超深基坑支护结构与土相互作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
润扬长江公路大桥南汊北锚碇超深基坑长69m,宽50m,深约50m。深基坑支护结构为外部钢筋混凝土地下连续墙,内部设多道钢筋混凝土水平框架内支撑。为了探讨超深基坑支护结构与土体相互作用,本文系统分析了该超深基坑的施工监测资料,结合三维数值模拟,对围护墙体水平位移、坑外地面沉降、坑壁土压力及其相互关系进行了深入研究,获得了如下主要认识和结论。
     (1)随着开挖深度增大,墙体最大水平位移不断增大,但在不同阶段墙体变形增大幅度不同。在开挖深度22.3m之前,有加速发展趋势,之后便不断收敛。同水平面上,基坑长边中点、短边中点变形大于角部。墙体水平位移沿深度方向总体呈中部大、上部和底部小的“凸”形形状,随开挖进行最大位移位置不断下移。通过深入分析得出:开挖深度在22.3~26.3m之前,最大位移位置与相应的位移量变化基本成正相关关系。而在开挖深度达26.3m之后,最大位移位置的下移和最大位移的增长均较小。地面沉降在开挖深度22.3m以前较小,之后受坑外降水影响沉降显著加大。
     (2)对于墙体水平位移,通过Peck法估算值和实测值的对比分析,提出了针对多支撑体系,系统整体刚度较大,抗隆起安全系数为1.4时的估算墙体水平位移(变形)的修正公式。
     (3)针对润扬基坑的实际地表沉降提出了沉降变形估算包络线。
     (4)开挖初期土压力表现出静止土压力特性,随着开挖进行,土压力曲线出现挠曲,并且大部分测点的土压力值有所减小。
     (5)通过研究将本基坑开挖过程中土压力沿深度变化形式从概念上归为斜直线模式、波状递增模式、阶状递增模式、附加应力作用叠加模式四种模式。每种模式给出了相应的分布图式。
     (6)研究正常施工情况(无坑外降水)墙体水平位移(变形)与坑壁土压力的关系得出:开挖初期(挖深约小于6m时)土压力和墙体变形均较小;随后在墙体变形仍然较小时而土压力突然增大。随后随变形不断发展土压力虽有波动,但总体平稳,曲线的相对斜率趋于0或小于0。特定的开挖深度对曲线的斜率影响较小,不同深度曲线的斜率变化较大。
     (7)坑外降水开始后,基坑浅部(约18m)以上变形向相反方向发展,在基坑的较深部位(约18m)以下变形仍在增加,但增加的幅度已大幅减小,即随着测点深度增加,墙体变形与土压力的关系在坑外降水影响下可由:变形和土压力均明显减小(近y轴的斜直线)→变形相对稳定土压力减小(竖直线)→变形仍有所发展土压力减小(远y轴的斜直线)进行转化。
     (8)通过分析得出土压力与墙体变形关系系数与坑壁深度的关系,利用此关系可计算考虑基坑变形的土压力问题。
     (9)通过不同土压力分布模式的结构验算,得出了地连墙设计中分段配筋应慎用,以及考虑波状递增土压力形式作用下,由于墙体挠曲复杂,为保证结构安全,应采用双面对称配筋,并且配筋率应较计算结果有一定提高,本文建议增大20%的配筋率以应对可能出现的非常情况。
     (10)通过支护结构与土相互作用采用四因素五水平正交数值模拟结果分析得出:
     ①支护结构的安全决定于支护结构体系刚度和土体强度(刚度)的匹配情况。一般土体强度较高、刚度较大,支护结构体系刚度可相对较小,而软弱土体则要求较大的支护结构体系刚度才能保证支护结构安全。
     ②墙体变形随墙体厚度增加而不断减小。表现出墙体厚度小于1.2m时,增加墙体厚度可以使墙体变形迅速减小,而当墙体厚度超过1.2m时,增加墙体厚度,墙体变形减小不太显著;可能存在一临界墙体厚度,当超过此厚度,增加墙体厚度的效益变得不太显著,而若小于此厚度一定值,结构便会向不稳定状态发展。
     ③墙体变形随基坑土体强度(刚度)增强而不断减小。
     ④支撑间距、支撑截面尺寸对墙体变形的影响没有土体强度、墙体厚度的影响显著。
     本文的研究成果从润扬长江公路大桥南汊北锚碇特定的基坑规模和支护结构体系获得,对类似工程具有一定的借鉴和指导作用,对超深基坑的支护结构与土相互作用的理论研究具有一定意义。
The north anchor foundation of the south cable bridge across Changjiang River which connected Yangzhou to Zhenjiang (named Runyang) had deep excavation with 69m long, 50m wide and about 50m deep. The retaining and protection structure for this deep excavation was concrete diaphragm wall supported by plane concrete frame inside. In order to study retaining structure and soil interaction in deep excavation, monitoring data (especially deformation of the wall, settlement of ground surface and earth pressure etc.) in the process of excavating and supporting was analyzed. And three-dimensional numerical method was used simulating construction with four factor (wall thickness, support space, support section size, soil strength) changing in five lever. Some conclusions come as follows.
     (1)Lateral movements of the diaphragm wall increased with excavating, but had different behavior in every stage. Before excavating at depth of 22.3m, the wall deformation increased at a accelerate state. After that point it would be slowdown. The wall deformation at the midpoint of rectangular side was great than that of corner in the same horizontal plane. In vertical direction, the deformation curve of the wall was entasis, that is great in middle, and mini upside or at the bottom. The max deformation position descended with excavating. Before excavating to depth of 22.3m~26.3m, the depth of maximum deformation position was correlativity to deformation value. After that, both the decline of the maximum deformation position and the deformation increase were relatively small. Settlement of the ground surface was small before excavating to depth of 22.3m. After that, it augmented remarkably because of dewatering outside the pit.
     (2) A formula was gained to estimate the maximum deformation of the wall under the condition of multi-bracing system, great system stiffness, factor of safety against basal heave was about 1.4.
     (3) Envelope line was drawn out for estimating the maximum settlement of ground surface.
     (4) At the beginning of excavation, Earth pressure on the wall was linear increased with depth add, and generally still earth pressure distribution. As excavating went on deeper and deeper, the curve of earth pressure distributing was more flexure at the primary turning point. When excavating to the bottom of pit, earth pressure curve was not only flexure strongly but earth pressure value minified than that of beginning.
     (5) Four earth pressure patterns in the process of foundation pit excavation were sum up. those were liner increase mode, undulance increase mode, step-shape increase mode and extra load action mode.
     (6) Under normal construction (no dewatering outside the pit), the deformation of the wall and the earth pressure on the wall both very small before 6m excavating depth. At the following shortly period, the deformation increase a little, but earth pressure gained a sharp increase. Latterly, in the main excavating process, earth pressure presented a relatively stable state with the wall deformation increase (the slope of the curve could be equal or less than 0) except a little fluctuant. The slope of the curve could be hardly influenced by excavating depth, but changing with the depth of the wall.
     (7) After dewatering, above 18m of the pit, earth pressure reduced and wall deformation reversed. Below that point, earth pressure reduced and wall deformation increased. The curve of the earth pressure and wall deformation could be changed from pattern of earth pressure reducing with wall deformation reversed (close to y axis), earth pressure quickly down but deformation unchanging (parallel to y axis), earth pressure decreasing with deformation developing (away from y axis) with depth increase.
     (8) A formula expressing the relationship between coefficient of earth pressure & wall deformation and wall depth was proposed to calculate earth pressure induced by wall deformation.
     (9) Internal force of diaphragm under above four earth pressure mode was calculated and gained some points, such as: Be careful of subsection setting steel in design, steel percentage setting in the wall should augmented because of complicated wall deformation under undulance increase mode earth pressure. At the author’s point it should be increased 20% for coping with the abnormity. (10) Numerical method was used to simulate interaction between retaining structure and soil considering four factors and five levels in the process of excavating.
     The facts were found as follow:
     ①The safety of supporting system relied on the corresponding of retaining structure to soil strength. The more strength and stiffness of the soil, the less stiffness of retaining structure could be. But if the soil was soft, there should be great stiffness of the retaining structure for soil mass stabilization in deep excavation.
     ②Wall deformation tended to small with the thickness of wall increase. Wall deformation could decreased rapidly when wall thickness less than 1.2m. But Wall deformation decreased indistinctively when wall thickness great or equal 1.2m. Their might be a critical wall thickness value. When wall thickness large than that value, the increae of the wall thickness did little effect to wall deformation.
     ③Wall deformation decreased with the strengthening of soil.
     ④Support space, support section size influenced the wall deformation not very clearly.
     The conclusions of this thesis were gained from specifically deep excavation condition of Runyang great bridge foundation and would have important guidance for similar project, and have academic value in retaining structure and soil interaction study.
引文
[1]朱爱国,沈永洋.关于基坑支护设计现状的几点认识[J].广西土木建筑,2000,25(1):1-4.
    [2]王曙光,温文.深基坑工程事故分析与工程实践[J].地基基础工程,2000,10(2):1-9.
    [3] Peck, R. B. (1969). Deep excavations and tunneling in soft ground.Proc., 7th Int. Conf. Soil Mech. Found. Engrg., 225–281.
    [4] Clough, G. W., and Reed, M. W. (1984). Measured behavior of braced wall in very soft clay. J. Geotech. Engrg., ASCE, 110(1), 1–19.
    [5] Clough, G. W., Smith, E. M., and Sweeney, B. P. (1989).Movement control of excavation support systems by iterative design. Proc.ASCE Found. Engrg.: Current Principles and Pract., Vol.2 ASCE,New York, 869–884
    [6]Clough, G. W., and O’Rourke, T. D. (1990).Construction induced movements of in situ walls.Proc. ASCE Conf. on Des. and Perf. of Earth Retaining Struct., Geotech. Spec. Publ. No. 25, ASCE, New York, 439–470.
    [7] Karlsrud, K. (1986). Performance monitoring in deep supported excavations in soft clay. Proc., 4th Int. Geo. Seminar, Field Instrumentation and In-Situ Measurement, Nanyang Technological Institute, Singapore,187–202.
    [8]Ou, C. Y., Hsien, P. G., and Chiou, D. C. (1993). Characteristics of ground surface settlement during excavation. Can. Geotech. J., Ottawa, 30, 758–767.
    [9] Wong, I. H., Poh, T. Y., and Chuah, H. L. (1997).‘‘Performance of excavations for depressed expressway in Singapore.’’J. Geotech. And Geoenvir. Engrg., ASCE, 123(7), 617–625.
    [10]刘建航.地下墙深基坑周围地层移动的预测和治理之二—基坑周围地层移动的预测[J].地下工程与隧道,1993年第2期,pp2—15
    [11]侯学渊,陈永福(1989).深基坑开挖引起周围地基土沉陷的计算[J].岩土工程师.第l卷第l期1989年7月. pp3—13.
    [12]孙钧,袁金荣.深大基坑施工变形的智能预测与控制[J].地下工程与隧道. 2000年4月. Pp12—23.
    [13]钟正雄,杨林德,杨金松(2000).基坑变形的实时建模预报时序分析方法[J].工业建筑,2000年第30卷第3期,PP1—3.
    [14]时蓓玲.基坑变形的随机预测[J].港工技术与管理, 2000第3期pp1—6 [15 ]黄宏伟,熊作森,叶邦庆(1999).基坑开挖施工中围护结构动态行为的预报[J].地下空间,Vol.19(5),1999. pp383—388
    [16]俞建霖,龚晓南,徐日庆(1998).基坑周围地表沉陷量的空间性状分析[J].工程力学,增刊,1998年. Pp365—357.
    [17]高大钊.土力学与基础工程[M].中国建筑工业出版社,1998,126-142.
    [18]刘建航,侯学渊.基坑工程手册[M].北京:中国建筑工业出版社,1997.
    [19]金鸣.软土地基深基坑护壁结构的侧向土压力分布研究[J].冶金建筑技术与管理. 1994年3期. Pp13—14.
    [20]蒋洪胜,刘国彬.基坑主动区土压力计算模式的分析研究[J].山东建筑工程学院学报.第13卷第2期, 1998年6月. pp16—20.
    [21]杨光华.深基坑开挖中多支撑支护结构的土压力问题[J].岩土工程学报,第20卷第6期, 1998年11月. pp113—115.
    [22]陈书申.经典土压力理论的局限与小变位土压力计算的建议[J].土工基础.第11卷第2期, 1997年6月. pp15—21.
    [23]徐日庆.考虑位移和时间的土压力计算方法[J].浙江大学学报(工学版).第34卷第4期, 2000年7月. pp370—375.
    [24]何昌荣,陈群,富海鹰(2000).两种支挡结构的实测和计算土压力[J].岩土工程学报.第22卷第1期, 2000年1月. pp55—60.
    [25]吴铭炳.软土地基深基坑支护中的土压力[J].工程勘察。1999年第2期. Pp15—17,25.
    [26]李永盛.上海傅物馆基坑围护结构的受力与变形[J].岩土工程学报, 1996年5月. Vol.18(3), pp55—61.
    [27] Clough, G. W(.1969).Comparison of three dimensional finite element [J].Proc., Symp. Appl. of Finit Element Meth. in Civ. Engrg. ASCE, New York, N.Y.
    [28] Duncan, J. M., and Chang, C. Y. (1970) Nonlinear analysis of stress and strain in soil[J]. Soil Mech. And Found. Div., ASCE, 94, 637–639.
    [29] Mana, A. I. (1978) Finite element analysis of deep excavation behavior in soft clay. PhD dissertation, Stanford, Univ., Stanford, Calif.,71-106.
    [30] Chang-Yu Ou, Dar-Chang Chiou, and Tzong-Shiann Wu. Three-dimensional finite element analysis of deep excavation. Journal of Geotechnical Engineering, May, 1996: 337-345
    [31]曾国熙,潘秋元,胡一峰.软粘土地基基坑开挖性状的研究[J].岩土工程学报, 1988年5月,Vol.10(3):13—21.
    [32]李永盛,胡志明(1995).深幅地下连续墙基坑围护结构的变形与受力.建筑施工,1995年第3期. PP19—23.
    [33]谭跃虎,吉同筠(1995).软土深挖基坑中挡墙侧向变形分析与计算.岩土工程学报, 1995年7月. Vol.17(4), pp71—76.
    [34]徐建新,陈环(1996).计算深基坑支护结构位移的实用方法.特种结构.1996年第13卷第4期. Pp14—17.
    [35]宋二祥,方东平,张新华(1997).软土地基深基坑支护变形分析.隧道及地下工程, 1997年9月. Vol.18(3), pp24—29.
    [36]俞建霖,龚晓南(1999).深基坑工程的空间性状分析.岩土工程学报,第21卷,第1期(1999年1月)pp21—25.
    [37]毛鹏飞,魏磊,黄宏伟(2000).深基坑开挖中地下连续墙侧向位移计算的变分解法.岩土工程技术, 2000年第2期,pp63—66.
    [38]张永进(2000).考虑土体性质影响的基坑地面沉降变形计算.建筑结构,第30卷第11期(2000年11月). Pp32—33.
    [39]高文华,杨林德,沈蒲生(2000).香港广场深基坑围护结构变形的时空效应分析.湖南大学学报(自然科学版).第27卷第1期2000年2月. Pp86—89.
    [40] Michael Long(2001).“Database for retaining wall and ground movement due to deep excavations”. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 127, No. 3, March, 2001, 201—224.
    [41]江苏省交通规划设计研究院.镇江扬州长江公路大桥南汊悬索桥北锚碇(补充地质勘察总报告)[R]. 2000年10月.
    [42]铁道部大桥局勘测设计院.润扬长江公路大桥北锚地质钻探工程地质报告[R]. 2001年3月.
    [43]上海同济规划建筑设计研究总院.润扬长江公路大桥南汊北锚碇基础工程施工图设计文件[R]. 2001年3月.
    [44]中港二航润扬大桥项目部.润扬长江公路大桥北锚基础基坑开挖、支撑体系施工方案[R]. 2001年8月.
    [45]上海岩土工程勘察设计研究院,中港第二航务工程局润扬大桥项目部.润扬长江公路大桥南汊悬索桥北锚碇基础工程围护结构监测方案[R]. 2001年3月.
    [46]上海岩土工程勘察设计研究院.润扬长江公路大桥南汊悬索桥北锚碇基础工程围护结构监测施工方案(优化说明)[R]. 2001年6月.
    [47]中国建筑科学研究院.中华人民共和国行业标准《建筑基坑支护技术规程》(GJG 120-99)[M].北京:中国建筑工业出版社,1999.
    [48] Rizzo, P.C., R.D. Ellison, and R.G. Shafer (1968).“Prestressed tie-back wall for two deep excavation in Buffalo, New York,”Paper presented before the ASCE,Pittsburgh, Sept. 30,1968.
    [49]上海岩土工程勘察设计研究院有限公司.武汉阳逻长江公路大桥悬索桥南锚碇基础工程围护结构监测总结报告[R]. 2005年5月.
    [50]董新平,郭庆海,周顺华.圆型基坑的变形特点及主要影响因素分析[J].地下空间与工程学报, Vol.1(2),2005年4月:196-199.
    [51]丁文胜,徐利国,陆蓉.长条形深基坑开挖中地下连续墙的变形特性[J].华东船舶工业学院学报, Vol.12(3),1998年9月:95-99.
    [52]张静,佘才高.南京地铁1号线基坑围护结构综述[J].都市快轨交通,Vol.18(4),2005年8月,PP40-48.
    [53]杨敏,熊巨华.建筑基坑支撑结构体系水平刚度系数计算[J].岩土工程技术,1999年第1期.PP13—16.
    [54]唐业清,李启民,崔江余.基坑工程事故分析与处理[M].中国建筑工业出版社,1999.:171—172.
    [55]刘润,闰玥,闰澍旺.支撑位置对基坑整体稳定性的影响[J].岩石力学与工程学报,Vol.25(1),2006年1月.
    [56]赵永伦,徐昀,刘国彬.合理开挖施工控制基坑变形的工程应用[J].地下工程与隧道,1999年第3期,pp31-35.
    [57]刘国彬,黄院雄,侯学渊.利用土体自身潜力来限制基坑变形的工程实例.青岛建筑工程学院学报, Vol.21,No.1, 2000.
    [58]李佳川,Wong Kai Sin.灌桨对地下连续墙及邻近土体变形的影响.同济大学学报,Vol.28 No.3, 2000年6月.PP291~296.
    [59]吴杏弟.上海香港新世界大厦基坑工程中的地基加固与土方开挖[J].建筑施工,2000年第1期第22卷PP1—4.
    [60]彭社琴,赵其华.超深基坑土压力监测成果分析[J].岩土力学,Vol.27(4),2006年4月
    [61]高大钊.软土深基坑支护中的若干土力学问题.岩土力学,第16卷第3期,1995年9月
    [62]陈书申.经典土压力理论的局限与小变位土压力计算的建议.土工基础,第11卷第2期,1997年6月
    [63]彭社琴,赵其华.深基坑坑壁土压力模式与支护结构安全分析[J].成都理工大学学报(自然科学版),Vol.32(5),2005年10月
    [64]姜同川.正交试验设计[M].山东科学技术出版社, 1985.
    [65]刘波,韩彦辉(美国). FLAC原理、实例与应用指南[M].人民交通出版社,2005.
    [66]周波.基坑工程变形及结构与土相互作用研究[D].成都:成都理工大学环境与土木工程学院,2006.