用户名: 密码: 验证码:
微纳尺度表征的俄歇电子能谱新技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米结构材料的广泛应用,新型微纳尺度表征技术成为纳米科学技术的重要组成部分。发展在纳米尺度下的各种检测与表征手段,以用于观测纳米结构材料的原子、电子结构,和测量各种纳米结构的力、电、光、磁等特性,日益引起人们的重视。针对目前广泛使用的各种光子谱技术、X射线衍射和精细吸收谱、高分辨的电子显微术等技术的局限性,本论文基于以电子束为探针的俄歇电子能谱(Auger electron spectroscopy),发展了纳米尺度的检测与表征新技术。
     本论文从俄歇电子能谱基础出发,基于俄歇电子物理机制,着重讨论价带俄歇谱的理论表述和物理意义。采用第一性原理计算方法,模拟GaN和ZnO基半导体不同物理条件下的理论价带俄歇谱;通过实验测量相关半导体的俄歇电子能谱,分别建立材料应力、电荷及电场分布、结构和导电类型等宏观参量的微纳尺度测量技术。主要取得如下研究成果:
     提出俄歇电子能谱广义位移的概念,把所有能导致俄歇价电子谱的动能位移及其谱峰相对强度改变的因素(包括化学、物理等)都统一起来。建立了材料微纳米尺度宏观特性的俄歇价电子能谱表征新技术。其主要包括:采用第一性原理计算各种环境下的电子结构;卷积相关价电子态密度;拟合实验谱确定组合系数,模拟计算理论的俄歇价电子能谱的广义位移;标定宏观参量与俄歇电子谱广义位移的定量关系;测量实际材料表面的俄歇价电子能谱,根据标定关系曲线获得相应的宏观参量。该技术兼备测量宏观参量的简便性和俄歇电子能谱固有的高空间分辨率,使得其定量测量材料的微纳结构特性具有明显的优势。
     建立了纳米微区应力测量技术。通过第一性原理计算模拟GaN在不同双轴压应力场中的电子结构,根据拟合实验谱确定的组合系数,模拟出不同应变/应力下的N KVV的理论俄歇价电子谱;标定应变/应力与俄歇电子谱广义位移的定量关系。以侧向外延GaN表面和剖面不同结构区域应变/应力分布为对象,测量N KVV谱广义位移及其局域应变/应力分布。所测结果与通过Raman散射E_2模移动测量确定的结果相吻合,完全符合失配应力逐渐释放的机制;而且观察到传统上只能靠理论的应力分布模拟方能得到的细节,说明建立的俄歇价电子能谱测量应力技术的正确性和精确性。
     建立了非接触性纳米微区电学测量技术。利用第一性原理方法分别计算了不同Al组分的Al_xGa_(1-x)表面的N原子周围局域电子密度和相应的态密度,模拟不同电子密度N KVV论俄歇价电子谱主峰强度N_(pp)与次峰的N_(sp)的比值,发现了比值随电子密度的增加而线性增加的现象。以N_(pp)/N_(sp)相对比与局域电荷密度的关系曲线作为标定电子密度与俄歇电子谱广义位移(谱峰强度变化)的定量关系。以GaN/Al_xGa_(1-x)N/GaN异质结构电荷分布为对象,测量N KVV谱峰相对强度变化及其局域电荷密度分布。精确获得了GaN/Al_xGa_(1-x)N/GaN异质两界面处电子和空穴的二维电子气分布,证明了界面净电荷的存在,与采用俄歇芯态电子能谱的能量移动确定的局域电场变化的结果一致。
     建立了纳米微区结构相的测量分析技术。采用俄歇价电子谱的理论和实验方法,确定纤锌矿和闪锌矿结构相GaN的俄歇价电子谱广义位移特征,建立了纳米微区结构相的测量分析技术。将建立的纳米微区结构相的测量分析技术应用于四脚ZnO的脚和芯的结构测量,证明脚处的纤锌矿结构和芯部的闪锌矿结构。结果与Raman谱的实验和计算相符合,证明了俄歇价电子能谱确定微区晶体结构相方法的正确性,可应用于纳米尺度结构相的确定。
Inspired by the rapid progresses and wide applications of nanostructure materials, high-resolution characterization techniques have played the important role in nanoscience.To investigate properties,e.g.,atomic and electronic structures,force field, electrical features,optical properties,magnetic responses et al.in nano-materials and nano-devices,exploration and development of new methods and techniques of nanoscale characterizations becomes more and more crucial.Although conventional tools such as XRD,XAFS,Raman spectroscopy,SEM,HRTEM,and STM have been widely used in various nanoscale investigations,however,ever and again they meet their ends in approaching many nano-scale characterizations.Therefore,built upon the Auger electron spectroscopy with electron beam probe,here we report the establishments of advanced nanoscale,intrinsic,and non-contact characterization methods and techniques.
     In this thesis,based on the fundamentals of Auger electron spectroscopy,the physical essence was discussed and the theoretical expression of valence-band Auger spectrum was described.By first-principles calculations,the electronic structures of GaN and ZnO were obtained and the theoretical Auger spectra under different physical environments were simulated.In practice,a couple of advanced nanoscale characterization techniques for important physical quantities,including local stress field, intrinsic local charges,internal electric field,local structural phase,conducting type et al.,have been established on Auger electron spectroscopy.Main approaches in our works are following:
     In theory,the concept of General Auger Shift were proposed for the first time. Based on this concept,it unifies all(including the chemical,physical,ect.)factors leading to the energetic shift and the lineshape deformation of the valence-band Auger spectra.Thus,the methods of novel measurements of important quantities in materials were setup:(Ⅰ)Calculations of electronic structures under different environments;(Ⅱ) Fitting of the theoretical Auger spectrum by convolution integration of density of electron states;(Ⅲ)Calibration of relationship between the specific quantities with the General Auger Shift;(Ⅳ)Characterization of specific object by surveying valence-band Auger spectra at local area of interest and obtaining the properties.The sensitivity and high-resolution of these AES techniques shows their power in the investigations for weak signals and local properties for nano-structured materials.
     Establishment of measurement of local stress field in nanoscale.The electron densities of states(DOS)of GaN under different biaxial stress field were calculated. The theoretical Auger spectra N KVV of various stress conditions were obtained by convoluting the DOS and fitting the experimental spectra.Then the relation between biaxial stress and the energetic shift of N KVV peak was determined for measurement use.In practice,the mapping of stress field distributions of epitaxial-lateral-overgrowth GaN was carried out and the value on GaN surface is consistent well with that by Raman scattering.These results reveal the refined distribution of stress field,which could only be simulated by theoretical methods before,and the complex mechanism of stress release in the lateral region.The accuracy and pertinence of this technique was verified.
     Establishment of non-contact nanoscale measurement of local electrical properties (local charge and local electric field).The local electron concentration of N atom in Al_xGa_(1-x)N with different Al mole fraction were calculated and the concentration was found to increase with the increase of Al fraction.At the same time,acquirement of N KVV Auger spectra in different Al_xGa_(1-x)N showed the proportional relation of peak height ratio N_(pp)N_(sp)with the Al mole fration,also.Therefore,the calibration curve of N_(pp)/N_(sp)as a function of local charge concentration was obtained.With this approach, the measurement of internal electric field was established.Applying in heterointerfaces of GaN/Al_xGa_(1-x)N/GaN,the embedded polarization charges and distribution of internal electric field at the interfaces were precisely detected,which demonstrates the existence and accurate value of 2 dimension electron gas at different interfaces.
     Establishment of techniques of structural phase identification for local area.With theoretical and experimental methods,the relation of the General Shift of valence-band Auger spectrum was determined for zinc-blend and wurtzite GaN structures.The techniques of structural identification for local nano-area were achieved.In applications, the complex structural phases of ZnO tetrapod nanocrystals were investigated and determined.The results showed the wurtzite and zinc-blend phase in the leg part and the core part,respectively,which also agreed well with the Raman spectra and calculation data.This approach proved the validity of this advanced measurement technique and its capability in the phase determination for nano-structured systems.
引文
[1]L.J.Lauhon,M.S.Gudiksen,D.Wang and C.M.Lieber.Epitaxial core-shell and core-multi-shell nanowire heterostructures[J].Nature,2002,420:57-61.
    [2]Y.Wu,J.Xiang,C.Yang,W.Lu and C.M.Lieber.Single-crystal Metallic Nanowires and Metal/Semiconductor Nanowire Heterostructures[J].Nature.,2004,430,61-65.
    [3]J.C.Johnson,H.-J.Choi,K.P.Knutsen,R.D.Schaller,P.Yang and R.J.Saykally.Single gallium nitride nanowire lasers[J].Nature Material.,2002,1:106-110.
    [4]J.Y.Kang,F.C.Xu,X.H.Zhang,L.S.Zheng,T.Sekiguchi,S.Tsunekawa,S.Itoh and A.Kasuya.Properties of ZnO nanotetrapods[J].International Journal of Nanoscience.,2002,1(5&6):515-519.
    [5]M.Huang,S.Mao,H.Feick,H.Yan,Y.Wu,H.Kind,E.Weber,R.Russo and P.Yang.Room-temperature ultraviolet nanowire nanolasers[J].Science.,2001,292:1897-1899.
    [6]王中林主编,曹茂胜,李金刚译,纳米材料表征[M].北京:化学工业出版社,2005.
    [7]D.Washington.Materials Science and Engineering for the 1990s[M].National Academy Press,1989.
    [8]魏全金编.材料电子显微分析[M].北京:冶金工业出版社,1990.
    [9]沈学础.半导休光谱和光学性质[M].北京:科学出版社,2002.
    [10]I.D.Wolf.Micro-Raman spectroscopy to study local mechanical stress in silicon integrated circuits[J].Semicon.Science and technology.,1996,11(2):139-154.
    [11]I.D.Wolf,M.Ignat,G.Pozza,L.Maniquet and H.E.Maes.Analysis of local mechanical stresses in and near tungsten lines on silicon substrate[J].J.Appl.Phys.,1999,85(9):6477-6485.
    [12]P.Perlin,C.J.Carillon and J.P.Itie.Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure[J].Phys.Rev.B.,1992,45(1):83-89
    [13]A.Kaschner,A.Hoffmann,C.Thomsen,F.Bertram,T.Riemann,J.Christen,K.Hiamatsu,T.Shibata and N.Sawaki.Optical microscopy of electronic and structural properties of epitaxial laterally overgrown GaN[J].Appl.Phys.Lett.,1999,74(22):3320-3322.
    [14]F.Demangeot,J.Frandon,M.A.Renucci,0.Briot,B.Gil and R.L.Aulombard.Raman determination of phonon deformation potentials in α-GaN[J].Solid State Commun,1996,100(4):207-210.
    [15]许顺生.X射线衍射学的进展[M].北京:科学出版社,1986.
    [16]丛秋滋.多晶二维X射线衍射[M].北京:科学出版社,1997.
    [17]http://nobelprize.org/physics/laureates/1915/wh-bragg-bio.htm[z].
    [18]B.K.Teo.EXAFS:Basic principles and Data Analysics,Heideberg,Springer-Verlag[M].1986.
    [19]M.Katsikini,E.C.Paloura and T.D.Moustakas.Application of near-edge x-ray absorption fine structure for the identification of hexagonal and cubic polytypes in epitaxial GaN[J].Appl.Phys.Lett.,1996,69(27):4206-4208.
    [20]M.Katsikini,E.C.Paloura and T.D.Moustakas.Experimental determination of the N-p-partial density of states in the conduction band of GaN:Determination of the polytype fractions in mixed phase samples[J].J.Appl.Phys.,1998,83(3):1437-1445.
    [21]P.A.Montano,G.K.Shenoy,E.E.Alp,W.Schulze and J.Urban.Structure of Copper Microclusters Isolated in Solid Argon[J].Phys.Rev.Lett.,1986,56(19):2076-2079.
    [22]M.A.Marcus,M.P.Andrews,J.Zegenhagen,A.S.Bommannavar and P.Montano.Structure and vibrations of chemically produced AU_(55) clusters[J].Phys.Rev.B.,1990,42(6):3312-3316
    [23]A.Balerna,E.Bernieri,P.Picozzi,A.Reale,S.Santucci,E.Burattini and S.Mobilio.Extended x-ray-absorption fine-structure and near-edge-structure studies on evaporated small clusters of Au[J].Phys.Rev.B.,1985,31(8):5058-5065.
    [24]S.Difonzo,W.Jark,and S.Lagomarsino.Non-destructive determination of local strain with 100-nanometre spatial resolution[J].Nature.,2000,403:6
    [25]陈世朴,王永瑞合编.金属电子显微分析[M].北京:机械工业出版社,1985.
    [26]刘文西,黄孝瑛,陈玉如.材料结构电子显微分析[M].天津:天津大学出版社,1989.
    [27]杨志伊主编.纳米科技[M].北京:机械工业出版社,2003.
    [28]G.Binnig and H.Rohrer.Surface Studies by Scanning Tunneling Microscopy[J].Physics Review Letters.,1982,49(1):57-61.
    [29]G.Binnig,H.Rohrer and F.Salvan.Revisiting the 7×7 reconstruction of Si(111)[J].Surface Science.,1985,157(2-3):L373-L378.
    [30]G.Binnig,H.Rohrer,C.Gerber and E.Weibel.(111) facets as the origin of reconstructed Au(110) surfaces[J].Surface Science.,1983,131(1-2):L379-L38.
    [31]G.Binnig and H.Rohrer.Scanning Tunneling Microscopy-from Birth to Adolescence[J].Reviews of Modern Physics.,1987,59(3):615-625.
    [32]P.H.Avouris,I.W.Lyo and F.Bozso.Atom-resolved surface chemistry:The early steps of Si(111)-7×7 oxidation[J].J.Vac.Sci.Technol.B.,1991,9(2):424-430.
    [33]V.Madhavan,W.Chen,T.Jamneala,M.F.Crommie and N.S.Wingreen.Tunneling into a Single Magnetic Atom:Spectroscopic Evidence of the Kondo Resonance Science.,1998,280:567-569.
    [34]H.J.Lee and W.Ho.Single-Bond Formation and Characterization with a Scanning Tunneling Microscope[J].Science.,1999,286:1719-1722.
    [35]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)[M].北京:国防工业出版社,1992.
    [36]康俊勇,徐富春,蔡端俊,李金钗.微纳尺度俄歇电子能谱新技术开发及其应用进展[J].物理学进展,2008,28(4):327-345.
    [37]N.C.MacDonald and J.R.Waldrop.Auger Electron Spectroscopy in the Scanning Electron Microscope:Auger Electron Images[J].Appl.Phys.Lett.,1971,19(9):315-317.
    [38]J.Liu,G.G.Hembree,G.E.Spinnler and J.A.Venables.Nanometer-resolution surface analysis with Auger electrons[J].Ultramicroscopy.,1993,52(3-4):369-376.
    [1]P.Auger.Termination of X-ray levels from electron spectra[J].Compt.Rend.,1925,180:65-68.
    [2]J.J.Lander.Auger Peaks in the Energy Spectra of Secondary Electrons from Various Materials[J].Phys.Rev.,1953,91(6):1382-1387.
    [3]P.D.Innes.On the velocity of the cathode particles emitted by various metals under the influence of roentgen rays,and its bearing on the theory of atomic disintegration[J].Proc.Roy.Soc,1907,A79:442-462.
    [4]P,Auger.Sur l'effet photoelectrique compose[J].J.Phys.Radium.,1925,6:205-208.
    [5]M.P.Seah and W.A.Dench.Quantitative electron spectroscopy of surfaces:a standard data base for electron inelastic mean free paths in solids[J].Surf.Interface Anal.,1979,1:2-11.
    [6]D.Briggs and M.P.Seah.Practical Surface Analysis[M].2~(nd)ed,New York,John Wiley & Sons,1990.
    [7]J.P.Coad,H.E.Bishop and J.C.Riviere.Electron-beam assisted adsorption on the Si(111) surface[J].Surf.Sci.,1970,21(2):253-264.
    [8]K.D.Childs,B.A.Carlson,L.A.Lavanier,J.F.Moulder,D.F.Paul,W.F.Stickle,D.G.Watson.Handbook of Auger Electron Spectroscopy[M].Eden Prairie,Minnesota,1995.
    [9]W.A.Coghlan and R.E.Clausing.Auger catalog calculated transition energies listed by energy and element[J].Atomic Data and Nuclear Data Tables,1973,5(4):317-469.
    [10]L.A.Harris.Analysis of Materials by Electron-Excited Auger Electrons[J].J.Appl.phys.,1968,39(3):1419-1427.
    [11]L.A.Harris.Some Observations of Surface Segregation by Auger Electron Emission[J].J.Appl.phys.,1968,39(3):1428-1431.
    [12]P.W.Palmberg,G K.Bohn,J.C.Tracy.High Sensitivity Auger Electron Spectrometer[J],Appl.Phys.Lett.,1969,15(8):254-256.
    [13]A.P.Janssen and J.A.Venables.The effect of backscattered electrons on the resolution of scanning Auger microscopy[J].Surf.Sci.,1978,77(2):351-364.
    [14]N.C.MacDonald and J.R.Waldrop.Auger Electron Spectroscopy in the Scanning Electron Microscope:Auger Electron Images[J].Appl.Phys.Lett.,1971,19(9):315-317.
    [15]J.Cazaux.Capabilities and Limitations of High Spatial Resolution AES.[J].J.Surf.Anal,1997,3(2):286-311.
    [16]D.Briggs and J.C.Riviere.In parctical Surface Analysis By Auger and X-ray Photoelectron Spectroscopy[M].John Wiley & Sons,New York,1983.
    [17]B.L.Maschhoff,K.R.Zavadil,K.W.Nebesny and N.R.Armstrong.Quantitative surface electron spectroscopies:Application to the study of corrosion of metals and glasses[J].J.Vac.Sci.Technol,1988,A6(3):907-913.
    [18]D.A.Shirley.High-resolution X-ray photoemission spectrum of the valence bands of gold[J].Phys.Rev.B,1972,5 (12):4709-4714.
    [19]E.N.Sickafu.Linearized secondary-electron cascades from the surfaces of metal.I.Clean surfaces of homogeneous specimens[J].Phys.Rev.1977,B16 (4):1436-1447.
    [20]E.N.Sickafu.Linearized secondary-electron cascades from the surfaces of metal.Ⅱ.Surface and subsurface sources[J].Phys.Rev.B,1977,16 (4):1448-1458.
    [21]S.Tougarrd and P.Sigmsnd.Influence of elastic and inelastic scattering on energy spectra of electrons emitted from solids[J].Phys.Rev.B,1982,(25):4452-4466.
    [22]S.Tougarrd.Background removal in x-ray photoelectron spectroscopy relative importance of intrinsic and extrinsic processes[J].Phys.Rev.B,1986,(34):6779-6783.
    [23]S.Tougarrd.Deconvolution of loss features from electron spectra[J],Surface science,1984,139(1):208-218.
    [24]Y.Zhao,C.W.Tu,I.T.Bae and T.Y Seong.Growth of cubic GaN by phosphorus-mediated molecular beam epitaxy[J].Appl.Phys.Lett.,1999,74(21):3182-3184.
    [25]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)[M].北京:国防工业出版社,1992.
    [26]D.Briggs and M.P.Seah.Practical surface analysis[M],John wiley & sons,New York,1995.
    [27]黄惠忠.论表面分析及其在材料研究中的应用[M].北京:科学技术文献出版社,2002.
    [1]J.J.Lander.Auger Peaks in the Energy Spectra of Secondary Electrons from Various Materials[J].Phys.Rev.,1953 91(6):1382-1387.
    [2]P.J.Feibelman,E.J.McGuire and K.C.Pandey.Theory of valence-band Auger spectra:GaAs(110)[J].Phys.Rev.B.,1977,16(12):5499-5505.
    [3]G.L.Lay,M.Manneville and R Kern.Desorption kinetics of condensed two-dimensional phase on a single crystal substrate[J]Surf.Sci.,1977,68:346-347.
    [4]D.E.Ramaker,J.S.Murday and N.H.Turner.Calculated and measured Auger line shapes in SiO_2[J].Phys.Rev.B.,1979,19(10):5375-5387.
    [5]S.P.Svensson,P.O.Nilsson and T.G.Andersson.Interpretation of low-energy Auger spectra from AlAs and GaAs(001):Applications to surface preparation [J].Phys.Rev.B.,1988,31(8):5272-5279.
    [6]C.S.Fadley,B.M.Hagstrom,M.P.Klein and D.A.Shirley.Chemical Effects on Core-Electron Binding Energies in Iodine and Europium[J].J.Chem.Phys.,1968,48(8):3779-3794.
    [7]C.D.Wagner and P.Biloen.X-ray excited Auger and photoelectron spectra of partially oxidized magnesium surfaces:The observation of abnormal chemical shifts[J].Surf.Sci.,1973,35:82-95.
    [8]C.D.Wagner and E.D.Briggs.Handbook of X-ray and Ultraviolet Photoelectron Spectroscopy[M].London:Heyden and Son 1977.
    [9]C.D.Wagner,D.A.Zatko and R.H.Raymond.Use of the oxygen KLL auger lines in identification of surface chemical states by electron spectroscopy for chemical analysis[J].Anal.Chem.,1980,52:1445-1451.
    [10]C.D.Wagner,D.E.Pasolj,H.F.Hillery,T.G.Kinisky,H.A.Zix,W.T.Jansen and J.A.Taylor.Auger and photoelectron line energy relationship in aluminum-oxygen and silicon-oxygen compounds[J].J.Vac.Sci.Technol.,1982,21(4):933-944.
    [11]Y.Zhu and L.Cao.Auger chemical shift analysis and its applications to the identification of interface species in thin films[J].Appl.Surf.Sci.,1998,133(3):213-220.
    [12]D.J.Cai,F.C.Xu and J.Y.Kang.High-spatial-resolution strain measurements by Auger electron spectroscopy in epitaxial-lateral-overgrowth GaN[J].Appl.Phys.Lett.,2005,86(21):1917-1919.
    [13]F.C.Xu,D.J.Cai and J.Y.Kang.Phase identification from electronic structures by Auger electron spectroscopy[J].J.Mater.Res.,2008,23(1):83-86.
    [14]F.C.Xu,Q.H.Zhang and D.X.Cen.In heating and thermal effects in Auger electron spectroscopy for GaN[J].Chin.J.Chem.Phys.,2006,19:200-202.
    [15]康俊勇,徐富春,蔡端俊,李金钗.微纳尺度俄歇电子能谱新技术开发及其应用进展[J].物理学进展,2008 28(4):327-345.
    [16]J.H.Onsgaard,P.Morgen and R.P.Creaser.Convolution and deconvolution in Auger electron spectroscopy with application to silicon[J].J.Vac.Sci.Technol.,1978,15(1):44-49.
    [17]H.D.Hagstrum and G.E.Becker.The Interrelation of Physics and Mathematics in Ion-Neutralization Spectroscopy[J].Phys.Rev.B.,1971,4(12):4187-4202.
    [18]G.Hormandinger,P.Weinberger and J.Redinger.Calculation of core-valence-valence auger spectra for nonstoichiometric vanadium carbide[J].Phys.Rev.B.,1989,40(11):7989-7992.
    [19]P.J.Feibelaman,E.J.McGuire and K.C.Pandey.Tight-binding calculation of a core-valence-valence auger line shape:Si(111)[J].Phys.Rev.Lett.,1976,36(19):1154-1157.
    [20]P.J.Feibelaman,E.J.McGuire and K.C.Pandey.Theory of valence-band auger line shap:Idea Si(111) Si(100) and Si(110)[J].Phys.Rev.B 197715(4):2202-2216.
    [21]M.A.Smith and L.L.Levenson.Final-state effects in carbon auger spectra of transition metal carbides[J].Phys.Rev.B.,1977,16(4):1365-1369.
    [22]D.E.Ramaker,F.L.Hutson,N.H.Turner and M.N.Mei.Charge transfer polarization and relaxation effects on the Auger line shapes of Si[J].Phys.Rev.B.,1986,33(4):2574-2588.
    [23]D.R.Jermison.Energy-band theory of Auger line shapes:silicon L_(23)VV and lithium KVV[J].Phys.Rev.B.,1978,18(12):6865-6871.
    [24]吴雪君.卷积和退卷积在俄歇电子谱中的应用[J].真空科学与技术学报,1984,1:16-26.
    [25]肖斌,李展平,何炜.CVV俄歇电子谱的退自卷积计算[J].真空科学与技术学报,1991,11(4):263-272.
    [26]周惠健,王玉琦,何炜.局域电子态密度的俄歇电子能谱分析[J].真空科学与技术学报,1995,15(5):297-303.
    [27]A.V.Krasheninnikov.Introduction to electronic structure calculations[M].University of Helsinki press,2002.
    [28]P.A.M.Dirac.The principles of quantum mechanics[M].Oxford:Clarendon press,1958.
    [29]曾谨言.量子力学[M].北京:科学出版社2000.
    [30]E.Schr(?)dinger.Collected papers on wave mechanics[M].London:Blackie and Son Limited,1928.
    [31]M.Born K Huang.Dynamical theory of crystal lattices[M].Oxford:Oxford university press,1954.
    [32]P.Honbenberg and W.Kohn.Inhomogeneous Electron Gas[J].Phys.Rev.B,1964,136(3):B864-B871.
    [33]W.Kohn and L.J.Sham.Self-Consistent Equations Including Exchange and Correlation Effects[J].Phys.Rev.A.,1965,140(4):1133-A1138.
    [34]P.E.Blochel.Projector augmented-wave method[J].Phys.Rev.B.,1994,50(24):17953-17979.
    [35]J.C.Phillips.Energy-band interpolation scheme on pseudopotential[J].Phys.Rev.,1958,112(3):685-695.
    [36]J.C.Phillips and L.Kleinman.New method for calculating wave functions in crystals and molecules[J].Phys.Rev.,1959,116(2):287-294.
    [37]王晓平.卷积积分的基本计算方法[J].常州工学院学报,2002,4(16):54-57.
    [38]金波.基于Matlab的卷积积分[J].中国西部科技,2008,17(7):40-42.
    [39]F.Bertram,T.Riemann and J.Christen.Strain relaxation and strong impurity incorporation in epitaxial laterally overgrown GaN:Direct imaging of different growth domains by cathodoluminescence microscopy and micro-Raman spectroscopy[J].Appl.Phys.Lett.,1999,74(3):359-361.
    [40]X.Li,P.W.Bohn and J.Kim.Spatially resolved band-edge emission from partially coalesced GaN pyramids prepared by epitaxial lateral overgrowth[J].Appl.Phys.Lett.,2000,76(21):3031-3033.
    [41]M.Benyoucef,M.Kuball,G.Hill,J.O.White and J.J.Coleman.Finite element analysis of epitaxial lateral overgrown GaN:Voids at the coalescence boundary[J].Appl.Phys.Lett.,2001,79(25):4127-4129.
    [1]S.Nakamura,T.Mukai and M.Senoh.Candela-class high-brightness InGaN/AlGaN double- heterostructure blue-light-emitting diodes[J].Appl.Phys.Lett.,1994,64(13):1867-1869.
    [2]C.H.Qiu,C.Hoggatt,W.Melton,M.W.Leksono and J.I.Pankove.Study of defect states in GaN films by photoconductivity measurement[J].Appl.Phys.Lett.,1995,66(20):2712-2174.
    [3]C.Skierbiszewski,Z.R.Wasilewski and M.Siekacz.Blue-violet InGaN laser diodes grown on bulk GaN substrates by plasma-assisted molecular-beam epitaxy[J].Appl.Phys.Lett.,2005,86(1):1114-1116.
    [4]E.Monroy,T.Palacios,O.Hainaut,F.Omnes and F.Calle.Assessment of GaN metal-semiconductor-metal photodiodes for high-energy ultraviolet photodetection[J].Appl.Phys.Lett.,2002,80(17):3198-3200.
    [5]L.Z.Hui,Y.T.Jun,Y.Z.Jian and T.Y.Zhen.Influence of Growth Temperature and Trimethylindium Flow of InGaN Wells on Optical Properties of InGaN Multiple Quantum-Well Violet Light-Emitting Diodes[J].Chin.Phys.Lett.,2004,21:1845-1847.
    [6]秦琦,于乃森,郭丽伟.使用SiN_x原位淀积方法生长的GaN外延膜中的应力研究[J].物理学报,2005,54(11):5450-5454.
    [7]罗俊峰,王俊忠,牛南辉.半导体结构中局域弹性应变场的电子背散射衍射分析[J].电子显微学报,2006,25(2):104-107.
    [8]P.Puech,F.Demangeot,J.Frandon and C.Pinquier.GaN nanoindentation:A micro-Raman spectroscopy study of local strain fields[J].J.Appl.Phys.,2004,96(5):2853-2856.
    [9]蔡端俊.博士论文:GaN基半导体异质结构中的应力相关效应[Z].
    [10]I.C.Noyan and J.B.Cohen.Residual stress measurement by diffraction and interpretation[M].New York,Springer Verlag,1987.
    [11]M.Kuball,M.Benyoucef,B.Beaumont and P.Gibart.Raman mapping of epitaxial lateral overgrown GaN:Stress at the coalescence boundary[J].J.Appl.Phys.,2001,90(7):3656-3658.
    [12]M.Benyoucef,M.Kuball,G Hill,M.Wisnom,B.Beaumont and P.Gibart.Finite element analysis of epitaxial lateral overgrown GaN:Voids at the coalescence boundary[J].Appl.Phys.Lett.,2001,79(25):4127-7129.
    [13]F.Demangeot,J.Frandon,M.A.Renucci,O.Briot,B.Git and R.L.Aulombard Raman determination of phonon deformation potentials in α-GaN[J].Solid State Communications.,1996,100(4):207-210.
    [14]W.Rieger,T.Metzger and H.Angerer.Influence of substrate-induced biaxial compressive stress on the optical properties of thin GaN films[J].Appl.Phys.Lett.,1996,68(7):970-972.
    [15]Z.R.Zytkiewicz.Laterally overgrown structures as substrates for lattice mismatched epitaxy[J].Thin solid films,2002,412(1-2):64-75.
    [16]D.G Zhao,S.J.Xu,M.H.Xie,S.Y Tong and H.Yang.Stress and its effect on optical properties of GaN epilayers grown on Si(111),6H-SiC(0001),and c-plane sapphire[J].Appl.Phys.Lett.,2003,83(4):677-679.
    [17]K.Z.Troost,P.van der Sluis and D.J.Gravesteijn.Microscale elastic-strain determination by backscatter Kikuchi diffraction in the scanning electron microscope[J].Appl.Phys.Lett.,1993,62(10):1110-1112.
    [18]A.J.Wilkinson.Measurement of elastic strains and small lattice rotations using electron back scatter diffraction[J].Ultramicroscopy,1996,62(4):237-247.
    [19]Y J.Kim,D.W Kim,S.J.Ahn,H.S.Kim and S.Ahn.Study on the non-linear property of abnormally grown grain ZnO[J].Materials Chemistry and Physics,2003,82(2):410-413.
    [20]R.R.Keller,A.Roshko,R.H.Geiss,K.A.bertness and T.P.Quinn.EBSD measurement of strains in GaAs due to oxidation of buried AlGaAs layers[J].Microelectronic Engineering,2004,75(1):96-102.
    [21]J.M.Wagner and F.Bechstedt.Phonon deformation potentials of GaN and A1N:An abinitio calculation[J].Appl.Phys.Lett.,2000,77(3):346-348.
    [22]J.Gleize,M.A.Rennucci,J.Frandon,A.E.Bellet and B.Daudin.Phonon deformation potentials of wurtzite A1N[J].J.Appl.Phys.,2003,93(4):2065-2068.
    [23]S.D.Fonzo,W.Jark,S.Lagomarsino,C.Giannini.Non-destructive determination of local strain with 100-nanometre spatial resolution[J].Nature,2000,403:638-640.
    [24]A.J.Wlkinson and P.B.Hirsh.Electron diffraction based techniques in scanning electron microscopy of bulk materials[J].Micron,1997,28(4):279-308.
    [25]J.Z Lan,S.Q.Wang,X.M Meng and D.X.Li.Applications of microdiffraction related to HREM[J].Proc.6 APEM.,Hong Kong,1996:121-123
    [26]叶恒强.材料界面结构与特性[M].北京:科学出版社,1999.
    [27]G.Kresse and J.Furthmuller.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Comput.Matter.Sci.,1996,6(1):15-50.
    [28]D.J.Cai,F.C.Xu and J.Y.Kang.High-spatial-resolution strain measurements by Auger electron spectroscopy in epitaxial-lateral-overgrowth GaN[J].Appl.Phys.Lett.,2005,86(21):1917- 1919.
    [29]K.Prabhakaran,T.G.Andersson and K.Nozawa.Nature of native oxide on GaN surface and its reaction with Al[J].Appl.Phys.Lett.,1996,69(21):3212-3214.
    [1]E.F.Schubert.Doping in Ⅲ-Ⅴ Semiconductors[M].Cambridge:Cambridge University Press,1993.
    [2]Y.Fedorenko,T.Jouhti,J.Konttinen,J.Likonen and M.Pessa.Carrier Profiling and Crystal Quality Evaluation of Thin Al_xGa_(1-x)As (0.22<x<0.86) Film by Electrochemical Capacitance/Voltage Technique[J].J.Electro,chem.Soc,2003,150(7):G380-G384.
    [3]E.Basaran.Choice of electrolyte for doping profiling in Si by electrochemical C-V technique[J].Appl.Sur.Sci.,2001,172(3-4):345-350.
    [4]S.Dassonneville,A.Amokrane,B.Sieber,J.L.Farvaque,B.Beaumont and P.Gibart.Luminescence of epitaxial GaN laterally overgrown on (0001) sapphire substrate:Spectroscopic characterization and dislocation contrasts[J].J.Appl.Phys.,2001,89(7):3736-3743.
    [5]S.Dassonneville,A.Amokrane,B.Sieber,J.L.Farvaque,B.Beaumont,P.Gibart,J.D.Ganiere and K.Leifer.Cathodoluminescence of epitaxial GaN laterally overgrown on (0001) sapphire substrate.Time evolution with low energy electron beam[J].J.Appl.Phys.,2001,89(12):7966-7972.
    [6]C.C.Williams,J.Slinkman,W.P.Hough and H.K.Wickramasinghe.Lateral dopant profiling with 200 nm resolution by scanning capacitance microscopy[J].Appl.Phys.Lett,1989,55(16):1662-1664.
    [7]A.K.Henning,T.Hochwitz and J.Slinkman.Two-dimensional surface dopant profiling in silicon using scanning Kelvin probe microscopy[J].J.Appl.Phys.,1995,77(5):1888-1896.
    [8]Y.Martin,D.W.Abraham,H.K.Wickramasinghe and H.Kumar.High-resolution capacitance measurement and potentiometry by force microscopy[J].Appl.Phys.Lett.,1988,52(13):1103-1105.
    [9]C.Schoenenberger and S.F.Alvarado.Observation of single charge carriers by force microscopy[J].Phys.Rev.Lett.,1990,65(25):3162-3164.
    [10]C.Schoenenberger.Charge flow during metal-insulator contact[J].Phys.Rev.B,1992,45(7):3861-3864.
    [11]M.J.Yoo,T.A.Fulton,H.F.Hess,R.L.Wilett and L.N.Dunkleberger.Scanning single-electron transistor microscopy:Imaging individual charges[J].Science.,1997,276:579-582.
    [12]G.Binnig,H.Rohrer,C.Gerber and E.Weibel.Surface Studies by Scanning Tunneling Microscopy[J].Phys.Rev.Lett.,1982,49(1):57-61.
    [13]G.Binnig,H.Rohrer,C.Gerber and E.Weibel.Tunneling through a controllable vacuum gap[J].Appl.Phys.Lett.,1982,40(2):178-180.
    [14]G.Binning and H.Rohrer.Scanning tunneling microscopy from birth to adolescence[J].Rev.Mod.Physt.,1987,59(3):615-625.
    [15]Z.Y.Zhang,C.H.Jin,X.L.Liang,Q.Chen and L.M.Peng.Current-voltage characteristics and parameter retrieval of semiconducting nanowires[J].Appl.Phys.Lett.,2006,88(7):3102-3104.
    [16]C.D.Wagner,D.A.Zatko and R.H.Raymond.Use of the oxygen KLL Auger lines in identification of surface chemical states by ESCA[J].Anal.Chem.,1980,52(9):1445-1451.
    [17]Y.Zhu and L.Cao.Auger chemical shift analysis and its applications to the identification of interface species in thin films[J].Appl.Surf.Sci.,1998,133(3):213-220.
    [18]朱永法,曹立礼,瑶文清.材料表面和界面化学状态的俄歇化学效应研究[J].材料工程,1995,1:17-20.
    [19]朱永法.俄歇化学位移及其在表面化学上的应用[J].物理化学学报,1993, 9(2):211-217.
    [20]P.Ascarelli and G.Moretti.Iconicity of metallic oxide surface on metals as observed by auger(XPS) spectroscopy[J].Surf.Interf.anal.,1985,7(1):8-12.
    [21]R.Weissman.Intensity ratios of the KL_1L_1,KL_(23)L_(23) oxygen auger lines in different compounds[J],Solid State Communications,1979,31(5):347-349.
    [22]蔡端俊.博士论文:GaN基半导体异质结构中的应力相关效应[Z].
    [23]O.Ambacher,B.Foutz,J.Smart,K.Chu,M.Murphy,A.J.Sierakowski,W.J.Schaff,L.F.Eastman,R.Dimitrov,A.Mitchell and M.Stutzmann.Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures[J].J.Appl.Phys.,2000,87(1):334-344.
    [24]J.H.Weaver,M.Grioni and J.Joyce.Critical development stages for the reactive Cr-GaAs(110) interface[J].Phys.Rev.B.,1985,31(8):5348-5354.
    [25]H.Zhang,E.J.Miller,E.T.Yu,C.Poblenz and J.S.Speak.Measurement of polarization charge and conduction-band offset at In_xGa_(1-x)N/GaN heterojunction interfaces[J].Appl.Phys.Lett.,2004,84(23):4644-4646.
    [26]H.Kollmer,Jin Seo Im,S.Heppel,J.Off,F.Scholz and A.Hangleiter.Intraand interwell transitions in GaInN/GaN multiple quantum wells with built-in piezoelectric fields[J].Appl.Phys.Lett.,1999,74(1):82-84.
    [27]M.Niebelschutz,G.Ecke,V.Cimalla,K.Tonisch and O.Ambacher.Work function analysis of GaN-based lateral polarity structures by Auger electron energy measurements[J].J.Appl.Phys.,2006,100(7):4909-4911.
    [28]康俊勇,徐富春,蔡端俊,李金钗.微纳尺度俄歇电子能谱新技术开发及其应用进展[J].物理学进展,2008,284:327-345.
    [29]Thermo VG Scientific.http://www.analytical-science.Com/Journal/Surface analysis_2001.htm.
    [30]V.Cimalla,M.Niebelschutz,G.Ecke,V.Lebedev,O.Ambacher,M.Himmerlich,S.Krischok,J.A.Schaefer,H.Lu and W.J.Schaff.Surface band bending at nominally undoped and Mg-doped InN by Auger Electron Spectroscopy[J].Phys.stat.sol.(a).,2006,203(1):59-65.
    [1]J.H.Kim and P.H.Holloway.Wurtzite to zinc-blende phase transition in gallium nitride thin films[J].Appl.Phys.Lett.,2004,84(5):711-713.
    [2]M.Katsikint,E.C.Paloura and T.D.Moustakas.Coexistence of wurtzite GaN with zinc blende and rocksalt studied by x-ray power diffraction and high-resolution transmission electron microscopy[J].Appl.Phys.Lett.,1996,69(27):4206-4208.
    [3]X.Huang and Q.Liu.Determination of crystallographic and macroscopic orientation of planar structures in TEM[J].Ultramicroscopy,1998,74(3):123-130.
    [4]http://en.wikipedia.org/wiki/XRD[Z].
    [5]C.Y.Yeh,Z.W.Lu,S.Froyen and A.Zunger.Predictions and systematizations of the zinc-blende-wurtzite structural energies in binary octet compounds[J].Phys.Rev.B.,1992,45(20):12130-12133.
    [6]S.H.Wei and S.B.Zhang.Structure stability and carrier localization in CdX (X=S,Se,Te) semiconductors[J].Phys.Rev.B.,2000,62(11):6944-6967.
    [7]J.Serrano,A.Rubio,E.Hernandez,A.Munoz and A.Mujica.Theoretical study of the relative stability of structural phases in group-Ⅲ nitrides at high pressures[J].Phys.Rev.B.,2000,62(24):16612-16623.
    [8]Y.Xie,Y.T.Qian,S.Y.Zhang,W.Z.Wang,X.M.Liu and Y.H.Zhang.Coexistence of wurtzite GaN with zinc blende and rocksalt studied by x-ray power diffraction and high-resolution transmission electron microscopy[J].Appl.Phys.Lett.,1996,69(3):334-336.
    [9]Y.Xie,Y.T.Qian,W.Z.Wang,S.Y Zhang and Y H.Zhang.A benzene-thermal synthetic route to nanocrystalline GaN[J].Science.,1996,272:1926-1927.
    [10]H.F.Liu,H.Chen,L.Wan,Z.Q.Li,Q.Huang and J.M.Zhou.Epitaxial growth and characterization of GaN Films on(001) GaAs substrates by radio-frequency molecular beam epitaxy[J].J.Crys.Growth,2001,227-278.
    [11]Z.X.Qin,M.Kobayashi and A.Yoshikawa.X-ray diffraction reciprocal space and polefigure characterization of cubic GaN epitaxial layers grown on(001)GaAs by molecular beam epitaxy[J].J.Mater.Sci.,1999,10:199-202.
    [12]B.K.Teo.EXAFS:Basic Principles and Data Analysis[M].Heidelberg,Springer-Verlag,1986.
    [13]J.Rockenberger,L.Trger,A.Kornowski,T.Vossmeyer,A.Eychmijller,J.Feldhaus and H.Wellers.EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles.[J].J.Phys.Chem.B.,1997,101(14):2691-2701.
    [14]M.Katsikini,E.C.Paloura and T.D.Moustakas.Experimental determination of the N-p-partial density of states in the conduction band of GaN:Determination of the polytype fractions in mixed phase samples[J].J.Appl.Phys.,1998,83(3):1437-1445.
    [15]M.Buseck,Cowley and E.Eyring.High Resolution Transmission Electro Microscopy and associated techniques[M].New York,London,Amsterdam,Oxford University Press,1988.
    [16]Y Ding,Z.L.Wang,T.J.Sun and J.S Qiu.Zinc-blende ZnO and its role in nucleating wurtzite tetrapods and twinned nanowires[J].Appl.Phys.Lett.,2007,90(15):3510-3512.
    [17]C.Kittle.Introduction to solid state physics[M],7th Edition,John Wiley &Sons,New York,1996.
    [18]虞丽生.半导体异质结物理[M].北京:科学出版社,2006.
    [19]T.Hidaka.Theory of the Piezoelectricity of Zinc-Blende-Type and Wurtzite-Type Crystals[J].Phys.Rev.B.,1972,5(10):4030-4038.
    [20]C.C.Yang,M.C.Wu,C.H.Lee and G.C.Chi.X-ray diffraction characterization of epitaxial zinc-blende GaN films on a miscut GaAs(001)substrates using the hydride vapor-phase epitaxy method[J].J.Crys.Growth,1999,206(1-2):8-14.
    [21]P.Hohenberg and W Khon.Inhomogeneous Electron Gas[J].Phys.Rev.,1964,136(3):B864-B871.
    [22]D.J.Cai,F.C.Xu and J.Y.Kang.High-spatial-resolution strain measurements by Auger electron spectroscopy in epitaxial-lateral-overgrowth GaN[J].Appl.Phys.Lett.,2005,86(21):1917-1919.
    [23]F.C.Xu,D.J.Cai and J.Y.Kang.Phase identification from electronic structures by Auger electron spectroscopy[J].J.Mater.Res.,2008,23(1):83-86.
    [24]J.Y.Kang,F.C.Xu,X.H.Zhang,L.S.Zheng,T.Sekiguchi,S.Tsunekawa,S.Itoh and A.Kasuya.Properties of ZnO nanotetrapods[J].International Journal of Nanoscience.,2002,1(5&6):515-519.
    [25]J.Y.Kang and F.C.Xu.Heterostructure in ZnO nano-tetrapods[J].Science Foundation in China,2004,2:57-65.
    [26]M.Shiojiri and C.Kaito.Structure and growth of ZnO smoke particles prepared by gas evaporation technique[J].J.Cryst.Growth,1981,52:173-177.
    [27]K.Nishio,T.Isshiki,M.Kitano and M.Shiojiri.Structure and growth mechanism of tetrapod-like ZnO particles[J].philos.Mag.A.,1997,76:889-904.
    [28]H.Iwanaga,M.Fujii and S Takeuchi.Growth model of tetrapod zinc oxide particles[J].J.Cryst.Growth,1993,134(3-4):275-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700