory KIR genes of HLA class Ⅰ NK epitopes in haploidentically mismatched stem cell allografts may be masked by residual donor-alloreactive T cells causing GVHD.Tissue Antigens.2004,63(3):204-211.
    46.Huang XJ,Zhao XY,Liu DH,Liu KY,Xu LR Deleterious effects of KIR ligand incompatibility on clinical outcomes in haploidentical hematopoietic stem cell transplantation without in vitro T-cell depletion.Leukemia.2007,21 (4):848-851.
    47.Nguyen S,Dhedin N,Vernant JP,et al.NK-cell reconstitution after haploidentical hematopoietic stem-cell transplantations:immaturity of NK cells and inhibitory effect of NKG2A override GvL effect.Blood.2005,105 (10):4135-4142.
    48.Davies SM,Ruggieri L,DeFor T,et al.Evaluation of KIR ligand incompatibility in mismatched unrelated donor hematopoietic transplants.Killer immunoglobulin-like receptor.Blood.2002,100 (10):3825-3827.
    49.Giebel S,Locatelli F,Lamparelli T,et al.Survival advantage with KIR ligand incompatibility in hematopoietic stem cell transplantation from unrelated donors.Blood.2003,102 (3):814-819.
    50.Gagne K,Brizard G,Gueglio B,et al.Relevance of KIR gene polymorphisms in bone marrow transplantation outcome.Hum Immunol.2002,63 (4):271-280.
    51.Miller JS,Cooley S,Parham P,et al.Missing KIR ligands are associated with less relapse and increased graft-versus-host disease (GVHD) following unrelated donor allogeneic HCT.Blood.2007,109 (11):5058-5061.
    52.Schaffer M,Malmberg KJ,Ringden O,Ljunggren HG,Remberger M.Increased infection-related mortality in KIR-ligand-mismatched unrelated allogeneic hematopoietic stem-cell transplantation.Transplantation.2004,78 (7):1081-1085.
    53.Malmberg KJ,Schaffer M,Ringden O,Remberger M,Ljunggren HG KIR-ligand mismatch in allogeneic hematopoietic stem cell transplantation.Mol Immunol.2005,42 (4):531-534.
    54.McQueen KL,Dorighi KM,Guethlein LA,Wong R,Sanjanwala B,Parham P. Donor-recipient combinations of group A and B KIR haplotypes and HLA class I ligand affect the outcome of HLA-matched,sibling donor hematopoietic cell transplantation.Hum Immunol.2007,68 (5):309-323.
    55.Kroger N,Binder T,Zabelina T,et al.Low number of donor activating killer immunoglobulin-like receptors (KIR) genes but not KIR-ligand mismatch prevents relapse and improves disease-free survival in leukemia patients after in vivo T-cell depleted unrelated stem cell transplantation.Transplantation.2006,82(8):1024-1030.
    56.Farag SS,Bacigalupo A,Eapen M,et al.The effect of KIR ligand incompatibility on the outcome of unrelated donor transplantation:a report from the center for international blood and marrow transplant research,the European blood and marrow transplant registry,and the Dutch registry.Biol Blood Marrow Transplant.2006,12 (8):876-884.
    57.Hsu KC,Keever-Taylor CA,Wilton A,et al.Improved outcome in HLA-identical sibling hematopoietic stem-cell transplantation for acute myelogenous leukemia predicted by KIR and HLA genotypes.Blood.2005,105(12):4878-4884.
    58.Sobecks RM,Ball EJ,Maciejewski JP,et al.Survival of AML patients receiving HLA-matched sibling donor allogeneic bone marrow transplantation correlates with HLA-Cw ligand groups for killer immunoglobulin-like receptors.Bone Marrow Transplant.2007,39 (7):417-424.
    59.Clausen J,Wolf D,Petzer AL,et al.Impact of natural killer cell dose and donor killer-cell immunoglobulin-like receptor (KIR) genotype on outcome following human leucocyte antigen-identical haematopoietic stem cell transplantation.Clin Exp Immunol.2007,148 (3):520-528.
    60.Dou LP,Zheng de H,Wang C,et al.The diversity of KIR gene in Chinese Northern Han population and the impact of donor KIR and patient HLA genotypes on outcome following HLA-identical sibling allogeneic hematopoietic stem cell transplantation for hematological malignancy in Chinese people.Int J Hematol.2008,87 (4):422-433.
    61.Chen C,Busson M,Rocha V,et al.Activating KIR genes are associated with CMV reactivation and survival after non-T-cell depleted HLA-identical sibling bone marrow transplantation for malignant disorders.Bone Marrow Transplant.2006,38 (6):437-444.
    62.Miller JS,Soignier Y,Panoskaltsis-Mortari A,et al.Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.Blood.2005,105 (8):3051-3057.
    63.Passweg JR,Tichelli A,Meyer-Monard S,et al.Purified donor NK-lymphocyte infusion to consolidate engraftment after haploidentical stem cell transplantation.Leukemia.2004,18 (11):1835-1838.
    64.Koehl U,Sorensen J,Esser R,et al.IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation.Blood Cells Mol Dis.2004,33 (3):261-266.