基坑下方运营隧道卸载回弹的力学机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基坑开挖引起的深层位移场一直是工程的难题,尤其在开挖面下方存在运营地铁等对变形要求严格的建(构)筑物时。由于此类问题涉及土层固结与回弹、围护结构内力与变形、基坑开挖与稳定机理、隧道变形与保护、施工顺序与施工力学、反馈分析与施工控制等诸多问题,是一个集岩土工程与结构工程于一体的系统工程,目前尚无一套较系统的理论。本文以上海高灵敏性软土地区大范围、高比例卸载工程实践为基础,通过理论研究和反馈回归,分析基坑开挖卸载引起下方运营隧道回弹的机理并提出了回弹预测方法。
     文中引入软硬土体的归一化模型、隧道等效刚度等方法,对运营隧道上方基坑开挖进行了模拟和数值实现,分析了各种因素对运营隧道回弹的影响,并根据信息化反馈数据进行回归分析,总结了影响隧道回弹的主要因素。在此基础上,建立了半近似预测公式,并根据工程监测数据进行了参数修正。本文的主要研究内容及结论如下:
     1.为控制隧道的回弹,上海软土往往需要大量的土体加固措施。通过建立归一化的土体模型,便于利用有限元进行数值分析。一方面,利用上海典型软土的流变试验结果,采用半经验修正理论来描述软土的非线性流变特性。另一方面,从水泥搅拌加固土的物理力学特性着手,通过关联度分析方法确立了影响水泥搅拌加固土体弹性模量的主要参数;同时对加固土体的试样进行室内实验,得到加固土体的卸载模量。最后,将上海地区主要土层及加固土体采用了归一化的模型,通过选择合适的参数,可以演变为不同土体的流变方程式。
     2.研究了实现数值模拟中的几个问题。利用ANSYS的二次开发功能,将归一化的土体模型作为用户子程序输入。同时为便于模拟隧道结构刚度,建立了盾构隧道的“等效连续化模型”。该模型利用纵向变形特征相似的均匀连续梁模拟隧道全长或某一区段,梁单元具有与隧道相同的等效刚度。利用ANSYS中材料特性设置各向异性材料,来模拟隧道的纵向、横向刚度。
     3.有限元分析中调整相关参数进行对比分析,得出以下结论:对隧道回弹影响最大的因素为坑底土体加固,不仅抗拔桩的作用随土体加固强度提高,且土体加固后,原本软土地区对基坑变形有明显影响的施工时间基本对回弹没有太大影响。其他的主要影响因素有分块开挖和基坑底部土体应力释放率。另外,隧道横向刚度要比土体大很多,而纵向刚度又比较小,隧道的回弹对隧道刚度值的变化不敏感。
     4.采用分离参数法对反馈数据进行回归,即通过对监测数据中的单个因素进行分离,并进行回归分析得出一些结论:在土体加固后,土体变形基本近似弹性变形;隧道的回弹变化与影响距离大致呈抛物线型关系,但可近似为回弹量与距离呈线性关系;隧道的回弹值与开挖宽度呈倒指数关系。
     5.根据土力学经典理论,结合有限元分析和监测数据回归得到的重要影响因素,建立回弹量的半经验性的近似计算公式。计算中充分考虑了隧道处等效土层模量、开挖性状对卸载应力分布的影响、土体加固对坑底应力释放率的影响。并通过近似公式计算结果与监测数据的比较,对应力释放系数进行了修正。
The soil displacements are always the difficulties faced by the engineers during excavation of foundation ditch, especially which is strictly controlled while existing structure such as running tunnel beneath the excavation. These problems are related to soil consolidation, upheaval, stiffness of retain wall, method of excavation, soil stable mechanism, tunnel deformation and protection, construction plan & sequence, monitor, feedback analysis and construction controls etc,so there are not any systematic theory to be applied, but still in the phase of engineering practice. In this paper, integrate the engineering practice, based on the classical theory and feedback analysis, upheaval mechanism of running tunnel due to top excavation in the soft soil area is researched and semi-experience formula is proposed.
     This paper focuses on the normalization model of the soft and improved soil which influence the tunnel upheaval, and tunnel equivalent stiffness etc. Through FEM simulation, analyses all possible factors on the tunnel upheaval. By information-based feedback construction and data regression, the main factors affecting the tunnel upheaval is concluded. Thus summarize the main factors and establish the semi-experience formula, revise the parameters according to the projects. The followings show the main contents and the conclusions of the research:
     1. To control the soil displacement and the tunnel upheaval, in Shanghai area the soft soil usually be improved. Through establish the normalization soil constitutive-model, it’s more convenient to use finite element for data analysis. On one hand, refers to the rheologic experiment date of the typical Shanghai soft soil, semi-experience modified theory is used to describe the non-linear rheological behaviors, On the other hand, based on the test of physic behaviors of the cement treated soil, through relationship analysis establish the the main parameters which affect elasticity modulus on the cement mixed soil; meanwhile, attained unload modulus of the improved soil through experiments on the soil sample. Lastly, adopt the normalized model for the common soil layer in Shanghai and the improved soil, only need to select suitable parameters separately, different soil’s rheology can be simulated from this model.
     2. Study few questions in the FEM simulation. Make use of the secondary development function of ANSYS, the normalized soil model simulated as a sub- program input. Meanwhile, for the convenient of simulate the tunnel stiffness, the“equivalent continuous model”had constructed for bored tunnel. This model base on the similarity of the vertically deformation and the uniform continuous beams to simulate the whole tunnel or a certain section, beam unit and the tunnel have the equivalent stiffness. Use the anisotropic material properties setting in ANSYS to simulate the tunnel’s horizontal and vertical stiffness.
     3. In the finite element analysis, adjust the related parameters to contrast analysis, some conclusion worked out: the main factor that affected the tunnel upheaval is the improvement property under the ditch. Not only the effect of the anti-pull pile increase with the improvement property; but the construction duration do not affect the soil deformation anymore which affect the soil deformation obviously in soft soil. The other main factors are part-excavation and stress release rate of the soil of the excavation face. Besides, the tunnel upheaval is insensitive to the change of the stiffness of the tunnel, because horizontal stiffness of tunnel is much larger than the soil, but the vertical stiffness is much less than the soil.
     4. Adopt the method of separate parameters, carry out regression on the feedback data, separate a single factor from the measured data, carry out regression analysis and obtain these conclusions: soil deformation is similar to elastically deformation after soil improvement; the tunnel upheaval and the distance of influence can be estimated as linear relationship; the value of tunnel upheaval and the excavation width is in inverse exponential proportion.
     5. According to the classic theory, integrate the major factors obtain from the finite element analysis and monitor date regression; establish the semi-experience formula to estimate tunnel upheaval. In computation, take into consideration of the equivalent modulus of tunnel, the affect of excavation character on unload stress distribution, the effect of soil improvement on the stress release rate under the excavation. Comparing the computation results from the finite element and the formula, revise the stress release ratio.
引文
[1]龚晓南.深基坑工程设计施工手册[M].中国建筑工业出版社.北京.1997.
    [2]宋博.上海地铁监护初探[J].地下铁道文集.北京.2001(3).
    [3]凌昕战.地铁上面造高楼[J].地下铁道文集.北京.1999(2).
    [4]运营地铁上方暗挖法修建地下通道技术总结[M].上海市第二建筑公司.同济大学.上海.2001.
    [5]潘钟麟.上海世纪大道某立交工程地下箱涵施工和对地铁线保护的研究[J].特种结构,2001,18(4):39-43
    [6]陆宏伟.世纪大道杨高路下立交地铁保护段基坑设计[J].城市道桥与防洪.2002(2):44-48.
    [7]刘国彬,黄院雄.基坑工程下已运行地铁区间隧道上抬变形的控制研究与实践[J].岩石力学与工程学报.2001,20(2):202-206.
    [8]胡展飞.降水预压改良坑底饱和软土的理论分析与工程实践[J].岩土工程学报.1998, 20(3):27-30.
    [9]胡展飞,周健.跨骑已运行地铁区间隧道基坑介质变形机理与控制对策研究[J].建筑技术(增刊).1998,10: 115-119.
    [10]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社.1997.
    [11] Charles W W, Simpson N B. Numerical analysis of a multi-propped excavation in stiff clay[J]. Canadian Geotechnical Journal.1998,35: 115-130.
    [12] Oettl G, Stark R F, Hofstetter G. A comparison of elastic-plastic soil models for 2D FE analyses of tunneling. Computers and Geotechnics[J]. 1998, 23:19-38.
    [13] Carrubba P, Colonna P. A comparison of numerical methods for multi-tied walls. Computers and Geotechnics[J]. 2000,27: 117-140.
    [14] Kavanagh K, Clough R W. Finite element applications in the characterization of elastic solids[J]. Int. J. Solids Structure. 1971(7): 11-23.
    [15] Kavanagh K. Experience versus analysis: computation techniques for the description of static material response[J]. Int. J. Numerical Methods in Engineering.1973(5): 503-515.
    [16] Sakurai S. Determination of initial stresses and mechanical properties of visco-elastic underground medium. Proc. 3rd ISRM Cong. Denver, 1974: 384-390.
    [17] Kirsten H A D. Determination of rock mass elastic moduli by back analysis of deformation measurements. Exploration for Rock Engineering. 1976(1): 165-172.
    [18] Iding R H, Pister K S. Identification of nonlinear elastic solids by a finite element method[J]. Computer methods in applied mechanics and engineering, 1974(4): 121-142.
    [19] Hisatake M. Assessment of tunnel face stability by back-analysis. Proc. 2nd Int. Symp. On Field measurements in Geomech. Kobe. 6-9, April, Sakurai(ed).1987:1217-1224.
    [20] Li Yunpeng. Three dimensional back analysis of visco-elastic creep displacements. 3rd Int. Conf. On underground space and earth sheltered buildings. Tongji University Press. 1988.
    [21] Parisean W G, Duan F. Three dimensional finite elements analysis of the VCR study step at the Homestake Mine. Proc. 5th annual workshop generic mineral technology center mine system design and ground control, Tuscaloosa,26-27,P67-78,1987.
    [22]杨林德,冯紫良.岩土工程问题的反演理论与工程实践[M].北京:科学出版社.1996.
    [23]杨志法.位移反分析及其应用.岩石力学新进展[M].东北工学院出版社.1989:186-199.
    [24] Yang C Y, Sterling R L. Back analysis of rock tunnel using bounding element method[J]. J. Geotech. Engng. Div. ASCE, 1989,115(8):1163-1169.
    [25] Ohkami T, Ichikawa Y. A boundary element method for identifying orthotropic material parameters[J]. Int. J. for Num. and Analy. Meth. In Geomech. 1991,15(9):609-625.
    [26]朱合华.摄动粘弹性模型的反演分析.首届全国青年岩石力学学术研讨会文集[M].上海.1991.
    [27] Cividini A. Maier G. Parameter estimation of a static geotechnical model using a Bayes’approach[J]. Int. J. Rock Mech. Min. Sci.&Geotech. 1983,120(5):215-226.
    [28] Gioada G, Maier G. Direct search solution of inverse problem in elasto-plasticity: identification of C, O and O by pressure tunnel test[J]. Int. J. num. Mech. In Engng. 1980,15:1823-1848.
    [29] Gens A, Ledesma A. Parameter identification from linewise observation measurements. Proc. ELONMIG 86 stuttgart,16-18,Sept.,vol2,1986:14.
    [30]袁勇.岩土工程中的系统辩识及其工程应用[D].同济大学博士论文.1991.
    [31]孙钧,蒋树屏.岩土力学反演问题的随机理论及方法[M].汕头大学出版社.1996.
    [32]孙钧.岩体力学反演分析的概率方法及其工程应用.华东岩土工程学术大会论文集[M].1982:477-483.
    [33]高文华,沈蒲生.基坑工程的发展现状与展望[J].湘潭矿业学院学报.1999,14(4):67-72.
    [34]殷宗泽.土力学学科发展的现状与展望[J].河海大学学报.1999,27(1)1-5.
    [35]钱家欢,殷宗泽.土工原理与计算[M].北京:水利电力出版社,1994.
    [36]高俊合,赵维炳,施建勇.土体非线性影响的深基坑支护研究综述[J].水利水电科技进展.1997,17(4):41-45.
    [37]Murphy D J, Clough G W. Temporary excavation in varied clays[J]. Journal of Geotechnical Engineering Division,ASCE,1975,101(1):279-295.
    [38] Mana A I, Clough G W. prediction of movements for braced cuts in clay[J]. Journal of Geotechnical Engineering Division,ASCE,1981,107(3):759-778.
    [39] Whittle A J,Hashash M A. Analysis of deep excavation in Boston[J]. Journal of Geotechnical Engineering,1993,119(1):69-90.
    [40] Jardine R J,Fourie A B. Studies of the influence of nonlinear stress strain characteristics in soil structure interaction[J]. Geotechnique,1986,36(3):377-396.
    [41]魏汝龙.岩土塑性力学几个理论问题的探索[J].水利学报,1964(6):9-20.
    [42]黄文熙,濮家骝,陈愈炯.土体本构理论的检讨与重建[J],岩土工程学报, 1981(3):11-26.
    [43]沈珠江.土体应力应变分析的一种新模型[C].第5次全国土力学与基础工程会议论文.厦门(1987):101-105.
    [44]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soil[J]. J. Geotech. Engng. Div. ASCE SMFD,1970,96(5): 1629-1653.
    [45] Duncan J M et al. Strength, stress-strain and bulk modulus parameter for finite element analyses of stress and movements in soil masses[R]. Report. UCB/GT/80-01,1980. Barkeley: University of California.
    [46] Marco D, Boscardin. Hyperbolic parameter for compacted soils[J]. Geotechnical Engineering. Nol,1990.
    [47] Roscoe K H , Schofield A N. Yielding of Clays in States Wetter than Critical . Geotechnique , 1963 ,13 (3) :211– 240.
    [48] Lade P V, Duncan J M. Elasto-plastic stress-strain theory for cohesionless soils. J. Geotech. Engng. Div. ASCE, JGED, 1975,101(GT10):1037-1053.
    [49]Ng C W, Ling M L. Effects of modeling soil nonlinearity and wall installation back analysis of deep excavation in stiff clay. Journal of Geotechnical Engineering.1995,121(10): 687-695.
    [50] Michael L. A case history of a deep basement in London Clay[J]. Computers and Geotechnics. 2001, 28 : 397–423.
    [51] Tsui Y,Cheng Y M. A fundamental study of braced excavation construction[J]. Computers and Geotechnics,1989,8:39-64.
    [52] Chang Yu Ou,Ching Her Lai. Finite element analysis of deep excavationin layered sandy and clayed soil deposits[J].Canada Geotechnique Journal,1994,31:204-214.
    [53]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究.岩土工程学报[J].1988, 10(3):13-22.
    [54]吕风梧,徐伟.软土地基深基坑开挖的时空效应研究与应用.建筑施工[J].1997,19(5):41—42.
    [55] Ying Hongwei, Xie Kanghe. Behavior of a braced excavation in Hangzhou. Nanjing: Second International Conference on Soft Soil Engineering.1996:537-542.
    [56]Bazant Z P, Ansal A M. Visco-plasticity of Transversely isotropic clays[J]. Journal of Engineering Mechanics Division ,ASCE, 1979,105(4):1024~1028.
    [57]周维垣.高等岩石力学[M].北京:水利电力出版社.1990,97~105.
    [58]范镜泓,高芝晖.非线性连续介质力学基础[M].重庆大学出版社.1987,54~62
    [59] Cristescu N. A procedure for determining the constitutive equations for materials exhibiting both time-independent plasticity[J]. Int. J. Solids Structures.1972(6):32~36.
    [60] Vyalov S S. Rheological fundamentals of soil mechanics[M]. London: Elsevier Applied Science Publishingers.1986.231~232.
    [61]谢宁.软土非线性流变的理论,试验和应用研究[D].上海:同济大学,1993.
    [62]夏冰,夏明耀.上海地区饱和软土的流变特性研究及基坑工程的流变时效分析[J].地下工程与隧道. 1997 (3):11-18.
    [63]李希元.土体三维非线性流变属性及其在深大基坑开挖工程中的应用研究[D].上海:同济大学,1996.
    [64] Goodman R F, Taylor R L. A model for the mechanics of jointed rock[J]. Journal of soil mechanics & foundation division,ASCE.1968,94(SM3):637-660.
    [65]胡孔国,吴京.深基坑开挖和支护全过程分析的弹塑性有限元法[J].建筑结构.1999(3):34-36.
    [66]俞建霖,龚晓南.软土深基坑开挖的三维性状分析[J].浙江大学学报.1998,32(5):552-557.
    [67] Ghaboussi J, Wilson E L. Finite element for rock joints and interfaces[J]. Journal of soil mechanics & foundation division,ASCE.1973,99(SM10):833-848.
    [68] Desa C S, Zaman M M. Thin layer element for interfaces and joints[J]. International Journal for numerical & analytical mathematics in geomechanics.1984,8(1):19-43.
    [69]高俊合.深基坑支护结构设计理论研究[D].河海大学.1998.
    [70] Clough G W, Duncan J M. Finite element analysis of retaining wall behavior[J]. Journal of soil mechanics & foundation division,ASCE.1971,97(SM12):1657-1674.
    [71] Boulon M, Nova R. Modeling of soil structure interface behavior: a comparison between elasto-plastic and rate-type laws[J]. Journal of soil mechanics & foundation division,ASCE.1971,97(SM12):1657-1674.
    [72]殷宗泽,朱泓.土与结构材料接触面的变形及其数学模拟.岩土工程学报[J].1994,16(3):14-22.
    [73] Goodman L E, Brown C B. Dead load stress and instability of slope[J]. Journal of soil mechanics & foundation division, ASCE, 1963,89(3) :527-538.
    [74] Brown C B, King I P. Automatic embankment analysis: Equilibrium and instability conditions[J]. Geotechnique, 1966,16(3):209-219.
    [75] Mana A I, Clough G W. Predication of movements for braced cuts in clay[J]. Journal of Geotechnical Engineering Division. 1981,107:759-778.
    [76] Ou C Y, Chi D C, Wu T S. Three dimension finite element analysis of deep excavation[J]. Journal of Geotechnical Engineering. 1996,122(5): 337-345.
    [77] Clough C Y, Duncan J M. Analysis of soil movement around a deep excavation[J]. J. Soil Conditions. Geotechnique, 1996,16(3): 209-219.
    [78] Kulhaway F H.填方与挖方.见:德赛C S,克里斯琴J T主编,卢世深等译,岩土工程数值法[M].北京:中国建筑工业出版社,1981,383-386.
    [79] Chandrasekaran V S, King G J. Simulation of excavation using finite element[J]. Journal of Geotechnical Engineering Division, 1974,100(GT9): 1086-1089.
    [80]冯紫良.地下洞室分析中的荷载计算与初始地应力场[J].岩土工程学报.1991,(3):43-49.
    [81]王勇,段宗泽.有限元计算深开挖挖方等效荷载的分析[J].河海大学学报.1998,26(5):71—74.
    [82]章青.有限元分析中开挖释放荷载的正确计算[J].河海大学学报.1999,27(3):112—115.
    [83]高俊合等.深开挖有限元分析中释放荷载模拟[J].河海大学学报.1999,27(1):47—52.
    [84]赵维炳,施建勇等.深基坑结构设计软件的开发[M].江苏省土木建筑学会地基基础学术年会论文集.
    [85]Duncan J M, Chang C Y. Nonlinear analysis of stress and strain in soil[J]. J. Geotech. Engng. Div. ASCE SMFD,1970,96(5): 1629-1653.
    [86]Rosce K H, Burland J B. On the generalized stress-strain behavior of wet clay[M]. In: Heyman, Lechie. Engineering Plasticity Cambridge: Cambridge university Press.1968: 536-609.
    [87]殷宗泽.一个土体的双屈服面应力-应变模型[J].岩土工程学报.1988,10(4): 64-71.
    [88]高文华.流变性软土地基模型的时效性分析与刚度计算[J].岩土力学.1998,19(4): 25-30
    [89] Wong K S. Lateral wall deformation of braced excavation in clay[J]. J. Geotech. Engng. Div. ASCE, 1981,107(6): 252-260.
    [90]戴敏强,许原.有限元分析中开挖释放荷载计算的讨论[J].武汉大学学报,2001,34(1): 56-59.
    [91]Dolezalova M. Tunnel complex unloaded by a deep excavation.[J].Computer and Geotechnics. 2001,28:469-493.
    [92]吴林高.抽灌水作用下土层变形及应力-应变本构律的研究[J].地球科学.1995,20(5:581-588)
    [93]Haefeli R. Creep Problems in Soils、Snow and Ice[M]. Mexico: Proc.3rd ICSMFE, Vol.3, 1953, 122-126
    [94]Keedwell J K. Rheology and Soil Mechanics[M] . London: Elsevier Applied Science Publishingers,1984,91-92
    [95]Vyalov S S . Rheological Fundamentals of Soil Mechanics[M] . London: Elsevier Applied Science Publishingers,1986.231-232
    [96]Bazant Z P,Ansal A M,Krizek R J. Visco-plasticity of Transversely Isotropic Clays Journal of Engineering Mechanics Division, ASCE, 1979,105(4) :1024-1028
    [97]Adachi T. Oka F. Mimura M. Descriptive accuracy of several existing constitutive models for normally consolidated clays[A]. In:5th ICONMG[C]. 1985. 259-266
    [98]Adachi T. Oka F. Thong F. An elasto-viscoplastic constitutive model with strain softening[J]. Soils and Foundations. 1998. 38(2): 27-35
    [99]Taylor D W. Fundamentals of Soil Mechanics[M]. New York: Wiley and Sons. 1948
    [100]Lin H D, Wang C C. Stress-strain-time of clay[J]. Journal of Geotechnical and Geoenvironmental engineering, ASCE, 1998,124(GT4): 289-296
    [101]熊军民,李作勤.粘土的蠕变-松弛耦合试验研究[J].岩土力学,1993.14(4): 17-24
    [102]Borja R I. Generalized creep and stress relaxation model for clays[J].J. Geotech. Engrg.ASCE. 1992. 118(11): 1765-1786
    [103]Kavazanjian J E.Mitchell J K. Time-dependent deformation behavior of clays[J].Journal of Geotedtnical and Geoenvironrnental Engineering. ASCE. 1980. 106(GT6): 611-631.
    [104]卡恰洛夫L M,塑性理论基础[M].周承洞译.北京:人民教育出版社,1983
    [105]维亚诺夫cc.土力学中的流变原理[M].杜余培译.北京:科学出版社,1987
    [106]阵琳.岩体粘弹性力学模型的判定定理及应用[J].岩土工程学报.1994. 16(5): 1-10
    [107]阮善发,宫必宁,吴梅英等.深层搅拌桩施工质量模糊控制.见:孙钊,夏可风主编.′98水利水电地基与基础工程学术交流会论文集[C].天津:天津科学技术出版社,1999.500~505.
    [108]宫必宁,李淞泉.软土地基水泥深层搅拌加固土物理力学特性研究[J].河海大学学报, 2000.28(2):101-105
    [109]朱伟译.日本土木学会隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社, 2001:38-41.
    [110]日本铁道综合研究所编.铁路构造物等设计标准·同解说[M].东京:丸善出版社,1997.7.
    [111]朱伟.几种盾构隧道管片设计方法的比较,地下空间[J],V01.23,No.4,2003,12.