用户名: 密码: 验证码:
光固化三维打印快速成形关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的全球化,市场竞争将越来越激烈,产品能否快速响应市场已经成为企业竞争胜败的关键,因此,对能够提高新产品开发成功率、降低产品开发时间和开发成本的快速成形设备的需求将越来越大。同其它主流快速成形技术相比,三维打印快速成形技术在成形速度、可成形材料种类、设备价格、运行和维护成本等方面具有明显优势,具有良好的发展潜力和广阔的应用前景,代表着快速成形技术的发展方向。根据三维打印快速成形技术发展的趋势,结合我国工业生产的需要,本文主要开展了光固化三维打印快速成形技术的研究,致力于开发具有自主知识产权的经济型光固化三维打印快速成形设备。论文的主要研究内容如下:
     对喷射液滴在成形表面上的扩展和再融合过程进行了理论分析,经计算确定了在作者设计的光固化三维打印快速成形系统中,XY平面上的实际打印分辨率要求应不低于300dpi,Z轴方向上的最小成形层厚为0.011mm。对光固化三维打印快速成形工艺中材料固化过程进行了理论分析,得到了最大固化深度与紫外灯的运动速度之间的关系,以及打印头沿X轴运动速度与切片厚度应满足的关系。
     基于保证使用性能和降低设备硬件成本的思想,进行了光固化三维打印快速成形原型机的机械系统、控制硬件系统和控制软件系统的总体规划和结构设计,为开发出具有自主知识产权的光固化三维快速成形设备奠定了基础。
     根据光固化三维打印快速成形技术中单层成形加工所需要的控制状态数,采用了2张单色位图来表示光固化三维打印快速成形系统中的层面数据,一张表示实体数据信息,另一张表示支撑数据信息。位图数据的生成采用扫描线填充方式,结合快速成形系统中CAD模型经切片后得到轮廓环数据的特点,提出了一种基于轮廓边的位图生成算法。该位图生成算法很好地解决了用常规的活性边表法难以判断和处理的当扫描线通过水平轮廓边所带来的奇点问题。实现了基于该方法的光固化三维打印快速成形层面实体位图生成算法和支撑位图的快速求解算法。
     根据光固化三维打印快速成形系统中层面位图数据的特点和常用无损位图数据压缩方法的不足,设计了一种基于字节的位图数据无损压缩方法。该位图压缩方法充分利用了光固化三维打印快速成形系统中层面位图数据的特点,压缩比高,经过对多个CAD模型的位图数据的压缩比较,最小压缩比为12.1:1,最大压缩比达53.9:1。该位图压缩方法在对位图数据进行压缩和解压的过程中,不需要进行复杂的计算,速度快,耗时少,对光固化三维打印快速成形系统这种有成百上千层位图数据需要处理的场合不会构成瓶颈,较好地满足了光固化三维打印快速成形系统中对数据压缩的要求。
     分析了多目标优化基准算法——第二代非支配排序遗传算法的不足,提出了相应的改进措施,在此基础上提出了一种新的多目标优化算法——非支配排序均匀遗传算法。通过仿真测试表明非支配排序均匀遗传算法在求解精度、计算效率和避免算法陷于局部最优解方面具有明显优势。
     研究了光固化三维打印快速成形工艺中零件制作方向对制件表面质量、所需支撑和制作时间的影响。提出了将基于Pareto最优原理的多目标优化方法用于零件制作方向优化求解的新思路。用本文提出的非支配排序均匀遗传算法进行零件制作方向的优化计算,表明其不仅可以求出比单目标优化方法更优的零件制作方向,而且在一次优化计算中就可得到多个在一定权重分配下零件的最优制作方向。
With the economic globalization, the market's competition will be more and more ruthless and time-to-market of the products is a key success factor of the corporations. As a result, the enterprise will need more and more Rapid Prototyping (RP) equipments, which can increase the successful ratio of developing a new product, decrease the time and cost required for a new product development. Compared with other RP technology, Three Dimensional Printing (3DP) has advantages in many aspects such as processing velocity, variety of processing materials, price of equipment, cost of running and maintenance of equipment. Consequently, 3DP has better developing potentialities and expansive applying foreground, and represents the developing direction of RP technologies. According to the developing trending of 3DP and the need of corporations in China, the UV-curing 3DP was researched in this paper, and the object was to develop 3DP system with our own knowledge right. The main content of research in the paper is as following:
     The spreading and reconsolidating of jetting droplets on the processing surface were studied in theory. It was calculated that the minimum resolution factor of printing in X-Y surface should be 300dpi in the developed the rapid prototyping system of UV-curing 3DP, and the minimum processing thickness of Z axle was 0.011mm. The solidified process of materials of photosensitive resin in UV-curing 3DP was studied in theory, the function of the maximum solidified depth with the moving velocity of the UV-lamp and the required relationship of slicing thickness with the moving velocity of printhead along X axis were educed
     Based on the idea of decreasing the cost of the hardware when the using performance was ensured, the project and structure of the mechanical system, controlling hardware system and controlling software system in the original UV-curing 3DP equipment were designed. It was established the groundwork of the first UV-curing 3DP equipment with our own knowledge right to be developed.
     According the number of controlling states needed in the single layer's processing of UV-curing 3DP, two pieces of bitmap of black and white were adopted to express the layered data, one expressing the solid bitmap and the other expressing the support bitmap. The scanning beam way was used to creating the bitmap data. Combined with the character of the layered contour of slicing the CAD model in rapid prototyping system, a new algorithm of creating bitmap based on the contour edge was proposed. The new algorithm could dispose expediently all the odd points, especially the odd points produced when the horizontal contour edge was on the scanning beam, which were difficult to be distinguished and disposed by the classical algorithms. Based on the new algorithm, the algorithm of creating layered solid bitmap in UV-curing 3DP system and the algorithm of fast seeking the layered support bitmap were achieved.
     According the character of the layered bitmap in the UV-curing 3DP and the shortage of the lossless compressing methods of bitmap data in common use, one new compressing method of bitmap data based on byte was designed. The compressing way made the best of the character of bitmap data in UV-curing 3DP, the compressing rate of the method is high. It was showed that the minimum compressing rate was 12.1:1 and the maximum compressing rate was 53.9:1 when many CAD models' bitmap data were compressed compared with the noncompressed bitmap data. The compressing way did not need complicated computing in the compressing and decompressing process, its compressing and decompressing velocity was fast, which did not form bottleneck of the condition of having thousands pieces of bitmap data to be disposed and which was well suitable for the data compressing in the UV-curing 3DP system
     The shortages of the classical multi-objective optimizating algorithm (MOGA) of NSGA II were analyzed and the improving methods were put forward. One new MOGA named nondominated sorting uniformly generic algorithm (NSUGA) was proposed, which was better in the precision of seeking pareto solutions, the efficiency of computing and the avoidance of gaining local optimal solutions than the MOGA of NSGA II.
     The effect of part building orientation on the part's surface quality, supporting area and building time were studied in UV-curing 3DP. One new idea of optimizating part building orientation using multi-objective optimizating way based on the pareto optimal principle was proposed. Using NSUGA to optimize the part building orientation, not only the better solutions were found than the single-objective optimizating way, but also many pareto optimal solutions could be gained once.
引文
[1]黄树槐,肖跃加,莫健华等.快速成型技术的展望[J].中国机械工程,2000,11(1-2):195-200
    [2]尹希猛,王运赣,黄树槐.快速成型技术:90年代新的造型工具[J].中国机械工程,1993,4(6):25-27
    [3]宾鸿赞,杨明.生长型制造技术—制造技术的新突破[J].中国机械工程,1993,4(6):22-24
    [4]S.O.ONUH and Y.Y.YUSUF.Rapid prototyping technology:applications and benefits for rapid product development[J].Journal of Intelligent Manufacturing,1999,10:301-311
    [5]朱磊,孙进,乔黎.快速成形技术在新产品开发中的应用[J].模具技术,2000,(5):55-58
    [6]Qingping Lu,Li Bao,Jianguo Wang.Early stage rapid feedback design system based on rapid prototype technology[C].Hong Kong:International Conference on Manufacturing Automation(ICMA'97).1997:122-127
    [7]R Jones and S R Mitchell.Rapid prototyping of golf clubs[C].Hong Kong:International Conference on Manufacturing Automation(ICMA'97).1997:420-425
    [8]颜永年,张人佶.快速成形技术国内外发展趋势[J].电加工与模具,2001,(1):5-9
    [9]T.T.Wohlers.Wohlers Report 2000 - Rapid Prototyping & Tooling State of the industry Annual Worldwide Progress Report[M].Colorado USA,2000.
    [10]Wohlers Associates,Ins.New Industry study reports 33% grouth of products and servives in additive fabrication[EB].Http;//www.wohlersassociates.com.
    [11]Scans E M,Cima M J.Three Dimensional Printing:rapid tooling and prototypes directly from a CAD model[J].Journal of Engineering for Industry.1992,(114):481-488
    [12]Scans E M,Haggerty J S,Cima M J,et al.Three dimensional printing technique[P],US,5204055.1993
    [13]李晓燕.3DP成形技术的机理研究及过程优化[D].博士论文,上海:同济大学,2006
    [14]http://web.mit.edu/tdp
    [15]http://www.2objet.com/
    [16]伍咏晖,李爱平,张曙.三维打印快速成形技术的新进展[J].机械制造,2005,43(496):62-64.
    [17]莫健华.快速成形及快速制模[M].北京:电子工业出版社,2006
    [18]颜永年,齐海波.快速制造的内涵与应用[J].航空制造技术,2004(5):26-29
    [19]颜永年,林峰,张人佶等.快速制造技术的最新进展及其发展趋势[J].电加工与模具,2006增刊:12-17
    [20]颜永年,张人佶,林峰等.快速制造技术的发展道路与发展趋势[J].电加工与模具,2007增刊:25-29
    [21]颜永年,熊卓,张人佶等,生物制造工程的原理与方法[J].清华大学学报(自然科学版)2005,45(2):145-150
    [22]卢秉恒,吴永辉,李涤尘等.将在21世纪崛起的生物制造工程[J].中国机械工程,2000,11(1-2):149-153
    [23]Atala A,bauer SB,Soker S et al.Tissue engineered autologous bladders for patients needing crystoplasty[J].Lancet,2006,357(9518):1241-1246
    [24]颜永年,刘海霞,熊卓等.细胞直接受控组装技术的实现与研究进展[J].科学通报,2005,50(11):1159-1160
    [25]颜永年,刘海霞,李生杰等.生物制造工程的发展和趋势[J].中国科学基金,2007,(2):65-68
    [26]Xu T,Jin J,Gregory C et al.Inkjet printing of viable mammalian cells[J].Biomaterials,2005,26(1):93-99
    [27]Lam C,Mo X,etc.Scaffold development using 3D printing with a starch-based polymer[J].Materials Science and Engineering,2002(C20):49-56
    [28]Yan YN,Wang XH,Pan YQ.Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique[J].Biomaterials,2005 26(29):5864-5871
    [29]Wu B M,Borland S W,Giordano R A,et al.Solid free-form fabrication of drug delivery devices[J].J.control.Release,1996(40):77-87
    [30]Katsta W E,Palazzolo R D,Rowe C W,et al.Oral dosage forms fabricated by three dimensional printing[J].J.control.Release,2000(66):1-9
    [31]Rowe C W,Katstra W E,Palazzolo R D,et al.Multimechanism oral dosage forms fabricated by three dimensional printing[J].J control.Release,2000(66):11-17
    [32]余灯广,刘洁,杨勇等.三维打印成形技术制备药物梯度控释给药系统研究[J].中国药学杂志,2006,41(14):1080-1083
    [33]余灯广,杨祥良,王运赣等.三维打印技术制备豆腐果苷零级控释片研究[J].中成药,2007,29(3):355-359
    [34]余灯广,杨祥良,王运赣等.三维打印技术制备控释药片工艺研究[J].中成药,2007,29(5):679-683
    [35]Weidong Huang,Qixin Zheng,Wangqiang Sun et al.Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique[J].International Journal of Pharmaceutics,2007,(2):1-6
    [36]闫利文.微机械制造工艺及其应用[J].现代制造工程,2004(3):83-85
    [37]潘开林,陈子辰,付建中.基于快速成形的MEMS微制造技术[J].中国机械工程,2002,13(20):1721-1723
    [38]L.Setti,A.Fraleoni-Morgera,et al.An amperometric glucose biosensor prototype fabricated by thermal inkjet printing[J].Biosensors and Bioelectronics,2005(20):2019-2026
    [39]Michaels S,Sachs E.M.,Cima M.J.Metal parts generation by Three-Dimensional Printing[C].Process of solid freeform fabrication symposium,University of Texas at Austin,Texas,1992,244-250
    [40]Daualer G.Design of a drop-on-demand delivery system for molten solder microdrop[D].Massachusetts:Massachusetts Institute of Technology,1995
    [41]Wallace D.B.,Hayes D.J.Solder jet technology update[J].Microfab technologies Inc,1997
    [42]Cox W.R.,Guan C.,Hayes D.J et al.Microjet printing of micro-optical
    ??interconnects [J]. International Journal of Microcircuits & Electronic Packaging, 2000,23(3):346-351
    [43] Shah V.G., Hayes DJ. Fabrication of passive element using ink-jet technology [J]. IMAPS ATW on passive integration, 2002(6): 1-6
    [44] Srivastava V.C Upadhyaya A., Ojha S.N. Microstructural features induced by spray forming of a ternary Pb-Sn-Sb alloy [J]. Bulletin of material science. 2000,23(2):73-78
    [45] Oeme M., Liu Q., Smith R. Net-form manufacturing of aluminum components: the dependence of processing parameters on component quality[C]. 10th annual solid freeform fabrication symposium, University of Texas, Austin, Aug. 2001
    [46] Oeme M., Bright A. Recent advances in highly controlled molten metal droplet formation from capillary stream break-up with applications to advanced manufacturing[C]. TMS annual meeting, Nashville TN, Mar. 2003
    [47] Grau J., Cima M.J., Sachs E.M. Alumina molds fabricated by 3-Dimensional Printing for slip casting and pressure slip casting [J]. Ceramic Industry, 1998,23(7):22-27
    [48] Kohnen A.S. Drop-on-demand ink jet printing for three dimensional printing application [D]. Massachusetts: Massachusetts Institute of Technology, 1995
    [49] Sachs E.M., Cima M.J., et al. CAD-casting: direct fabrication of ceramic shells and cores by three dimensional printing [J]. Manufacturing Review, 1992,5(2): 117-126
    [50] Jaedeok Yoo, Kyung-mox Cho, et al. Transformation-toughened ceramic multilayers with compositional gradients [J]. Journal of the American Ceramic Society, 1998,81(1):21-32
    [51] Sun W., Dcosta D.J. et al. Freeform fabrication of Ti_3SiC_2 powder-based structures. I. Integrated fabrication process [J], Journal of Materials Processing Technology, 2002,127(3):343-351
    [52] Sun W., Dcosta D.J. et al. Freeform fabrication of Ti_3SiC_2 powder-based structures: Part Ⅱ- Characterization and microstructure evaluation [J]. Journal of Materials Processing Technology, 2002,127(3):352-360
    [53] Moon Jooho, Grau Jason E. et al. Ink-jet printing of binders for ceramic components [J]. Journal of the American Ceramic Society, 200285(4):755-762
    [54]李晓燕,张曙.三维打印快速成形及其试验研究[J].电加工与模具,2005(5):22-25
    [55]李晓燕,张曙,余灯广.三维打印成形粉末配方的优化设计[J].机械科学与技术,2006,25(11):1343-1345
    [56]李晓燕,伍咏晖,张曙.三维打印成形机理及其试验研究[J].中国机械工程,2006,17(13):1355-1359
    [57]Seong-Jim Kim,McKean D.E Aqueous TiO_2 suspension preparation and novel application of ink-jet printing technique for ceramics patterning[J].Journal of Materials Science Letters,1998,17(2):141-144
    [58]Windle J.Derby B.Ink jet printing of PZT aqueous ceramic suspensions[J].Journal of Materials Science Letters,1999,18(2):87-90
    [59]Teng W.D.Edirisinghe M.J.,Evans Julian R.G.Optimization of dispersion and viscosity of a ceramic jet printing ink[J].Journal of the American Ceramic Society,1997,80(2):486-494
    [60]Teng W.D.Edirisinghe M.J.Development of continuous direct ink jet printing of ceramics[J].British Ceramic Transactions,1998,97(4):169-173
    [61]Teng W.D.Edirisinghe M.J.Development of ceramic inks for jet printing:Effect of conductivity[J].Key Engineering Materials.1997,132-136(1):337-340
    [62]Derby B.,Lee D.H.,Wang T.et al.Development of PZT suspensions for ceramic ink-jet printing[J].Materials Research Society Symposium-Proceedings,2003,(758):113-118
    [63]Mott Matthew,Song Jin-Hua,Evans Julian R.G.Microengineering of ceramics by direct ink-jet printing[J].Journal of the American Ceramic Society,1999,82(7):1653-1658
    [64]Griffith L.G.,Wu B.M.,Cima M.J.et al.Invitro organogenesis of liver tissue[J].Annals of the New York Academy of Sciences,1997,(831):382-397
    [65]Park A,Wu B.M.Griffith L.G.Integration of surface modification and 3D fabrication techniques to prepare pattered poly(L-lactide)substrates allowing regionally selective cell adhesion[J].Journal of Biomaterials Science,Polymer Edition,1998,9(2):89-110
    [66]Lam E.X.F.Mo X.M.Teoh S.H.,et al.Scaffold development using 3D printing with a starch-based polymer[J].Materials Science and Engineering,2002,C,(20):49-56
    [67]Http://wwv.3dsystems.com
    [68]李晓燕,张曙.三维打印成形系统的开发[J].机械设计,2005,22(11):57-59
    [69]付瑞国.一种新型三维打印机喷头研究与开发[D].硕士学位论文,西安:西安交通大学,2001
    [70]高琛,黄孙祥,陈雷等.液滴喷射技术的应用进展[J].无机材料学报,2004,19(4):714-722
    [71]刘惕生.喷墨打印技术概述[J].影像技术,2005,(3-4):26-29.
    [72]张伟.喷墨打印技术的发展现状[J].染料与染色,2005,42(6):9-12.
    [73]刘霖,黄岩.喷墨头技术原理与使用注意事项[J].今日印刷,2008,(5):69-71.
    [74]Jiun-Der Yu,Shinri Sakai,James Sethian.A coupled quadrilateral grid level set projection method applied to ink jet simulation[J].Journal of Computational Physics 2005,(206):227-251
    [75]Dong-Youn Shin,Paul Grassia,Brian Derby.Numerical and experimental comparisons of mass transportrate in a piezoelectric drop-on-demand inkjet print head[J].International Journal of Mechanical Sciences,2004,(46):181-199
    [76]Hongming D,Wallace W.Carr.An experimental study of drop-on-demand drop formation[J].Physics of Fluids,2006,18(7):2102-2117
    [77]Qi Xu and Osman A.Basaran.Computational analysis of drop-on-demand drop formation[J].Physics of Fluids,2007,19(10):2111-2122
    [78]Fromm JE.Numerical calculation of the fluid dynamics of drop-on-demand jets[J].IBM Journal of research and development,1984,28(3):322-333
    [79]J.M.Meacham,M.J.Varady,F.L.Degertekin,et al.Droplet formation and ejection from a micromachined ultrasonic droplet generator:Visualization and scaling[J].Physics of Fluids,2005,17(10):605-612
    [80]Reis,N.;Derby,B.Ink jet deposition of ceramic suspensions:Modeling and experiments of droplet formation[J].Materials Research Society Symposium- Proceedings,2000,(625):117-122
    [81]Derby B,Reis N.Inkjet Printing of Highly Loaded Particulate Suspensions[J]. Materials Research Society Bulletin,2003,28(11):815-818
    [82]D.A.Wang,C.H.Cheng Y.H.Hsieh et al.Analysis of an annular PZT actuator for a droplet ejector[J].Sensors and Actuators A,2007,(137):330-337
    [83]傅献彩,沈文霞,姚天场.物理化学(下)[M].北京:高等教育出版社,2003
    [84]谈慕华,黄缊元.表面物理化学[M].北京:中国建筑工业出版社,1 985
    [85]黄祖洽,丁鄂江.表面浸润与浸润相变[M].上海:上海科学技术出版社,1994
    [86]Stow CD,Hadfield MG.An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry face[J].Proceedings of the Royal Society A,1981,(373):419-441.
    [87]Mundo C,Sommerfeld M,tropea C.Droplet-wall collisions experimental studies of the deformation and breakup process[J].International Journal of Multiphase Flow,1995,21(2):151-173
    [88]Xuhong Wu,Nhan Phan-Thien,Xi-Jun Fan,et al.A molecular dynamics study of drop spreading on a solid surface[J].Physics of Fluids,2003,15(6):1357-1362
    [89]Alexander I.Fedorchenko,a_ An-Bang Wang,et al.Effect of capillary and viscous forces on spreading of a liquid drop impinging on a solid surface[J].Physics of Fluids,2005,17(9):3104-3111
    [90]Ho-Young Kim,Soon-Young Park,Kyoungdoug Min.Imaging the high-speed impact of microdrop on solid surface[J].Review of Scientific Instruments,2003,74(11):4930-4937
    [91]Dushmantha Kannangara,Hailong Zhang,Wei Shen.Liquid-paper interactions during liquid drop impact and recoil on paper surfaces[J].Colloids and Surfaces A,2006,(280):203-215
    [92]Yongan Gu,Dongqing Li.Liquid drop spreading on solid surfaces at low impact speeds[J].Colloids and Surfaces A:2000.(163):239-245
    [93]Kai Range and Franc,ois Feuillebois.Influence of Surface Roughness on Liquid
    Drop Impact[J].Journal of colloid and interface science,1998,(203):16-30
    [94]Xiaoguang Zh.Osman A.Basaran.Dynamic Surface Tension Effects in Impact of a Drop with a Solid Surface[J].Journal of colloid and interface science,1997,(183):166-178
    [95]Park Heungsup,Carr Wallace W.,Zhu Junyong et al.Single drop impaction on a solid surface[J].Journal of American Institute of Chemical Engineers,2003,49(10):2461-2471
    [96]M.Pasandideh-Fard,Y.M.Qiao,S.Chandra,et al.Capillary effects during droplet impact on a solid surface[J].Physics of Fluids 1996,8(3):650-659
    [97]马德盛,王翔,邬昶畅等.光成形的光固化理论分析与实验研究[J].中国机械工程,2004,15(18):1650-1653
    [98]陈剑虹,朱东波,马雷等.光固化法快速成型技术中的紫外光源{J}.激光杂志,1999,20(6):57-59
    [99]黄笔武,黄伯芬,谌伟庆等.光固化快速成形光敏树脂临界曝光量和透射深度的测试研究[J].信息记录材料,2007,8,(1):59-62
    [100]杨媛丽,王永祯,王爱玲.光固化快速成型中光敏树脂固化机理研究[J].材料开发与应用,2006,21(6):8-10
    [101]于殿泓,周宏志,卢秉恒.紫外光快速成型中树脂固化过程的研究[J].西安交通大学学报,2004,39(5):465-468
    [102]于殿泓,吴懋亮,郭俊杰等.紫外光快速成型中辐射能的汇聚分析[J].西安交通大学学报,2001,35(11):1159-1162
    [103]黄量,于德泉.紫外光谱在有机化学中的应用(上册)[M].北京:科学出版社,1988
    [104]黄君礼,鲍治宇.紫外吸收光谱法及其应用[M].北京:中国科学技术出版社,1992
    [105]王德海,江棂.紫外光固化材料——理论与应用[M].北京:科学出版社,2001
    [106]杨建文,曾兆华.光固化涂料及应用[M].北京:化学工业出版社,2005
    [107]王从军.快速成形数据处理及若干关键技术的研究[D].博士学位论文,武汉:华中科技大学,2000
    [108]高永强.光固化快速成形工艺及设备关键技术研究[D].博士学位论文,武汉:华中科技大学,2006
    [109]Solomon D A.Windows NT技术内幕[M].北京:清华大学出版社,1999
    [110]Art Baker著.科欣翻译组译.Windows NT设备驱动程序设计指南[M].北京:机械工业出版社,1997
    [111]Microsoft Corporation.Windows NT 4.0 DDK Documentation
    [112]Bake A.Windows NT驱动程序设计指南[M].北京:机械工业出版社,1997
    [113]孙家广.计算机图形学(第三版)[M].北京:清华大学出版社,2003
    [114]朱君,颜永年,卢清萍等.基于CLI标准的通用快速填充软件研究[J].中国机械工程,1997,8(5):47-49
    [115]陈西垚,陈伟,佟丽芳.通用扫描线填充算法存在的问题及其解决方法[J].东北电力大学学报,2006,26(6):52-54
    [116]黄贤武,王加俊,李家华.数字国像处理与压缩编码技术[M].成都:电子科技大学出版社 2000,12
    [117]杨晓刚.常见的图像压缩技术及图像格式[J].印刷世界,2004,(11):21-23
    [118]Chin-Chen Chang,Chih-Yang Lin,Yu-Zheng Wang.New image graphic methods using run-length approach[J].Information Sciences,2006,(176):3393-3408
    [119]潘超,李和平,陈定方.基于行程编码的位图压缩方法的研究[J].湖北工业大学学报.2006,21(3):120-123
    [120]M.Abdul Mannan and M.Kaykobad.Block Huffman Coding[J].Computers and Mathematics with Applications,2003,(46):1581-1587
    [121]张李超,黄树槐.一种新的快速成形层面数据文件格式[J].华中科技大学学报(自然科学版),2006,34(5):86-88
    [122]张李超.快速成形软件及控制系统的研究[D].博士学位论文,武汉:华中科技大学,2002
    [123]夏露,高正红,苏伟.Pareto遗传算法在气动外形优化中的应用[J].空气动力学学报2007,25(2):194-198
    [124]李少波,杨观赐,郭观七.基于相似性排挤与适应值分层计算的可持续Pareto遗传算法[J].中国机械工程,2007,18(14):1717—1722
    [125]覃俊,康立山.基于遗传算法求解多目标优化问题Pareto前沿[J].计算机工程与应用,2003,(23)42-44
    [126]陈小庆,侯中喜,郭良民等.基于NSGA—Ⅱ的改进多目标遗传算法[J].计算机应用,2006,26(10):2453-2456
    [127]郑向伟,刘弘.多目标进化算法研究进展[J].计算机科学,2007,34(7):187-192
    [128]冯士刚,艾芊.带精英策略的快速非支配排序遗传算法在多目标无功优化中的应用[J].电工技术学报,2007,22(12):146-151
    [129]Srinivas N,Kalyanmoy Deb.Multi-objective optimization using non-dominated sorting in genetic algorithms[J].Evolutionary Computation,1994,2(3):221-248
    [130]Kalyanmoy Deb,Amrit Pratap,Sameer Agarwal,et al.A fast and elitist multi-objective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation.2002,6(2):182-197
    [131]王安麟,朱学军,张惠侨.Pareto多目标遗传算法及其在机械健壮设计中的应用[J].机械设计与研究,2000,(1):10-13
    [132]Yang Z.Y.Chen Y.H..Decision criteria for build orientation in layer-based machining[J].Proceedings of SPIE - The International Society for Optical Engineering,2000,(4192):16-26
    [133]方开泰,马长兴.正交与均匀试验设计[M].北京:科学出版社,2001
    [134]王小平,曹立明.遗传算法——理论、应用与软件设计[M].西安:西安交通大学出版社,2004
    [135]D.Frank,G.Fadel,Expert system based selection of the preferred direction of build for rapid prototyping[J].Journal of Intelligent Manufacturing.1994,(6):334-339
    [136]P.-T.Lan,S.Y.Chou,L.L.Chen,D.Gemmill,Determining fabrication orientation for rapid prototyping with stereolithography apparatus[J].Computer Aided Design.1997,29(1):53-62.
    [137]P.Alexander,S.Allen,D.Dutta,Part orientation and build cost determination in layered manufacturing[J].Computer Aided Design.1998,30(5):343-356
    [138]Hong Jun,Wang Wei,Tang Yiping.Part building orientation optimization method in stereolithography[J].Chinese journal of mechanical engineering,2006,19(1):14-18
    [139]洪军,武殿梁,李涤尘等.光固化快速成型中零件制作方向的多目标优化问题 研究[J].西安交通大学学报,2001,35(5)506-509
    [140]Daekeon Ahn,Hochan Kim,Seokhee Lee.Fabrication direction optimization to minimize post-machining in layered manufacturing[J].International journal of machine tools & manufacture,2007,(47):593-606
    [141]W.Rattanawong,S.H.Massod,P.Iovenitti,A volumetric approach to part build orientation in rapid prototyping[J].Journal of Material Processing and Technology.2001,(119):348-353.
    [142]S.H.Massod,W.Rattanawong,P.Iovenitti,Part build orientations based on volumetric error in fused deposition modeling[J].International Journal of Advanced Manufacture Technology,2000,(16):162-168.
    [143]S.H.Massod,W.Rattanawong,P.Iovenitti,A generic algorithm for part orientation system for complex parts in rapid prototyping[J],Journal of Material Processing and Technology,2003,139(1-3):110-116.
    [144]P.M.Pandey,N.Venkata Reddy,S.G.Dhande.Part deposition orientation studies in layered manufacturing[J].Journal of Material Processing and Technology,2007,(185):125-131
    [145]Hong-seok Byun,Kwan H.Lee.Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making[J].Robotics and Computer-integrated manufacturing,2006,(22):69-80
    [146]Sung-min Hur,Kyung-Hyun Choi,Seok_hee Lee et al.Determination of fabrication orientation and packing in SLS process[J].J.Mater.Process.Technol.,2001,(112):236-243
    [147]赵吉宾,何利英,刘伟军等.快速成型制造中零件制作方向的优化研究[J].计算机辅助设计与图形学学报,2006,18(3):456-463
    [148]Cheng W.,Fuh J.Y.H.,Nee A.Y.C.et al.Multi-objective optimization of part-building orientation in stereolithography[J].Rapid Prototyping Journal,1995,1(4):12-23
    [149]F.Xu,H.T.Loh,and Y.S.Wong,Considerations and selection of optimal orientation for different rapid prototyping system[J].Rapid Prototyping Journal,1999,5(2):54-60
    [150]董涛 章维一 王春晖等.快速成型制造中的零件分层方向优化新技术[J].计算机工程与应用,2003(1):45-48
    [151]张立强,罗逸苇,王斌修.基于遗传算法的RP分层方向优化设计[J].电加工与模具,2003(6):35-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700