用户名: 密码: 验证码:
微笔—激光复合直写厚膜传感器的关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着厚膜传感器不断向着微型化、集成化、非标准化方向的发展,厚膜传感器制造业迫切需要发展一种能在无掩膜的条件下,快速制备出小尺寸、高精度、高可靠性传感器的新技术。在国家“863”高技术研究发展计划资助项目和国家自然科学基金的资助下,本文在国内外率先提出微笔-激光复合直写快速制造厚膜传感器技术,实现了在陶瓷基板上集成制造厚膜温度传感器、微加热器和厚膜气敏传感器,并系统研究了复合直写过程中的关键科学问题。主要研究结果总结如下:
     本文将微笔直写技术与激光微熔覆电子浆料技术相结合,利用微笔直写技术将浆料按图形轨迹预置在基板上,烘干后,激光沿微笔运动轨迹对浆料进行加热,再用有机溶剂清洗激光未辐照区域,就得到所要图形。选用激光微熔覆作为微笔直写的后续工艺,不仅不需要将整个样品放炉中高温烧结,还可以进一步缩小微笔直写线条的线宽,制得更精细的图形。目前微笔直写后,激光微熔覆制得的厚膜PTC热敏电阻最小线宽为40μm。
     根据微笔-激光复合直写技术的基本特点,研究并开发出相应的复合直写设备。该设备主要由Nd:YAG准连续激光器、微笔直写系统和三维运动工作台组成。在机床Z轴上合理设计激光光路和微笔安装工位,将激光加工与微笔直写集成到同一台机床上,由数控系统控制工作平台的运动速度与方向,完成微笔直写和激光微熔覆工作。其中,控制系统采用“NC嵌入PC”型开放式数控结构,适应数控系统发展的潮流,使整个复合直写系统具有很大的灵活性和可移植性。配备了“旁轴CCD+监视器”的工件定位系统,采用直写标记法测定微笔与激光的相互坐标,确保不同加工工具加工轨迹重合。该系统还可以供其它激光精密加工使用。
     用流变学理论分析、建立了微笔直写电子浆料成型的理论模型。用正交实验的方法,对影响微笔直写线宽的主要工艺参数进行了排序,按主次顺序排列,依次为浆料粘度、直写速度、笔头内径、驱动气压、笔头端面到基板表面的垂直距离。影响膜厚的主要因素是笔头端面到基板表面的垂直距离。
     通过对厚膜PTC热敏电阻浆料、电热浆料和气敏浆料热分析,证明了功能电子浆料在激光微熔覆过程中的变化特征与炉中烧结相似。激光功率密度对功能电子浆料电性能影响规律与炉中烧结温度对其影响规律相似。激光微熔覆电子浆料的过程实质上就是激光与电子浆料的热耦合过程,过程中有液相出现,由于激光束与浆料作用的时间极短,该过程实质是瞬时液相烧结。激光强度分布的不均匀性会导致浆料膜层出现波状起伏的现象;膜层较厚时,冷却的不均匀会造成膜层表面开裂。
     系统地分析了激光微熔覆热敏电阻浆料、电热浆料和气敏浆料的质量控制规律。目前激光微熔覆制得的厚膜PTC热敏电阻电阻-温度系数可达2965×10~(-6)/℃,其性能与传统的炉中烧结相当。激光功率密度和后续热处理温度对PTC热敏电阻方阻和电阻温度系数影响较大,激光功率密度最佳值为1.5×10~6W/cm~2,后续热处理温度最佳值为400℃。激光微熔覆制备的微加热器加热温度最高可达到500℃,“螺旋”形微加热器升温、降温速度分别为7℃s~(-1)和4℃s~(-1)。激光功率的大小对SnO_2气敏膜的微观结构和气敏性能有重要的影响。激光微熔覆制备的气敏膜在工作温度250℃下对2000ppm酒精蒸汽的响应度最大,为8.6,其响应时间和恢复时间分别为7s和20s;传统烧结的气敏膜(膜厚为8.5μm)响应度为7.4,响应时间和恢复时间分别为10s和25s;并尝试用TO-6管对气敏传感器进行了封装,证明了微笔-激光复合直写的器件与传统封装工艺是相容的。
     本文所研究开发的微笔-激光复合直写技术开辟了一种快速、无掩模、制造效率高的柔性直写厚膜传感器新途径。该技术在新品研发和小批量非标生产厚膜传感器场合,比传统工艺方法生产成本更低,生产效率更高,具有十分广阔的发展空间和应用前景。
With the development of thick-film sensors towards miniaturization, integration and non-standardization, it is very important to develop a new processing technology, which can rapidly fabricate sensor with small-size, high precision, high reliability and no mask. With the support of National "863" Hi-Tech Research & Development Program of China and National Natural Science Foundation of China, a method of thick-film sensor fabrication by Micropen-Laser hybrid direct writing technique was presented in this paper firstly. With this novel method, thick-film temperature sensor, microheater and gas sensor were fabricated directly on ceramic substrates. At the same time, the concerned key scientific problems on the hybrid direct writing fabrication were studied systematically. Following are the main results on the project:
     This novel method combined Micropen direct writing technology and laser microcaldding electronic paste technology. Firstly, electronic paste was direct written or deposited on substrate by Micropen according to the designed pattern. Then it was dried by a heater. After that the laser beam was utilized to irradiate the coating according to Micropen movement track. Finally, the un-irradiated paste was removed by organic solvent and the pattern was left. Laser microcladding was selected as a post process, which can be used not only to functionalize the component but also to generate the fine pattern. It does not require the patterns and substrate to be post processed at high temperatures. At present, the minimum line width of thick-film PTC thermistor fabricated by Micropen-Laser hybrid direct writing was 40μm.
     Novel special equipment for Micropen-Laser hybrid direct writing technology was developed and manufactured on the basis of hybrid direct writing characteristics. This equipment was composed of Nd:YAG lasers, Micropen direct-write system and a 3-dimensional worktable. Laser beam delivery system and Micropen were installed on Z-axis of equipment. The scanning speed and directions were controlled by a numeric control system, by which Micropen direct writing and laser micro cladding process can be accomplished. The Open System Architecture of "NC embedded in PC" was used in the control system, which made the system more flexible and transplantable. "off-axis CCD + monitor" was used as workpiece position system. To measure the correlative coordinates between Micropen and laser beam, a simple method using direct-write marker was devised, which ensures that the movement tracks of Micropen and laser beam coincide with each other. Moreover, this equipment can be used in other fields such as laser precision machining, laser micro manufacturing and so on.
     The theoretical model of Micropen direct writing was established through rheology theoretical analysis. The sequence of the main process parameters which affect the line width is shown below in the order from primary to secondary: the viscosity of paste, the direct writing speed, the diameter of Micropen tip, gas pressure and the tip-to-substrate distance. It is obtained by orthogonal experiment. The main parameter which greatly affects the direct writing film thickness is the tip-to-substrate distance.
     Transformation character of functional electronic paste in the process of laser microcladding is similar to the process of furnace sintering accordint to the thermal analysis experiment. Laser power density has the similar effect on electrical properties as the temperature of furnace sintering. Laser microcladding electronic paste is essentially the thermal coupling process of laser beam withelectronic paste. There is liquid phase emerged during laser process. In essence, this process is an instantaneous liquid phase sintering during laser irradiation. The non-homogeneous distribution of the laser power intensity resulted in fluctuant phenomenon in the paste film during laser irradiation. The cracks can be found in the thick films when the film layer is thicker and the cooling process is non-uniform.
     The basic mechanisms of how to control the film quality of thermistor paste, galvanothermy paste and gas sensing paste by laser microcladding were studied systematically. The thermistors fabricated by laser microcladding exhibited excellent electrical performance and resistance tolerance equivalent to traditional oven-fired electrical paste. The TCR of thermistors reaches the maximum value of 2965×10~(-6)/°C. Laser power density and the temperature of post-heat treatment had a great effect on sheet resistivities and TCR of thermistor. Optimal values of laser power density and temperature of post-heat treatment are 1.5×10~(-6)W/cm~2 and 400°C , respectively. The highest temperature of microheaters exceeded 500°C. The heating and cooling rates of the spiral-shaped microheater are about 7°C s~(-1) and 4°C s~(-1), respectively. The operating temperature has an obvious influence on the sensitivity of the sensor to ethanol vapor and the peak sensitivity occurs at operating temperature of 250°C. The sensitivity to 2000ppm ethanol vapor reaches a maximum value of 8.6, while that of screen-printed sample with 8.5μm thickness is 7.4. The measured response and recovery time of the sample was 7s and 20s, respectively, and 10s and 25s, respectively, for the sample fabricated by screen-printing. The gas sensor fabricated by laser microcaldding was packaged by TO-6 tube, which proved that the sensor fabricated by Micropen-Laser hybrid direct writing technology was compatible with traditional packaging technology.
     Summing up above mentioned, Micropen-Laser hybrid direct writing technology has created a new way for thick-film sensor fabrication with fast, maskless and high efficiency. Under the conditions of new product research and development, small-scale non-standardization production, this technique will be accepted by the industrial enterprises because of its low cost and high efficiency in comparison with traditional processes, which has a broad space for development and bright application prospects.
引文
[1]诸汉琬.从MICONEX2005看传感器现状与发展.世界仪表与自动化,2005,9(12): 37~38
    [2]黄贤武,郑莜霞.传感器原理与应用.(第一版).成都:电子科技大学出版社,1995.156~158
    [3]李耀霖.厚膜电子元件.(第一版).广东:华南理工大学出版社,1991.3~5
    [4]中国电子学会敏感技术分会北京电子学会编.2000/2001传感器与执行器大全(年卷).北京:电子工业出版社,2001.31~32
    [5]Douglas B.Chrisey.The Power of Direct Writing.Science, 2000,11:879~880
    [6]Alberto Piqu(?), Douglas B.Chrisey.Direct-write technology for rapid prototyping applications: in sensors, electronics, and integrated power sources.Academic Press,2002.5~15
    [7]Akira Ikegami, Hideo Arima.厚膜热敏电阻及应用压电与声光,1982, (2):55~60
    [8]李亚东,朱宏,丁古巧.玻璃助剂对厚膜NTC热敏电阻器材料特征常数的影响.材料科学与工程学报,2004, 22(6): 824~826
    [9]王恩信,荆玉兰,王鹏程等.NTC热敏电阻器的现状与发展趋势.电子元件与材料,1997, 8: 1~3
    [10]席军,刘廷华.PTC热敏电阻的开发应用现状.塑料,2005, 34(4): 79~82
    [11]Lee M.H, Yoo M N.Detectivity of thin film NTC thermal sensors.Sens Actuat A, 2002, 96(1): 97~104
    [12]Lee M.H, Yoo M N.Detectivity of thin film NTC infrared sensors.Proc SPIE, 2001,42(88): 422~429
    [13]P.B.Weisz.Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis.The journal of chemical physics, 1953, 21(9):1531~1538
    [14]S.R.Morrison.The chemical physics of surfaces.(2nd).New York: Plenum Press, 1999.251
    [15]D.Kohl.Surface processes in the detection of reducing gases with SnO_2-based devices.Sensors and Actuators, 1989, 18: 71~113
    [16]Nak-Jin Choi, Jun-Hyuk Kwak, Yeon-Tae Lim et al.Classification of chemical warfare agents using thick film gas sensor array.Sensors and Actuators B, 2005,108: 298~304
    [17]M.Vilaseca, J.Coronas, A.Cirera et al.Development and application of micromachined Pd/SnO2 gas sensors with zeolite coatings.Sensors and Acturators B, 2008, 133(2): 435~441
    [18][英]J.A.斯卡利特.微电子学中的印刷电路.(第一版).陈晖,陈行健译.北京:科学出版社,1976.218~220
    [19]沈锡宽.印刷电路技术.(第一版).北京:科学出版社,1992.102~104
    [20][美]R.D.琼斯.混合电路的设计与制造.(第一版).杨其眉译.北京:电子工业出版社,1987.35~41
    [21][美]托普弗.厚膜微电子学.(第一版).朱瑞廉译.北京:国防工业出版社,1975.71~78
    [22]Lee Smith.Development of Direct write Ink Jet for Deposition of Silver Contact.Univ.of California, 2001
    [23]爱普生.爱普生运用喷墨技术制造出首款电路板.http://publish.itl68.com/2004/1130/20041130000501.shtml, 2009-1-3
    [24]J.B.Szczech, C.M.Megaridis, D.R.Gamota et al.Fine-line Conductor Manufacturing Using Drop-On-Demand PZT Printing Technology.IEEE, 2002, 25(1): 26~33
    [25]H.M.Nur, J.H.Song, J.R.G.Evans et al.Ink-jet printing of gold conductive tracks.Journal of Materials Science: materials in electronics, 2002, 13:213~219
    [26]S.B.Fuller, E.J.Wihelm, J.M.Jacobson.Ink-Jet Printed Nanoparticle Microelectromechanical Systems, Journal of MEMS, 2002, 11(1): 54~60
    [27]David Jam.Plastic electronics.http://www.plasticlogic.com, 2008-12-24
    [28]Bruce King.Maskless mesoscale material deposition.Electronic Package and Production, 2003.18~20
    [29][美]C.A.哈珀.电子组装制造,芯片·电路板·封装及元器件.贾松良等译.北 京:科学出版社,2005.5-6
    [30]J.Longtin, S.Sampath, R.J.Gambino et al.Sensors for Harsh Environment by Direct Write Thermal Spray.IEEE Sensor Journal, 2004, 4(1): 118~121
    [31]R.H.Morgan, C.J.Sutcliffe, J.Pattision et al.Cold gas dynamic manufacturing一A new approach to near-net shape metal component fabrication.Materials Research Society Symposium-Proceedings, 2003, 758: 73~84
    [32]Carl.E.D.Inking system for producing circuit pattern.U.S.patents, 4485387,1985
    [33]B.H.King, D.Dimos, P.Yang et al.Direct-write fabrication of integrated,multilayer ceramic components.Journal of Electroceramics, 1999, 3(2): 173~178
    [34]Robert M.Taylor, Kenneth H.Chruch et al.Rapid Prototyping of Electronics Via Writing and Laser Processing.ICALEO, 2001,M5 06, 231~23 5
    [35]P.E.Sheehan, L.J.Whitman.Nanoscale depositions of solid inks via thermal dip pen nanolithography.Appl.Phys.Letters, 2004, 85( 9): 1589~1591
    [36]Kim KH, Moldovan N, Espinosa HD.A Nanofountain Probe with Sub-100 nm Molecular Writing Resolution.Small, 2005, 1(6): 632~635
    [37]F.T.Wallenberger.Inorganic Fibres and Microfabricated Parts by Laser Assisted Chemical Vapour Deposition (LCVD): Structures and Properties.Ceramics International,1997, 23(2): 119~126
    [38]T.L.Tansley, B.Zhou, X.Li, K.S.A.Butcher.Microwave plasma assisted LCVD growth and characterization of GaN.Applied Surface Science, 1996, 100(101):643~646
    [39]B.Zhou, K.S.A.Butcher, H.Zhou et al.Photoconductive decay in LCVD/PECVD low temperature grown GaN.Solid-State Electronics, 1997, 41(2): 279~281
    [40]H.Moilanen, J.Remes, S.Leppavuori et al.Low resistivity LCVD direct write Cu conductor lines for IC customization.Physica Scipta T, 1997, T69: 237~241
    [41]X.C.Wang, H.Y.Zheng, G.C.Lim.Laser induced copper electroless plating on polyimide with Q-switch Nd:YAG laser.Applied Surface Science, 2002, 200(1-4):165~171
    [42]G.A.Shafeev, L.Bellard, J.M.Themlin et al.Electroless metallization of SiC after laser ablation.Surface and Coatings Technology, 1996, 80(1-2): 224~228
    [43]K.Kord(?)s, S.Leppavuori, A.Uusimaki et al.Palladium thin film deposition on polyimide by CW Ar+ laser radiation for electroless copper plating.Thin Solid Films, 2001, 384(2): 185-187
    [44]R.J.Von Gutfeld, E.E.Tynan, R.L.Melcher et al.Laser enhanced electroplating and maskless pattern generation.Applied Physics Letters, 1979, 35 (9): 651~653
    [45]Fernadez-Pradas JM, Colina M, Serra P et al.Laser induced Forward Tranfer of Biomolecules.Thin Solid Films, 2004, 453(454): 27~30
    [46]Fogarassy E, Fuchs C, Kerherve F et al.Laser-Induced Forward Transfer of High-Tc YBaCuO and BiSrCaCuO Superconducting Thin Films.Journal of Applied Physics,1998, 66: 457~459
    [47]R.Serna, R.W.Dreyfus, J.Solis et al.Matrix assisted laser desorption/ionisation studies of metallic nanoclusters produced by pulsed laser deposition.Applied Surface Science, 1998, 127-129: 383~387
    [48]A.Guti(?)rrez-Llorente, G.Horowitz, R.P(?)rez-Casero et.al.Growth of polyalkylthio-phene films by matrix assisted pulsed laser evaporation.Organic Electronics, 2004, 5(1-3): 29~34
    [49]A.Piqu(?), R.A.McGill, D.B.Chrisey et al.Growth of organic thin films by the matrix assisted pulsed laser evaporation (MAPLE) technique.Thin Solid Films,1999,355:536~541
    [50]D.B.Chrisey, A.Pique, R.Modi et al.Direct writing of conformal mesoscopic electronic devices by MAPLE DW.Applied Surface Science, 2000, 168(1-4): 345~352
    [51]姜贵凤,郁祖湛.不同化学镀液中p-Si上激光诱导局部沉积铜.应用化学,1996,13(2): 18~21
    [52]王建,郁祖湛.P型硅片上激光诱导局部化学沉镍.高等学校化学学报,1996,17(4): 626~629
    [53]王建,郁祖湛.激光镀技术的研究动态.电镀与精饰,1999, 21(2): 1~5
    [54]王建,郁祖湛.激光镀技术的研究动态.电镀与精饰,1999, 21(3): 1~2
    [55]谢湘华,张谊华,方尔梯.激光诱导醋酸铜乙醇溶液反应直写金属铜线.应用激光,1996, 16(6): 252~60
    [56]黄妙良,林建明,林煜等.激光诱导化学沉积(铜)的实验研究.激光杂志,1996,17(5): 249~251
    [57]张国庆,姚素薇,刘冰等.半导体硅上激光诱导选择性电镀铜.应用化学,1997,14(1): 33~36
    [58]W.J.Wang.Laser Induced Writing of Conductive Copper Lines for Electronic Devices, 2004 International Conference on Asian Green Electronics, Shanghai,2004, 156~160
    [59]沈文锋.喷墨打印技术制备气敏薄膜研究:[硕士论文].东北大学图书馆,2003.57~60
    [60]郭瑞松.喷射打印成型用陶瓷墨水制备方法.无机材料学报,2001, 16(6):1049~1054
    [61]何中伟,周冬莲.厚膜直接描绘工艺.电子元件与材料,1999, 18(5): 3~6
    [62]X.Y.Li, H.L.Li, Y.Chen et al.Silver conductor fabrication by laser direct writing on Al_2O_3 substrate.Appl.Phys.A, 2004, 79: 1861~1863
    [63]X.Y.Li, H.L.Li, X.Y.Zeng.Conductive line preparation on resin surfaces by laser micro-cladding conductive pastes, Applied Surface Science, 2004, 233(1-4): 51~57
    [64]李文兵,李祥友,曾晓雁.用激光微细熔覆法直写电阻浆料制备厚膜电阻.功能材料,2005, 36(1): 80~82
    [65]李爱魁,王泽敏,刘家骏等.激光直写技术制备SiO_2-TiO_2条形光波导工艺研究激光技术,2008, 32(3): 317~319
    [66]李爱魁,王泽敏,刘家骏等.溶胶-凝胶法制备SiO_2-TiO_2平板光波导工艺研究,应用光学,2008, 29(2): 294~298
    [67]Robert Parkhill, Robert Taylor, Kenneth Church.Laser processing of direct-write resistor paste, ICALEO2001, M906, 405-409
    [68]Tao Tong, Jinggao Li, Qing Chen et al.Ultrafast laser micromachining of thermal sprayed coatings for microheaters:design, fabrication and characterization.Sensors and Actuators A, 2004, 114: 102-111
    [69]N.R.Bieri, J.Chung, D.Poulikakos et al.Manufacturing of nanoscale thickness gold lines by laser curing of a discretely deposited nanoparticle suspension.Superlattices and Microstructures, 2004, 35: 437~444
    [70]Jaewon Chung, Seunghwan Ko, Nicole R.Bieri et al.Conductor microstructures by laser curing of printed gold nanoparticle ink.Applied Physics Letters, 2004, 84(5):801~803
    [71]N.R.Bieri, J.Chung, S.E.Haferi et al.Microstructuring by printing and laser curing of nanoparticle solutions.Applied Physics Letters, 2003, 82(20): 3529~3531
    [72]Tae YChoi, Dimos Poulikakos.Fountain-pen-based laser micro structuring with gold nanoparticle inks.Applied Physics Letters, 2004, 85(1): 13~15
    [73]N.R.Bieri, J.Chung, D.Poulikakos et al.An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks.Applied Physics A,2005,80:1485~1495
    [74]Seung H.Ko, Yeonho Choi, David J.Hwang et al.Nanosecond laser ablation of gold nanoparticle film.Applied Physics Letters, 2006, 89: 1~3
    [75]Seung Hwan Ko, Jaewon Chung, Heng Pan et al.Fabrication of multilayer passive and active electric components on polymer using inkjet printing and low temperature laser processing.Sensors and Actuators A, 2007, 134: 161~168
    [76]Hjalti H.Sigmarsson, Edward C.Kinzel, Xianfan Xu et al.Selective laser sintering of multilayer, multimaterial circuit components.IEEE2006: 1788~1791
    [77]A.Pique, C.B.Arnold, R.C.Wartena et al.Laser-induced forward transfer direct-write of miniature sensor and microbattery systems.Proc.SPIE, 2003, (4830) 182
    [78]K.Ahn, B.W.Wessels, S.Sampath.Spinel humidity sensors prepared by thermal spray direct writing.Sensors Act.B:chem., 2005, 107: 342
    [79]Yongjun Lai, Evgueni V.Bordatchev, Suwas K.Nikumb.Metallic micro displacement capacitive sensor fabricated by laser micromachining technology.Microsyst Technol, 2006, 12: 778~785
    [80]Valery R.Marinov, Douglas B.Chrisey et.al.Direct-write vapor sensors on FR4 plastic substrates.IEEE SENSORS Journal, 2007, 7(6): 937~939
    [81]李益民.金属注射成形原理与应用.(第一版).长沙:中南大学出版社,2004.3~5
    [82]谭平,韩江,何凯.NC嵌入PC型开放式网络化数控系统的研究.合肥工业大学学报(自然科学版), 2004, 27(2): 144-147
    [83]E.H.Golden.Next generation manufacturing system.Modern Machine Shop, 1997,(1): 156~158
    [84]R.Katz, B.K.Min, Z.Pasek.Open architecture control technology trends.ERC/RMS Report 35.2000.1~26
    [85]F.M.Porctor, J.S.Albus.Open-architecture controllers.IEEE Spectrum, 1997, (6):60~64
    [86]S.Wang, K.G.Shin.Reconfigurable software for open architecture controllers.Proceedings of the 2001 IEEE International Conference on Robotics & Automation,Seoul, 2001.4090~4095
    [87]W.E.Ford.What is an open architecture robot controller.1994 IEEE International Symposium on Intelligent Control, Columbus, 1994.27~32
    [88]王峳珍,张绪礼.热敏传感器的现状与发展.电子科技导报,1996,10:19~22
    [89]Bouchard R J, Gillson J L.A new family of bismuth-precious metal pyrochlores.Mater Res Bull., 1971,6(8): 669
    [90]朱盈权.PTC热敏电阻的现状与发展趋势.电子元件与材料,2002, 21(6): 26~28
    [91]范家成.热敏电阻器市场现状.电子元件与材料,1997, 16(2): 1~5
    [92]DiMeo Jr F, Semancik S, Cavicci RE et al.Heteroepitaxy of conducting oxides on silicon using oxide buffer layer.The 6~(th) international meeting on chemical sensors,proceedings, Gaitherburg, 1996., 105~110
    [93]卢培珍,陈汴混.BaTiO_3超细粉的研究.陶瓷研究.1995, 10 (2): 75~79
    [94]S.Yasunaga, S.Sunhara, K.Ihokura.Effects of tetraethyl orthosilicate binder on the characteristics of an SnO2 ceramic-type semiconductor gas sensor.Japan.Figaro Engineerin Inc., 1-5-3 Senbanishi, Minoo City, Osaka, 1986, 311~315
    [95]徐栋,白加海,杨东亮等.陶瓷电热材料的研究与应用.山东陶瓷,2007, 30(3):28~32
    [96]张钦哉.流变学及粘度检测技术新发展.石油仪器,1997, 11(1): 7~13
    [97]李兆敏,蔡国琰.非牛顿流体力学.(第一版).北京:石油大学出版,1998.8~12
    [98]化学工业部人事教育司.流体力学基础.内部资料,1997.23~30
    [99]梁叔全,黄伯云,曲选辉等.粉末注射成形中的流变学原理.稀有金属材料与工程,1996, 25(3): 5~10
    [100]陈魁.试验设计及分析.(第2版).北京:清华大学出版社,2005.284~285
    [101]John F.Ready.LIA handbook of laser materials processing.USA: Laser institute of America magnolia publishing, Inc., 2001.199~200
    [102]N.R.Bieri, J.Chung, D.Poulikakos et al.An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks.Applied Physics A,2005,80:1485~1495
    [103]果世驹.粉末烧结理论.(第1版).北京:冶金工业出版社,1998.2~3
    [104]杨洗陈.激光熔池中物理输运过程研究.天津工业大学学报,2002, 21(4): 1~4
    [105]周泽义,盖良京,梁建平.标准气体静态容量法配气方法研究.计量学报,2003,24(3): 236~240
    [106]刘祖龙.标准气体配制装置.低温与特气,2005, 23(1): 34~37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700