用户名: 密码: 验证码:
MnSOD基因转染对拟老化大鼠内耳的干预性保护
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分病毒与非病毒载体转导大鼠耳蜗组织细胞的研究
     目的通过病毒与非病毒载体对胎鼠耳边缘细胞和耳蜗组织转染情况的研究,选择出合适的内耳基因治疗载体。
     方法分别用质粒(pEGFP-N1)、腺病毒(rAd5-EGFP)以及腺相关病毒(rAAV2- EGFP)载体转导原代培养的新生Wistar大鼠(≤72小时)耳边缘细胞或经圆窗膜将病毒液注入鼓阶外淋巴液,通过激光共聚焦显微镜、流式细胞仪、CCK-8、免疫组化(SP法)、免疫组化(ApopTag过氧化物酶凋亡检测)、Westernblot及ABR检测方法对三种载体加以比较。
     结果三种载体对原代培养的大鼠耳边缘细胞的转染研究发现,腺病毒的转染效率最高,而腺相关病毒转染对细胞活性影响最小。rAAV2和rAd5对大鼠耳蜗组织的感染实验发现,腺病毒和腺相关病毒携带的增强型绿色荧光蛋白可在多种耳蜗组织中及转染对侧耳蜗组织表达,且并不引起明显的耳蜗组织细胞凋亡。rAAV2携带的EGFP基因在第90天时仍可检测到大量表达。rAd5携带的EGFP基因在第30天时表达明显减弱。
     结论病毒载体相对于非病毒载体以其高的转导效率、低细胞毒性在对原代培养的胎鼠耳边缘细胞的转导中表现出明显优势。在病毒载体对大鼠耳蜗组织感染研究方面,腺病毒载体的优势在于其携带的基因表达迅速而高效,而腺相关病毒载体则以其长表达时程,低组织毒性见长。
     第二部分重组病毒rAAV2-IRES-EGFP/MnSOD的构建及其表达
     目的构建含有大鼠源性锰超氧化物歧化酶(Manganese superoxide dismutase, MnSOD)基因的重组病毒rAAV2-IRES-EGFP/MnSOD,并检测其在大鼠耳血管纹边缘细胞和耳蜗组织内的表达。
     方法将大鼠心肌组织来源的SOD基因克隆入融合表达载体pEGFP-N1中,再以限制性酶切方法克隆入真核表达载体pSNAV2.0-IRES-EGFP中,最后将其包装为rAAV2- IRES-EGFP/MnSOD病毒颗粒,用激光共聚焦显微镜、流式细胞仪、PCR及Westernblot检测MnSOD基因的表达。
     结果真核表达载体pEGFP-N1/MnSOD和pSNAV2.0-IRES-EGFP/MnSOD经酶切、PCR和测序鉴定均检测到MnSOD基因的完整序列,被rAAV2-IRES-EGFP/MnSOD感染的耳边缘细胞和内耳组织中MnSOD蛋白的表达均高于空白对照耳。
     结论成功构建了大鼠源性MnSOD基因重组病毒rAAV2-IRES-EGFP/MnSOD,并使其在大鼠耳边缘细胞和大鼠耳蜗组织中成功表达,为抗氧化基因治疗内耳疾病的研究奠定了基础。
     第三部分MnSOD基因转染对拟老化大鼠内耳的干预性保护
     目的探讨锰超氧化物歧化酶(manganese superoxide dismutase, MnSOD)基因内耳注射对氨基糖甙类抗生素造成的拟老化大鼠内耳损伤的干预性保护作用。
     方法在半乳糖注射的第6周(注射氨基糖甙类抗生素之前2周)将rAAV2-IRES- EGFP/MnSOD病毒液经圆窗膜注入拟老化大鼠的耳蜗外淋巴,通过免疫组化(ApopTag过氧化物酶凋亡检测)、Westernblot及MnSOD活性检测的方法观察MnSOD基因在对抗内耳氧化应激损伤中的干预性保护作用。
     结果MnSOD基因的干预性注射,感染有效地减少了氧化应激引起的拟老化大鼠内耳细胞凋亡,有效地提升了内耳中MnSOD的活性,并在一定程度上缓解了氨基糖甙类抗生素造成的拟老化大鼠的听力损失。
     结论外源性MnSOD基因在内耳过表达能部分对抗氨基糖甙类抗生素对拟老化大鼠内耳的损伤。
PartⅠStudy of gene transfer into rat cochlea using different vectors in vivo and in vitro
     Objective Plasmids,recombinant adenoviruses (rAds), and recombinant adeno- associated viruses (rAAVs) are frequently used vectors,each with distinctive characteristics that may be advantageous in cochlear gene therapy. Although the general advantages and disadvantages of these vectors have been evaluated, the existing information is incomplete and no data are available on the delivery of transgenes to primary cultured marginal cells from the stria vascularis using nonviral and viral vectors. Methods In this study,a plasmid vector,rAd5,and rAAV2 were used to transfect rat cochlear marginal cells of stria vascularis by injection into the perilymph through the round window membrane,and the transfection efficiency, target tissue accessibility, cell/ tissue toxicity, time course of expression, and effect on hearing were evaluated in vivo and in vitro. Results We found that rAd5 had high transfection efficiency and low cytotoxicity in vitro, and rAAV2 produced the long-time stable expression and had the lowest vector-related ototoxicity in vivo. Conclusions rAd5 was more suitable for transgenic research of stria vascularis cells in vitro,while rAAV2 was a better vector for cochlear tissue transfection in vivo.
     PartⅡConstruction and expression of rAAV2-IRES-EGFP/ MnSOD in vivo and in vitro
     Objective Construct recombinant adeno-associated viral vector 2-IRES-EGFP/ MnSOD (rAAV2-IRES-EGFP/MnSOD) and make it express in primary cultured marginal cells of the stria vascularis and cochlea tissue of the rats. Methods The aimed segments were obtained from rat myocardial tissue,which were inserted into a eukaryotic expression plasmid pEGFP-N1/MnSOD or pSNAV2.0-IRES-EGFP/MnSOD, then the production of recombinant adeno-associated viral vector 2-IRES-EGFP/MnSOD (rAAV2-IRES-EGFP/ MnSOD) particles were made.The expression of interested gene was detected by co-Focus Fluorescence microscopy, fluorescence activated call sorting (FACS),PCR and Westernblot. Results Rat MnSOD cDNA of full sequence was detected in eukaryotic expression plasmid pEGFP-N1/MnSOD and pSNAV2.0-IRES-EGFP/MnSOD. MnSOD protein detected in the marginal cells and cochlea tissue after transfection was higher than the control. Conclusion Recombinant virus, rAAV2-IRES-EGFP/MnSOD have been successfully constructed and expressed in marginal cells and cochlea tissue of the rat.This research paved the way for antioxidant gene therapy of inner ear dieases.
     PartⅢProtection of cochlea from aminoglycoside ototoxicity by Manganese superoxide dismutase gene in aging rats
     Objective To determine the feasibility of manganese superoxide dismutase (MnSOD) gene therapy for protecting the inner ear against aminoglycoside- induced oxidative stress in aging rats. Methods The viral particles of recombinant adeno-associated viral vector 2-IRES-EGFP/MnSOD(rAAV2-IRES-EGFP/MnSOD) were injected into the perilymph through the round window membrane on the 6th week.To observe the feasibility of MnSOD gene therapy for protecting the cochlear function with the methods of Westernblot, ApopTag peroxidase apoptosis detection, MnSOD activity detection and effect on hearing. Results The apoptosis of cochlear tissue was partly reduced, the MnSOD activity is increased, and the hearing threshold is decreased after rAAV2-IRES-EGFP/MnSOD inner injection,compared with saline injection group. Conclusion MnSOD could play a partly role to treat oxidative damage of inner ear in aging rats.With the heredity baxkground of mtDNA 4834 bp common deletion, aminoglycoside ototoxicity can not be resist compeletly by antioxidant gene therapy.
引文
1 Chada S,Menander KB,Bocangel D,et al.Cancer targeting using tumor suppressor genes. Front Biosci.2008,13:1959-1967.
    2 Müller OJ,Katus HA,Bekeredjian R.Targeting the heart with gene therapy- optimized gene delivery methods.Cardiovasc Res.2007,73:453-462.
    3 Ryan DA,Federoff HJ.Translational considerations for CNS gene therapy. Expert Opin Biol Ther.2007,7:305-318.
    4 Lalwani AK,Walsh BJ,Reilly PG,et al.Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig. Gene Ther.1996,3:588-592.
    5 Steel KP,Barkway C.Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear.Development.1989,107: 453-463.
    6 Wangemann P.Adrenergic and muscarinic control of cochlear endolymph production. Adv Otorhinolaryngol.2002,59:42-50.
    7 Rejali D,Lee VA,Abrashkin KA,et al.Cochlear implants and ex vivo BDNF gene therapy protect spiral ganglion neurons.Hear Res.2007,228:180-187.
    8 Nakaizumi T,Kawamoto K,Minoda R,et al.Adenovirus-mediated expression of brain- derived neurotrophic factor protects spiral ganglion neurons from ototoxic damage. Audiol Neurootol.2004,9:135-143.
    9 Kawamoto K,Yagi M,Stover T,et al.Hearing and hair cells are protected by adenoviral gene therapy with TGF-beta1 and GDNF.Mol Ther.2003,7:484-492.
    10 Raphael Y,Kanzaki S,Yagi M,et al.Gene-based therapy for inner ear disease. Noise Health.2001,3:37-47.
    11 Kawamoto K,Oh SH,Kanzaki S,et al.The functional and structural outcome of inner ear gene transfer via the vestibular and cochlear fluids in mice.Mol Ther.2001,4:575-585.
    12 Maeda Y,Fukushima K,Kawasaki A,et al.Cochlear expression of a dominant- negative GJB2R75W construct delivered through the round window membrane in mice.Neurosci Res.2007,58:250-254.
    13 Mondalek FG,Zhang YY,Kropp B,et al.The permeability of SPION over an artificialthree-layer membrane is enhanced by external magnetic field.J Nanobiotechnol.2006,4: 4.
    14 Han D,Yu Z,Fan E,et al.Morphology of auditory hair cells in guinea pig cochlea after transgene expression.Hear Res.2004,190:25-30.
    15 Raphael Y,Frisancho JC,Roessler BJ.Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo.Neurosci Lett.1996,207:137-141.
    16 Wenzel GI,Xia A,Funk E,et al.Helper-dependent adenovirus-mediated gene transfer into the adult mouse cochlea.Otol Neurotol.2007,28:1100-1108.
    17 Praetorius M,Baker K,Weich CM,et al.Hearing preservation after inner ear gene therapy: the effect of vector and surgical approach.ORL J Otorhinolaryngol Relat Spec.2003,65: 211-214.
    18 Lalwani AK,Walsh BJ,Reilly PG,et al.Long-term in vivo cochlear transgene expression mediated by recombinant adeno-associated virus.Gene Ther.1998, 5:277-281.
    19 Salt AN,Ma YL.Quantification of solute entry into cochlear perilymph through the round window membrane.Hear Res.2001,154:88-97.
    20 Lechardeur D,Lukacs GL.Intracellular barriers to non-viral gene transfer. Curr Gene Ther.2002,2:183-194.
    21 Yamasoba T,Yagi M,Roessler BJ,et al.Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac.Hum Gene Ther.1999, 10:769-774.
    22 Liu Y,Okada T,Nomoto T,et al.Promoter effects of adeno-associated viral vector for transgene expression in the cochlea in vivo.Exp Mol Med.2007,39: 170-175.
    23 Bedrosian JC,Gratton MA,Brigande JV,et al.In vivo delivery of recombinant viruses to the fetal murine cochlea;transduction characteristics and long-term effects on auditory function.Mol Ther.2006,14:328-335.
    24 Stone IM,Lurie DI,Kelley MW,et al.Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea.Mol Ther.2005, 11:843-848.
    25 Lalwani AK,Han JJ,Castelein CM,et al.In vitro and in vivo assessment of the ability of adeno-associated virus-brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult.Laryngoscope. 2002,112:1325-1334.
    26 Staecker H,Liu W,Malgrange B.Vector-mediated delivery of bcl-2 prevents degeneration of auditory hair cells and neurons after injury.ORL J Otorhinolaryngol Relat Spec.2007,69:43-50.
    27 Yazawa Y,Suzuki M,Hanamitsu M.Detection of viral DNA in the endolymphatic sac in Ménière's disease by in situ hybridization.ORL J Otorhinolaryngol Relat Spec.2003, 65: 162-168.
    28 Han JJ,Mhatre AN,Wareing M,et al.Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector.Hum Gene Ther.1999,10:1867- 1873.
    29 Raphael Y,Yagi M.Gene transfer and the inner ear.Curr Opin Otolaryngol Head Neck Surg.1998,6:311-315.
    30 Thayer RE,Wittock R,Parr R,et al.A maternal line study investigating the 4977-bp mitochondrial DNA deletion.Exp Gerontol.2003,38:567-571.
    31 Bai U,Seidman MD.A specific mitochondrial DNA deletion(mtDNA4977) is identified in a pedigree of a family with hearing loss.Hear Res.2001,154: 73-80.
    32韩维举,韩东一,姜泗长,等.人听觉器官线粒体DNA4977缺失与老年性聋的关系.中华耳鼻咽喉科杂志.2000,35:416-419.
    33 Seidman MD,Khan MJ,Bai U,et al.Biologic activity of mitochondrial metabolites on aging and age-related hearing loss.Am J Otol.2000,21:161-167.
    34孔维佳,韩月臣,王莹,等.维生素E、辅酶Q10对大鼠内耳组织线粒体DNA 4834 bp缺失突变的预防作用.中华耳鼻咽喉科杂志.2004,39:707-711.
    35 Kong WJ,Hu YJ,Wang Q,et al.The effect of the mtDNA4834 deletion on hearing. Biochem Biophys Res Commun,2006,344:425-430.
    36 O'Brien KM,Dirmeier R,Engle M,et al.Mitochondrial Protein Oxidation in Yeast Mutants Lacking Manganese- (MnSOD) or Copper- and Zinc-containing Superoxide Dismutase (Cu/Zn-SOD).Biol Chem.2004,279:51817-51827.
    37 Culotta VC,Yang M,O'Halloran TV.Activation of superoxide dismutases: Putting the metal to the pedal.Biochim Biophys Acta.2006,1763:747-758.
    38 Indo HP,Davidson M,Yen HC,et al.Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion.2007,7:106-118.
    39 Priuska EM,Schacht J.Formation of free radicals by gentamicin and iron and evidence for an iron/ gentamicin complex.Biochem Pharmacol.1995,50:1749-1752.
    1. Steel KP,Barkway C.Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear.Development. 1989,107:453-463.
    2. Wangemann P.K+ cycling and the endocochlear potential.Hear Res.2002,7:199- 205.
    3. Nie L,Gratton MA, Mu KJ,et al.Expression and functional phenotype of mouse ERG K+ channels in the inner ear: potential role in K+ regulation in the inner ear.J Neurosci.2005,25:8671-8679.
    4. Wangemann P.Adrenergic and muscarinic control of cochlear endolymph production. Adv Otorhinolaryngol.2002,59:42-50.
    5. Lalwani AK,Walsh BJ,Reilly PG,et al.Development of in vivo gene therapy for hearing disorders: introduction of adeno-associated virus into the cochlea of the guinea pig.Gene Ther.1996,3:588-592.
    6. Kawamoto K,Sha SH,Minoda R,et al.Antioxidant Gene Therapy Can Protect Hearing and Hair Cells from Ototoxicity.Molecular Therapy.2004,9:173-181.
    7.孔维佳,陈敏,李隽.大鼠血管纹边缘细胞的原代培养及IsK的表达.中国听力语言康复科学杂志,2004,3:9-12.
    8. Chada S,Menander KB,Bocangel D,et al.Cancer targeting using tumor suppressor genes. Front Biosci.2008,13:1959-1967.
    9. Müller OJ,Katus HA,Bekeredjian R.Targeting the heart with gene therapy- optimized gene delivery methods.Cardiovasc Res.2007,73:453-462.
    10. Ryan DA,Federoff HJ.Translational considerations for CNS gene therapy. Expert Opin Biol Ther.2007,7:305-318.
    11. Steel KP,Barkway C.Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear.Development. 1989,107:453-463.
    12. Wangemann P.Adrenergic and muscarinic control of cochlear endolymph production.Adv Otorhinolaryngol.2002,59:42-50.
    13. Lechardeur D,Lukacs GL.Intracellular barriers to non-viral gene transfer. Curr Gene Ther.2002,2:183-194.
    14. Douglas JT.Adenoviral vectors for gene therapy.Mol Biotechnol.2007,36:71- 80.
    15. Vivian WC,Douglas MM,Jude RS.AAV Hybrid Serotypes Improved Vectors for Gene Delivery.Curr Gene Ther.2005,5:299-310.
    16. Lu Y.Recombinant adeno-associated virus as delivery vector for gene therapy. Stem Cells Dev.2004,13:133-145.
    17. Gao G,Vandenberghe LH,Wilson JM.New recombinant serotypes of AAV vectors. Curr Gene Ther.2005,5:285-297.
    18. Chu D,Sullivan CC,Weitzman MD,et al.Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors.J Thorac Cardiovasc Surg.2003,126:671-679.
    19. Bayo-Puxan N,Cascallo M,Gros A,et al.Role of the putative heparan sulfate glycosaminoglycan- binding site of the adenovirus type 5 fiber shaft on liver detargeting and knob-mediated retargeting.J Gen Virol.2006,87:2487-2495.
    20. Mizuguchi H,Koizumi N,Hosono T,et al.CAR- or alphav integrin-binding ablated adenovirus vectors,but not fiber-modified vectors containing RGD peptide,do not change the systemic gene transfer properties in mice.Gene Ther.2002,9:769-776.
    21. Shi W,Arnold GS,Bartlett JS.Insertional mutagenesis of the adeno- associated virus type 2 (AAV2) capsid gene and generation of AAV2 vectors targeted to alternative cell-surface receptors.Hum Gene Ther.2001,12:1697-1711.
    22. Pei Wu,Wu Xiao,Thomas Conlon,et al.Mutational Analysis of the Adeno- Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism.J Virol.2000,74:8635-8647.
    23. Taniyama Y,Morishita R.Development of plasmid DNA-based gene transfer. Yakugaku Zasshi.2006,26:1039-1045.
    24.黄倩,李川源.病毒与非病毒介导的绿色荧光蛋白基因转导的比较研究.中华病理学杂志.2000,29:143-145.
    1.孔维佳,陈敏,李隽.大鼠血管纹边缘细胞的原代培养及IsK的表达.中国听力语言康复科学杂志.2004,2:9-12.
    2.方耀云,姜泗长,李玉,等.老年人螺旋神经节形态变化及定量研究.中华老年医学杂志.1998,17:297-299.
    3.韩维举,韩东一,姜泗长,等.人听觉器官线粒体DNA4977缺失与老年性聋的关系.中华耳鼻咽喉科杂志.2000,35:416-419.
    4. Seidman MD,Khan MJ,Bai U,et al.Biologic activity of mitochondrial metabolites on aging and age-related hearing loss.Am J Otol,2000.21:161-167.
    5. Choi VW,Mccarty DM,Samulski RJ,et al.AAV Hybrid Serotypes:Improved Vectors for Gene Delivery.Curr Gene Ther.2005,5:299-310.
    6. O'Brien KM,Dirmeier R,Engle M,et al.Mitochondrial Protein Oxidation in Yeast Mutants Lacking Manganese- (MnSOD) or Copper- and Zinc-containing Superoxide Dismutase (CuZnSOD).Biol Chem.2004,279:51817-51827.
    7. Culotta VC,Yang M and O'Halloran TV.Activation of superoxide dismutases: Putting the metal to the pedal.Biochim Biophys Acta.2006,1763:747-758.
    8. Kawamoto K,Sha SH,Minoda R,et al.Antioxidant Gene Therapy Can Protect Hearing and Hair Cells from Ototoxicity.Molecular Therapy.2004,9:173-181.
    9. XIE D,LIU G,ZHU G,et al.(-)-Epigallocatechin-3-gallate protects cultured spiral ganglion cells from H2O2-induced oxidizing damage.Acta Otol.2004,124: 464-470.
    10. Indo HP,Davidson M,Yen HC,et al.Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion.2007,7:106-118.
    11. Wu P,Xiao W,Conlon T,et al.Mutational Analysis of the Adeno-Associated Virus Type 2 (AAV2) Capsid Gene and Construction of AAV2 Vectors with Altered Tropism.J Virol.2000,74:8635-8647.
    12. Kho ST,Pettis RM,Mhatre AN,et al.Safety of adeno-associated virus as cochlear gene transfer vector:analysis of distant spread beyond injected cochleae.Mol Ther.2000,2: 368-373.
    1. Thayer RE,Wittock R,Parr R,et al.A maternal line study investigating the 4977-bp mitochondrial DNA deletion.Exp Gerontol.2003,38:567-571.
    2. Bai U,Seidman MD.A specific mitochondrial DNA deletion (mt DNA4977) is identified in a pedigree of a family with hearing loss.Hear Res.2001,154: 73-80.
    3.韩维举,韩东一,姜泗长,等.人听觉器官线粒体DNA4977缺失与老年性聋的关系.中华耳鼻咽喉科杂志.2000,35:416-419.
    4. Seidman MD,Khan MJ,Bai U,et al.Biologic activity of mitochondrial metabolites on aging and age-related hearing loss.Am J Otol.2000,21:161-167.
    5.孔维佳,韩月臣,王莹,等.维生素E、辅酶Q10对大鼠内耳组织线粒体DNA 4834 bp缺失突变的预防作用.中华耳鼻咽喉科杂志.2004,39(12):707-711.
    6. Kong WJ,Hu YJ,Wang Q,et al.The effect of the mtDNA4834 deletion on hearing. Biochem Biophys Res Commun.2006,344:425-430.
    7. Wu WJ,Sha SH,Schacht J.Recent advances in understanding aminoglycoside ototoxicity and its prevention.Audiol Neurootol.2002,7:171-174.
    8. Takumida M,Anniko M.Brain-derived neurotrophic factor and nitric oxide synthase inhibitor protect the vestibular organ against gentamicin ototoxicity.Acta Otolaryngol. 2002,122:10-15.
    9. Kawamoto K,Sha SH,Minoda R,et al.Antioxidant gene therapy can protect hearing and hair cells from ototoxicity.Mol Ther.2004,9:173-181.
    10. Lechardeur D,Lukacs GL.Intracellular barriers to non-viral gene transfer. Curr Gene Ther.2002,2:183-194.
    11. Lu Y.Recombinant adeno-associated virus as delivery vector for gene therapy. Stem Cells Dev.2004,13:133-145.
    12. Vivian WC,Douglas MM,Jude RS.AAV Hybrid Serotypes Improved Vectors for Gene Delivery.Curr Gene Ther.2005,5:299-310.
    13. Choi VW,Mccarty DM,Samulski RJ,et al.AAV Hybrid Serotypes:Improved Vectors for Gene Delivery.Curr Gene Ther.2005,5:299-310.
    14. Gao G,Vandenberghe LH,Wilson JM.New recombinant serotypes of AAV vectors. Curr Gene Ther.2005,5:285-297.
    15. O'Brien KM,Dirmeier R,Engle M,et al.Mitochondrial Protein Oxidation in Yeast Mutants Lacking Manganese- (MnSOD) or Copper- and Zinc-containing Superoxide Dismutase (Cu/Zn-SOD).Biol Chem.2004,279:51817-51827.
    16. Culotta VC,Yang M,O'Halloran TV.Activation of superoxide dismutases: Putting the metal to the pedal.Biochim Biophys Acta.2006,1763:747-758.
    17. Indo HP,Davidson M,Yen HC,et al.Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion.2007,7:106-118.
    18. Xie D,Liu G,Zhu G,et al.(-)-Epigallocatechin-3-gallate protects cultured spiral ganglion cells from H2O2-induced oxidizing damage.Acta Otol.2004, 124:464-470.
    19. Janicke RU,Ng P,Sprengart ML,et al.Caspase-3 is required for fodrin cleavage but dispensable for cleavage of other death substrates in apoptosis.J Biol Chem.1998,273: 15540-15555.
    20. Honarpour N,Du C,Richardson JA,et al.Adult Apaf-1-deficient mice exhibit male infertility.Dev Biol.2000,218:248-258.
    21. Thornberry NA,Lazebnik Y.Caspases:enemies within.Science.1998,281:1312- 1316.
    22. Vegran F,Boidot R,Oudin C,et al.Overexpression of Caspase-3s Splice Variant in Locally Advanced Breast Carcinoma Is Associated with Poor Response to Neoadjuvant Chemotherapy.Clinical Cancer Research.2006,12:5794-5800.
    23. Kho ST,Pettis RM,Mhatre AN,et al.Safety of adeno-associated virus as cochlear gene transfer vector:analysis of distant spread beyond injected cochleae.Mol Ther.2000, 2:368-373.
    1高明,国力,敖越,等.脂质体载体的应用研究进展.沈阳农业大学学报.2002,33:315-318.
    2 Vivian WC,Douglas MM,Jude RS.AAV Hybrid Serotypes Improved Vectors for Gene Delivery.Curr Gene Ther.2005,5:299-310.
    3 Gao G,Vandenberghe LH,Wilson JM.New recombinant serotypes of AAV vectors. Curr Gene Ther.2005,5:285-297.
    4 Costantini LC,Bakowska J,Breake X,et al.Gene therapy in theCNS.Gene Ther. 2000,7: 93-109.
    5 Burns JC,Friedmann T,DrieverW,et al.Vesicular stomatitis virusG glycop rotein pseudotyped retroviral vectors: concentration to very high titer and effcient gene transfer into mammalian and nonmammalian cells.PNAS USA.1993, 90:8033-8037.
    6 Zhu Y,Feuer G,Day SL,et al.Multigene lentivirus vectors based on differe- ntial splicing and translational control.Mol Ther.2001,4:375-382.
    7 Iwakuma T,Cui Y,Chang L.Self-inactivating lentiviral vectors with U3 and U5 modications.Virology.1999,261:120-132.
    8 Cui Y,Iwakuma T,Chang LJ.Contributions of viral splice sites and cis- regulatory elements to lentivirus vector function.J Virol.1999,73:6171-6176.
    9 Wareing M,Mhatre AN,Pettis R,et al.Cationic liposome mediated transgene expression in the guinea pig cochlea.Hear Res.1999,128:61-69.
    10邓志宏,王锦玲,邱建华,等.神经营养因子-3基因转染对庆大霉素性耳聋保护作用的实验研究.临床耳鼻咽喉科杂志.2004,18:231-233.
    11 Raphael Y,Frisancho JC,Roessler BJ. Adenoviral-mediated gene transfer into guinea pig cochlear cells in vivo.Neurosci Lett.1996,207:137-141.
    12 Yagi M,Magal E,Sheng Z,et al.Hair cell protection from aminoglycoside ototoxicity by adenovirus-mediated overexpression of glial cell line-derived neurotrophic factor.Hum Gene Ther.1999,10:813-823.
    13 Stover T,Yagi M,Raphael Y.Transduction of the contralateral ear after adenovirus- mediated cochlear gene transfer.Gene Ther.2000,7:377-383.
    14 Perez MJ,Cederbaum AI.Adenovirus-mediated expression of Cu/Zn- or Mn- superoxide dismutase protects against CYP2E1-dependent toxicity.Hepatology.2003,38:1146-1158.
    15 Holt JR.Viral mediated gene transfer to study the molecular physiology of the Mammalian inner ear.Audiol Neurootol.2002,7:157-160.
    16 Luebke AE,Foster PK,Muller CD,et al.Cochlear function and transgene expression in the guinea pig cochlea,using adenovirus and adeno-associated virus directed gene transfer.Hum Gene Ther.2001,12:773-781.
    17 Liu Y,Okada T,Sheykholeslami K,et al.Specific and efficient transduction of Cochlear inner hair cells with recombinant adeno- associated virus type 3 vector.Mol Ther.2005, 12:725-733.
    18 Stone IM,Lurie DI,Kelley MW,et al.Adeno-associated virus-mediated gene transfer to hair cells and support cells of the murine cochlea.Mol Ther.2005,11: 843-848.
    19 Kho ST,Pettis RM,Mhatre AN,et al.Safety of adeno-associated virus as cochlear gene transfer vector:analysis of distant spread beyond injected cochleae.Mol Ther.2000,2: 368-373.
    20 Bedrosian JC,Gratton MA,Brigande JV,et al.In vivo delivery of recombinant viruses to the fetal murine cochlea:transduction characteristics and long- term effects on auditory function.Mol Ther.2006,14:328-335.
    21 Li Duan M,Bordet T,Mezzina M,et al.Adenoviral and adeno-associated viral vector mediated gene transfer in the guinea pig cochlea.Neuroreport.2002,13:1295-1299.
    22 Kaspar BK,Roth DM,Lai NC,et al.Myocardial gene transfer and long-term expression following intracoronary delivery of adeno-associated virus.J Gene Med.2005,7:316-324.
    23 Chan DK,Lieberman DM,Musatov S,et al.Protection Against Cisplatin Induced Ototoxicity by Adeno-Associated Virus- Mediated Delivery of the X-Linked Inhibitor of Apoptosis Protein Is Not Dependent on Caspase Inhibition.Otol Neurotol.2007,28: 417-425.
    24 Lalwani AK,Walsh BJ,Reilly PG,et al.Development of in vivo gene therapy for hearing disorders:introduction of adeno-associated virus into the cochlea of the guinea pig.Gene Ther.1996,3:588-592.
    25 Lalwani AK,Han JJ,Castelein CM,et al.In vitro and in vivo assessment of the ability of adeno-associated virus-brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult.Laryngoscope. 2002,112:1325-1234.
    26 Han JJ,Mhatre AN,Wareing M,et al.Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector.Hum Gene Ther. 1999,10:1867-1873.
    27 Sun Bing,Hui GZ,Guo LH,et al.Dopaminergic Trophism after Intrastriatal Injection of Lentivirus-transferred GDNF in Parkinson Rat Model.Acta Biochimica et Biophysica Sinica.2003,35:937-940.
    28 Chu D,Sullivan CC,Weitzman MD,et al.Direct comparison of efficiency and stability of gene transfer into the mammalian heart using adeno-associated virus versus adenovirus vectors.J Thorac Cardiovasc Surg.2003,126:671-679.
    29 Vassalli G,Bueler H,Dudler J,et al.Adeno-associated virus (AAV) vectors achieve prolonged transgene expression in mouse myocardium and arteries in vivo:a comparative study with adenovirus vectors.Int J Cardiol.2003,90:229- 238.
    30袁莉,付博,陈香美,等.三种基因转导方法在不同代龄复制性衰老细胞中的比较研究.中国生物化学与分子生物学报.2004,20:257-263.
    31黄倩,李川源.病毒与非病毒介导的绿色荧光蛋白基因转导的比较研究.中华病理学杂志.2000,29:143-145.
    1. Sha SH,Zajic G,Epstein CJ,et al.Overexpression of copper/zinc-superoxide dismutase protects from kanamycin-induced hearing loss.Audiol Neurootol. 2001,6:117-123.
    2. Kawamoto K,Sha S H,Minoda R,et al.Antioxidant Gene Therapy Can Protect Hearing and Hair Cells from Ototoxicity.Molecular Therapy.2004,9:173-181.
    3. McFadden SL,Ding D,Salvemini D,et al.M40403,a superoxide dismutase mimetic, protects cochlear hair cells from gentamicin,but not cisplatin toxicity.Toxicol Appl Pharmacol.2003,186:46-54.
    4. Nagy I,Bodmer M,Brors D,et al.Early gene expression in the organ of Corti exposed to gentamicin.Hear Res.2004,195:1-8.
    5. Takumida M,Anniko M.Brain-derived neurotrophic factor and nitric oxide synthase inhibitor protect the vestibular organ against gentamicin ototoxicity.Acta Otolaryngol. 2002,122:10-15.
    6. Ohinata Y,Miller JM,Schacht J.Protection from noise-induced lipid peroxidation and hair cell loss in the cochlea.Brain Res.2003,966:265-273.
    7. El-Benna J,Dang PM,Gougerot-Pocidalo MA,et al.Phagocyte NADPH oxidase:a multicomponent enzyme essential for host deafenses.Arch Immunol Ther Exp.2005,53: 199-206.
    8. Gillibert M,Dehry Z,Terrier M,et al.Another biological effect of tosylphenylalany- lchloromethane (TPCK):it prevents p47phox phosphorylation and translocation upon neutrophil stimulation.Biochem J.2005,386:549-556.
    9.陶泽璋,肖伯奎,刘剑锋,等.卡那霉素耳中毒后豚鼠耳蜗热休克蛋白的表达.听力学及言语疾病杂志.2000,2:74-76.
    10. Takumida M,Anniko M.Heat shock protein 70 delays gentamicin-induced vestibular hair cell death.Acta Otolaryngol.2005,125:23-28.
    11. Sha,SH,Taylor R,Forge A,et al.Differential vulnerability of basal and apical hair cells is based on intrinsic susceptibility to free radicals.Hear Res.2001,155:1-8.
    12.于爱民,赵纪余,王家东,等.还原型谷胱甘肽拮抗庆大霉素耳毒性作用观察.中国耳科学杂志.2005,3:132-135.
    13. Takumida M,Popa R,Anniko M.Free radicals in the guinea pig inner ear following gentamicin exposure.ORL J Otorhinolaryngol Relat Spec.1999,61:63-70.
    14. Himeno C,Komeda M,Izumikawa M,et al.Intra-cochlear administration of dexamethasone attenuates aminoglycoside ototoxicity in the guinea pig.Hear Res.2002, 167:61-70.
    15. Park SK,Choi D,Russell P,et al.Protective effect of corticosteroid against the cytotoxicity of aminoglycoside otic drops on isolated cochlear outer hair cells. Laryngoscope.2004,114:768-771.
    16. Jung HW,Chang SO,Kim CS,et al.Effects of Ginkgo biloba extract on the cochlear damage induced by local gentamicin installation in guinea pigs.J Korean Med Sci.1998, 13:525-528.
    17. Long M,Smouha EE,Qiu D,et al.Flavanoid of Drynaria fortunei protects against gentamicin ototoxicity. Phytother Res.2004,18:609-614.
    18. Yang XM,Xie DH,MM Henson,et al.Attenuation of gentamicin-induced ototoxicity with salvia miltiorrhiza.Chinese Journal of Otorhinolaryngology-Skull Base Surgery. 2004,10:96-100.
    19. Wang AM,Sha SH,Lesniak W,et al.Tanshinone (Salviae mitiorrhizae extract) preparations attenuate aminoglycoside-induced free radical formation in vitro and ototoxicity in vivo.Antimicrob Agents Chemother.2003,47:1836-1841.
    20. Priuska EM,Schacht J.Formation of free radicals by gentamicin and iron and evidence for an iron/gentamicin complex.Biochem Pharmacol.1995,50:1749-1752.
    21. Sha SH,Schacht J.Stimulation of free radical formation by aminoglycoside antibiotics. Hear Res.1999,128:112-118.
    22. Dehne N,Rauen U,de Groot H,et al.Involvement of the mitochondrial permeability transition in gentamicin ototoxicity.Hear Res.2002,169:47-55.
    23. Sha SH,Schacht J.Salicylate attenuates gentamicin-induced ototoxicity.Lab Invest.1999,79:807-813.
    24. Fetoni AR,Sergi B,Scarano E,et al.Protective effects of alphatocopherol against gentamicin-induced otovestibule otoxicity:an experimental study. Acta Otolaryngol. 2003,123:192-197.
    25. Sha SH,Schacht J.Antioxidants attenuate gentamicin-induced free radical formation in vitro and ototoxicity in vivo:D-methionine is a potential protectant.Hear Res.2000,142: 34-40.
    26. Ylikoski J,Xing-Qun L,Virkkala J,et al.Blockade of c-Jun N-terminal kinase pathway attenuates gentamicin-induced cochlear and vestibular hair celldeath. Hear Res.2002, 166:33-43.
    27. Bodmer D,Brors D,Pak K,et al.Rescue of auditory hair cells from aminoglycoside toxicity by Clostridium difficile toxin B,an inhibitor of the small GTPases Rho/Rac/ Cdc42.Hear Res.2002,172:81-86.
    28. Wang J,Van De Water TR,Bonny C,et al.A peptide inhibitor of c-Jun N-terminal kinase protects against both aminoglycoside and acoustic trauma-induced auditory hair cell death and hearing loss.J Neurosci.2003,23:8596-8607.
    29. Battaglia A,Pak K,Brors D,et al.Involvement of ras activation in toxic hair cell damage of the mammalian cochlea.Neuroscience.2003,122:1025-1035.
    30. Corbacella E,Lanzoni I,Ding D,et al.Minocycline attenuates gentamicin induced hair cell loss in neonatal cochlear cultures.Hear Res.2004,197:11-18.
    31. Wei X,Zhao L,Liu J,et al.Minocycline prevents gentamicin-induced ototoxicity by inhibiting p38 MAP kinase phosphorylation and caspase 3 activation.Neuroscience. 2005,131:513-521.
    32. Jiang H,Sha SH,Schacht J.NF-kappa B pathway protects cochlear hair cells from aminoglycoside-induced ototoxicity.J Neurosci Res.2005,79:644-651.
    33. Kawamoto K,Yagi M,Stover T,et al.Hearing and hair cells are protected by adenoviral gene therapy with TGF-beta1 and GDNF.Mol Ther.2003,7:484-492.
    34. Low W,Dazert S,Baird A,et al.Basic fibroblast growth factor(FGF-2)protects ratcochlear hair cells in organotypical culture from aminoglycoside injury.J Cell Physiol. 1996,167:443-450.
    35. Ding D,McFadden SL,Browne RW,et al.Late dosing with ethacrynic acid can reduce gentamicin concentration in perilymph and protect cochlear hair cells.Hear Res.2003, 185:90-96.
    36. Xie D,Liu G,Zhu G,et al.(-)-Epigallocatechin-3-gallate protects cultured spiral ganglion cells from H2O2-induced oxidizing damage.Acta Otol.2004,124:464-470.
    37. Indo HP,Davidson M,Yen HC,et al. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage. Mitochondrion.2007,7:106-118.
    38. Wefstaedt P,Scheper V,Lenarz T,Stover T.Brain-derived neurotrophic factor/glial cell line-derived neurotrophic factor survival effects on auditory neurons are not limited by dexamethasone.Neuroreport.2005,16:2011-2014.
    39. Tan J,Shepherd RK.Aminoglycoside-induced degeneration of adult spiral ganglion neurons involves differential modulation of tyrosine kinase B and p75 neurotrophin receptor signaling.Am J Pathol.2006,169:528-543.
    40. Wissel K,Wefstaedt P,Miller JM,et al.Differential brain-derived neurotro- phic factor and transforming growth factor-beta expression in the rat cochlea following deafness. Neuroreport.2006,17:1297-1301.
    41. Okano T,Nakagawa T,Kita T,et al.Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear.Mol Ther.2006,14:866-871.
    42. Catania S,GermanàA,Cabo R,et al.Neurotrophin and Trk neurotrophin receptors in the inner ear of Salmo salar and Salmo trutta.Journal of Anatomy. 2007,210:78-88.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700