结直肠癌转移相关分子标签的筛选及初步鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的
     转移是导致结直肠癌患者治疗失败及死亡的重要原因。临床上有一半以上的结直肠癌患者在行根治性手术前已出现了微转移,它是结直肠癌术后转移和复发的直接原因。因此,阐明结直肠癌转移的分子机制,是结直肠癌研究的重要内容。
     分子标签是以一定数量的基因作为一个整体,来判断或定义某些生物学特性。与单个的分子模式不同,分子标签以大量对单个基因的功能研究为基础,更加注重基因之间的共同协调作用,从整体和系统水平上对不同的生物学特性进行描述。基因表达谱分析是获得分子标签的重要手段。
     我们通过有限克隆稀释法建立结直肠癌单细胞源性子代细胞亚系,进一步利用整体可视化结直肠癌原位及转移动物模型,筛选出具有不同转移潜能的结直肠癌细胞亚系,应用全基因组表达谱芯片技术分析不同转移潜能的细胞亚系全基因组表达谱变化,在此基础上应用生物信息学及文献挖掘的方法,提取结直肠癌转移相关特征性分子标签,并在具有完整随访资料的临床标本中对分子标签的可靠性及临床价值进行了初步的验证。研究从整体水平上揭示了结直肠癌转移的分子特征,为结直肠癌转移早期预警、诊断以及预后判断和靶向治疗的分子体系的建立奠定了基础。
     方法
     1、按照有限克隆稀释法建立了来源于同一亲本结直肠癌细胞株的单细胞源性子代细胞亚系,通过体外功能实验及整体可视化结直肠癌原位及转移动物模型,比较不同细胞亚系的结直肠癌细胞生物功能方面的差异,获得不同转移潜能的结直肠癌细胞亚系。
     2、应用基因芯片技术分析不同转移潜能的细胞亚系全基因组表达谱变化;交集分析获得共同改变的差异基因;应用生物信息学方法分析转移相关的基因表达模式并提取转移特征性分子标签。
     3、应用生物信息学方法分析结直肠癌转移相关分子标签所含基因的生物学功能及参与的信号转导通路;结合文献轮廓挖掘确定分子标签分子与肿瘤转移的关系。
     4、应用具有完整随访资料的临床标本分析分子标签相关蛋白的表达情况,并与患者的临床特征及预后进行相关性分析,初步验证分子标签的可靠性并初步确定分子标签的临床价值。
     5、统计学方法:应用SPSS13.0统计学软件,采用方差分析、相关分析、生存分析等统计学方法。
     结果
     1、将结直肠癌SW480/EGFP细胞株采用有限克隆稀释法,在体外成功建立了59个单细胞源性子代细胞亚系(SCPs)。
     2、对59个SCPs进行了裸鼠皮下成瘤实验,共筛选出29个具有成瘤能力的SCPs;对部分SCPs与其亲本细胞株SW480/EGFP的皮下瘤生长能力进行了比较,其皮下瘤生长能力存在显著差别(F=33.446,P=0.000)。确定部分SCPs成瘤能力不同,具有不同于其亲本母系细胞的生长特性。
     3、将29个具有成瘤能力的SCPs及其亲本细胞株SW480/EGFP进行了裸鼠盲肠原位移植试验,建立结直肠癌原位移植及转移整体可视化动物模型,筛选转移能力明显差异的细胞亚系;在此基础上对3个具有高转移潜能亚系、3个具有低转移潜能亚系及母系细胞株SW480/EGFP的转移潜能进行了比较。统计学分析结果表明,其转移能力差别具有显著性(F=4.155,P=0.000)。为了进一步明确亚系之间转移潜能的差异,对其中2个具有高转移潜能及2个具有低转移潜能的细胞亚系重复进行了结直肠癌原位移植及转移整体动物试验。统计学分析结果表明:细胞亚系间转移能力差异具有显著性(F=6.172,P=0.029),并且经过SNK多重比较,转移能力最强的是SCP51,转移能力最弱的是SCP58。综合分析试验结果,最后确定SCP51为具有高转移能力的细胞亚系,SCP58为具有低转移能力的细胞亚系。
     4、应用Affymetrix公司制备的HG-U133 plus 2.0原位合成寡核苷酸芯片对具有高转移能力的细胞亚系SCP51、具有低转移能力的细胞亚系SCP58及其亲本母系SW480/EGFP细胞株进行了全基因组表达谱芯片检测,每组均进行3次的生物学重复。应用芯片显著性分析(Significance Analysis ofMicroarray,SAM)软件并结合交集分析,筛选出结直肠癌转移相关差异显著性基因143个,作为结直肠癌转移相关基因表达模式,其中包括85个上调基因及58个下调基因。系统聚类分析,143个基因成功地将三组检测样本分为三类。
     5、利用DAVID分析系统以及博奥生物有限公司生物信息学综合分析平台对结直肠癌转移相关基因表达模式所包含基因的生物学功能及参与的信号转导通路进行了初步分析,并对其进行文献挖掘,分析这些基因的生物学功能及临床价值,筛选出生物学功能可能与结直肠癌转移相关的基因29个,初步确定为结直肠癌转移相关分子标签。
     6、随机选取结直肠癌转移相关分子标签中5个与实体瘤转移密切相关、但在结直肠癌转移研究中未见报道的基因LYN、SDCBP、MAP4K4、MID1、DKK1进行初步的功能鉴定。
     7、应用Real-Time PCR检测SCP51、SCP58及其亲本母系细胞株SW480/EGFP中LYN、SDCBP、MAP4K4、MID1及DKK1基因在mRNA水平的表达情况,检测结果与芯片结果一致。应用RT-PCR检测了LYN、SDCBP、MAP4K4、MID1、DKK1在结直肠癌肿瘤组织与正常粘膜组织中mRNA的表达水平,LYN、SDCBP及MAP4K4.三个在高转移细胞株中表达上调的基因,其在肿瘤组中的表达明显高于正常粘膜组,MID1及DKK1两个在高转移细胞株中表达下调的基因,其在肿瘤组中的表达明显低于正常粘膜组。
     8、应用具有完整随访资料的临床结直肠癌标本,对LYN、SDCBP、MAP4K4、MID1以及DKK1在蛋白质水平的表达进行验证,检测这五种基因在患者肿瘤组织中的表达情况,并与患者的临床特性进行相关性分析。免疫组化结果表明:LYN、MAP4K4、MID1与患者的临床转移情况密切相关(P<0.05),LYN、SDCBP、MAP4K4、MID1与患者的临床预后密切相关(P<0.05)。
     9、将LYN、SDCBP、MAP4K4、MID1及DKK1五个基因作为一个整体标签,与患者的临床特性进行相关性分析。结果表明:作为一个整体标签,这五种基因的表达与患者临床转移及预后均显著相关(P<0.05)。研究提示,由多种基因构成的整体分子标签可作为新的结直肠癌转移与预后的分子标记物。
     结论
     1、结直肠癌细胞株SW480/EGFP具有明显的异质性。应用有限克隆稀释法建立了来源于同一亲本结直肠癌细胞株SW480/EGFP的单细胞源性子代细胞亚系(SCPs);
     2、来源于同一亲本结直肠癌细胞株的单细胞源性子代细胞亚系存在转移潜能的差异;
     3、来源于同一亲本结直肠癌细胞株不同转移潜能的细胞亚系具有不同的分子特征;
     4、LYN、SDCBP、MAP4K4、MID1及DKK1可以作为新的结直肠癌转移与预后的分子标记物。它们共同组成的整体分子标签可作为新的结直肠癌转移与预后的分子标记物。
     本研究的创新之处
     1、将结直肠癌SW480/EGFP细胞株采用有限克隆稀释法,在体外成功建立了59个单细胞源性子代细胞亚系(SCPs);筛选出29个具有成瘤能力的SCPs;获得2个具有高转移潜能及2个具有低转移潜能的细胞亚系。
     2、应用结直肠癌细胞单细胞源性子代细胞亚系的筛选策略及基因表达谱技术和生物信息学分析获得原创性、与结直肠癌转移密切相关的分子,为进一步确定结直肠癌转移相关分子标签奠定基础。
     3、应用基于临床病理研究的策略确定与结直肠癌转移密切相关分子的功能;获得有明确临床价值的结直肠癌转移相关基因。
     4、确定LYN、SDCBP、MAP4K4、MID1及DKK1可以作为新的结直肠癌转移与预后的分子标记物。它们共同组成的整体分子标签可作为新的结直肠癌转移与预后的分子标记物。
BACKGROUND & OBJECTIVE
     Metastasis is the main cause leading to deaths of patients with colorectal cancer. Micrometastasis,which is present in more than half of patients with colorectal cancer before radical surgery,resulted in distant metastasis and recurrence in colorectal cancer after radical surgery.However,there is no reliable method to detect potential micrometastases in patients with colorectal cancer.Therefore,to clarify the molecular mechanism of metastasis in colorectal cancer is the main task in the field of colorectal cancer research.
     Molecular signature is a whole number of some genes,to determine or define certain biological characteristics.Different with individual molecules,molecular signature pay more attention to the coordination of different genes,it is the overall description of different biological characteristics and it is based on function research of a large number of single gene.An important means of gaining molecular signature is through Analysis of gene expression profiles.
     In this study,59 single-cell-derived progeny(SCPs) cell subclones of colorectal cancer were established in vitro and selected in in surgical orthotopic implantation mouse model of colorectal cancer.Several SCPs subclones with different metastatic potential were obtained in our study.We identified genes associated with tumor metastasis by comparing the difference between subclones with different metastatic potential and its parent cell line using genome-wide expression profile chip of Affymetrix.Molecular signature of metastasis in colorectal cancer was extracted from metastasis associated genes based on bioinformatic methods and literature mining methods.The clinical significance of molecular signature and the comprising genes was tested in clinical samples of colorectal cancer.
     METHODS
     1、Single cell-derived progenies(SCPs) of colorectal cancer were isolated from SW480/EGFP cells.Tumor formation of SCPs was detected by monitoring the tumor growth under subcutaneous tissue of nude mice.In vitro methods and orthotopic implantation mouse model of colorectal cancer were used to screen for SCPs with different metastasis potential
     2、Gene expression profiles of SCPs with different metastasis potential and its parent SW480/EGFP were determined using Affymetrix human Genome U133 Plus 2.0 Array containing 47000 transcripts.Hybridization,washing,staining, scanning,and data collection were performed according to the standard Affymetrix protocol.Gene sets shared in two independent comparision between SCPs and its parent SW480/EGFP were selected in our next study.Molecular signature of metastasis in colorectal cancer was extracted from metastasis associated genes based on bioinformatic methods and literature mining methods.
     3、Biological functions,pathways and the possible role in tumor metastasis of genes in our molecular signature of metastasis were analyzed.
     4、Formalin-fixed and paraffin-embedded tissues of CRC were used in our clinicopathological investigation.Immunohistochemistry was performed using a Dako Envision System(Dako,Carpentaria,CA,USA) following the manufacturer's recommended protocol to study protein expression of five genes in our metastasis signature.Antibodies against LYN、SDCBP、MAP4K4、MID1、DKK1 were used in this study.The clinical significance of molecular signature and the comprising genes was tested in clinical samples of colorectal cancer.
     5、All statistical analyses were carried out using the SPSS software program (version 12.0;SPSS Inc.,Chicago,IL).The chi-square test was used to assess differences in metastases and peritoneal dissemination of SCPs and their parental SW480/EGFP.The Mann-Whitney U test was used to analyze the relationship between expression of LYN,SDCBP,MAP4K4,MID1,DKK1 and clinicopathological characteristics of the patients.Survival curves for the patients with different expressions of LYN,SDCBP,MAP4K4,MID1,DKK1 were plotted using the Kaplan-Meier method and compared using the log-rank test.The significance of various survival-related variables was assessed using the Cox proportional hazards model in a multivariate analysis.A p-value of≤0.05 will be considered statistically significant.
     RESULTS
     1、Fifty-nine single cell-derived progenies(SCPs) from SW480/EGFP was isolated and established by limited dilution method.
     2、Tumor formation under subcutaneous tissue of nude mice was found in 29 SCPs.Heterogeneous ability of tumor formation was found in different SCPs from SW480/EGFP(F=33.446,P=0.000).
     3、Surgical orthotopic implantation(SOI) nude mice model of colorectal cancer was performed to compare metastatic potentials of 29 SCPs and their parent SW480/EGFP.Different metastatic potentials were found in 29 SCPs in SOI nude mice model of colorectal cancer(F=4.155,P=0.000).Among the SCPs studied,3 SCPs with high metastatic potential isolated as SCP12、SCP21 and SCP51,3 SCPs with low metastatic potential isolated as SCP11、SCP28 and SCP58,were found in SOI nude mice model of colorectal cancer.In order to rule out the randomness of tests,two SCPs with high metastatic potential and 2 SCPs with low metastatic potential were tested repeatedly to confirm their metastatic potential in SOI nude mice model of colorectal cancer.Statistically significant differences of metastasis in different SCPs was observed(F=6.172, P=0.029).A SNK multiple comparison showed that SCP51 had the highest metastatic potential and SCP58 had the lowest metastatic potential among the above SCPs.SCP51 and SCP58 were used in our next study.
     4、Gene expression profiles of SCP51、SCP58 and its parent SW480/EGFP were detected by HG-U133 plus 2.0 oligonucleotide array of Affymetrix Inc.SAM analysis was performed to identify the most discriminating genes.One hundred and forty-three genes including 85 up-regulated genes and 58 down-regulated genes were extracted as gene expression pattern of metastasis in colorectal cancer;Hierarchical cluster analysis showed that the cell subclone and its parent cell line can be successfully classified as three categories according to gene expression level of 143 genes.
     5、Molecular signature of metastasis in colorectal cancer comprising of 29 genes was extracted using platform of Significance Analysis of Microarrays constructed by Capitalbio company.
     6、Biological significance of genes in the molecular signature of metastasis in colorectal cancer was analyzed by literature mining method.Five genes including LYN、SDCBP、MAP4K4、MID1 and DKK1 were found to be associated with tumor metastasis.However,no study about the roles of five genes was found.
     7、We found that mRNA expressions of LYN,SDCBP,MAP4K4,MID1,DKK1 in SCP51,SCP58 and SW480/EGFP cells detected by real-Time PCR were the same as the results detected by previous gene chip.We found that mRNA expression levels of LYN,SDCBP,MAP4K4 were higher in the primary colorectal tumor tissue samples than those in their normal counterparts.We also observed that mRNA expression levels of DKK1 and MID1 were lower in the primary colorectal tumor tissue samples than those in their normal counterparts.
     8、Immunohistochemistry results showed that LYN,MAP4K4 and MID1 were closely correlated with metastasis of patients(P<0.05) and LYN,SDCBP, MAP4K4,MID1 were closely associated with the prognosis of patients(P<0.05).
     9、To determine the possibility of using LYN,SDCBP,MAP4K4,MID1 and DKK1 as a molecular signature in colorectal cancer,the sum of 5 independent scores of LYN,SDCBP,MAP4K4,MID1 and DKK1 in clinical samples of colorectal cancer was used as the final score of the molecular signature in colorectal cancer.The results showed the molecular signature comprising of LYN,SDCBP,MAP4K4,MID1 and DKK1 was significantly correlated with metastasis and prognosis of patients(P<0.05) as a whole.Our results suggested that the molecular signature comprising of LYN,SDCBP,MAP4K4,MID1 and DKK1 can be potential new molecular markers of metastasis and prognosis in colorectal cancer.
     CONCLUSIONS
     1、SW480/EGFP exhibiting heterogeneity in metastatic potential is suitable for in vivo selection and SCPs selection.
     2、Different SCPs from SW480/EGFP exhibit heterogeneity in metastatic potential and tumorgenicity detected in vitro assay,in vivo tumor growth and metastasis assays.
     3、One hundred and forty-three genes including 85 up-regulated genes and 58 down-regulated genes were extracted as gene expression pattern of metastasis in colorectal cancer,Molecular signature of metastasis in colorectal cancer comprising of 29 genes was determined using bioinformatic methods and text mining.
     4、LYN,MAP4K4 and MID1 were closely correlated with metastasis of colorectal cancer and LYN,SDCBP,MAP4K4,MID1 were closely associated with the prognosis of colorectal cancer.Molecular signature comprising of LYN,SDCBP, MAP4K4,MID1 and DKK1 was significantly correlated with metastasis and prognosis of patients and can be potential new molecular markers of metastasis and prognosis in colorectal cancer.
     INNOVATIONS
     1、Fifty-nine single cell-derived progenies(SCPs) from SW480/EGFP is isolated and established.
     2、SCPs with high metastatic potential isolated as SCP12、SCP21 and SCP51,SCPs with low metastatic potential isolated as SCP11、SCP28 and SCP58,are established and confirmed in SOI nude mice model of colorectal cancer.
     3、Gene expression pattern and molecular signature of metastasis in colorectal cancer have been determined using bioinformatic methods and text mining.
     4、LYN,SDCBP,MAP4K4,MID1 are the candidates of prognostic indexes of colorectal cancer.Molecular signature comprising of LYN,SDCBP,MAP4K4, MID1 and DKK1 can be potential new molecular markers of metastasis and prognosis in colorectal cancer.
引文
[1]Sung J J,et al.Increasing incidence of colorectal cancer in Asia:implications for screening[J].Lancet Oncol.2005,6:871-876.
    [2]郑树,等.中国人结直肠癌的流行病学研究[J].The Chinese-German Journal of Clinical Oncology.2003,2-72-75.
    [3]Jemal A,et al.Cancer statistics,2002.CA Cancer J Clin.2002,52:23-47.
    [4]Tsunoda T,et al.Upregulated expression of angiogenesis genes and down regulation of cell cycle genes in human colorectal cancer tissue determined by cDNA macroarray.Anticancer Res.2001,21:137-143.
    [5]Hunter K,et al.Geneticbackground is an important determinant of metastatic potential.Nature Genet.2003,34:23-24.
    [6]Herbst,R.S.et al.Differential expression of E-cadherin and type Ⅳcollagenase genes predicts outcome in patients with stage Ⅰ non-small cell lung carcinoma.Clin.Can.Res.2000,6:790-797.
    [7]Roggli,V.L.et al.Lung cancer heterogeneity:A blinded and randomized study of 100 consecutive cases.Hum.Pathol.1985,16:569-579.
    [8]Poste,G.& Fidler,I.J.The pathogenesis of cancer metastasis.Nature.1980,283:139-146.
    [9]Bhattacharjee,A.et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.Proc.Natl.Acad.Sci.USA.2001,98:13790-13795.
    [10]Alizadeh,A.A.et al.Distinct types of diffuse large B-cell lymphoma identified by gene-expression profiling.Nature.2000,403:503-511.
    [11]Fidler,I.J.The pathogenesis of cancer metastasis:the'seed and soil'hypothesis revisited.Nat Rev Cancer.2003,3:453-458.
    [12]Kerbel R.S.,et al.A model of human cancer metastasis:extensive spontaneous and artificial metastasis of a human pigmented melanoma and derived variant sublines in nude mice.J Natl Cancer Inst.1984,72,93-108.
    [13]Handa K,et al.Expression of cell cycle markers in colorectal carcinoma:superiority of cyclin A as an indicator of poor prognosis.Int J Cancer.1999,84:225-233.
    [14]Liotta,L.A.& Kohn,E.C.Cancer's deadly signature.Nat Genet .2003,33:10-11 .
    [15]Ramaswamy,S.et al.Multiclass cancer diagnosis using tumor gene- expression signatures.Proc.Natl.Acad.Sci.USA .2001,98:15149-15154.
    [16]Kang,Y.et al.A multigenic program mediating breast cancer metastasis to bone.Cancer Cell.2003,3:537-549.
    [17]Montel,V.,et al.Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model.Am J Pathol .2005,166:1565-1579.
    [18]Clark,E.A.,et al.Genomic analysis of metastasis reveals an essential role for RhoC.Nature.2000,406:532-535.
    [19]Yang,J.et al.Twist,a master regulator of morphogenesis,plays an essential role in tumor metastasis.Cell.2004,117:927-939.
    [20]Minn,A.J.et al.Genes that mediate breast cancer metastasis to lung.Nature .2005,436:518-524.
    [21]Roggli,V.L.et al.Lung cancer heterogeneity:A blinded and randomized study of 100 consecutive cases.Hum.Pathol.1985,16:569-579.
    [22]Poste,G.& Fidler,I.J.The pathogenesis of cancer metastasis.Nature.1980,283:139-146.
    [23]Bhattacharjee,A.et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.Proc.Natl. Acad.Sci.USA.2001,98:13790-13795.
    [24]Alizadeh,A.A.et al.Distinct types of diffuse large B-cell lymphoma identified by gene-expression profiling.Nature.2000,403:503-511.
    [25]Bernards,R.& Weinberg,R.A.Metastasis genes:a progression puzzle.Nature.2002,418:823.
    [26]Fidler,I.J.The pathogenesis of cancer metastasis:the 'seed and soil' hypothesis revisited.Nat Rev Cancer.2003,3:453-458.
    [27]Rashidi B,et al.An Orthotopic Mouse Model of Remetastasis of Human Colon Cancer Liver Metastasis [J].Clin Cancer Res,2000,6:2556-2561.
    [28]Vadgama J.V.et al.Plasma insulin-like growth factor-Ⅰ and serum IGF- binding protein 3 can be associated with the progression of breast cancer,and predict the risk of recurrence and the probability of survival in African-American and Hispanic women.Oncology.1999,57:330-340 .
    [29]Golub,T.R.et al.Molecular classification of cancer:Class discovery and class prediction by gene expression monitoring.Science.1999,286:531-537.
    [30]Brown,L.F.et al.Vascular stroma formation in carcinoma in situ,invasive carcinoma,and metastatic carcinoma of the breast.Clin.Cancer Res.1999,5:1041-1056.
    [31]Shindoh M,et al.Correlated expression of matrix metalloproteinases and ets family transcription factor El A F in invasive oral squamous-cell- carcinomaderived cell lines.Am J Pathol.1996,148:693-700.
    [32]Grunert,S.,et al.Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis.Nature Rev.Mol.Cell Biol.2003,4:657-665.
    [33]Thiery,J.P.Epithelial-mesenchymal transitions in tumour progression.Nature Rev.Cancer.2002,2:442-454 .
    [34]Huber,M.A.,et al.Molecular requirements for epithelial- mesenchymal transition during tumor progression.Curr.Opin.Cell Biol.2005,17:548-558.
    [35]Siegel,P.M.& Massague,J.Cytostatic and apoptotic actions of TGF-P in homeostasis and cancer.Nature Rev.Cancer.2003,3:807-821.
    [36]Birchmeier,C,et al.Met,metastasis,motility and more.Nature Rev.Mol.Cell Biol.2003,4:915-925.
    [37]Boccaccio,C.et al.The MET oncogene drives a genetic programme linking cancer to haemostasis.Nature.2005,434:396-400.
    [38]Douma,S.et al.Suppression of anoikis and induction of metastasis by the neurotrophic receptor TrkB.Nature.2004,430:1034-1039.
    [39]Pennacchietti,S.et al.Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene.Cancer Cell.2003,3:347-361.
    [40]Cavallaro,U.& Christofori,G.Cell adhesion and signalling by cadherins and Ig-CAMs in cancer.Nature Rev.Cancer.2004,4:118-132 .
    [41]Perl,A.K.,et al.A causal role for E-cadherin in the transition from adenoma to carcinoma.Nature.1998,392:190-193.
    [42]Kang,Y.& Massague,J.Epithelial-mesenchymal transitions:twist in development and metastasis.Cell.2004,118:277-279.
    [43]Perl,A.K.et al.Reduced expression of neural cell adhesion molecule induces metastatic dissemination of pancreatic P tumor cells.Nature Med.1999,5:286-291.
    [44]Kang,Y.et al.A multigenic program mediating breast cancer metastasis to bone.Cancer Cell.2003,3:537-549.
    [45]Montel,V.,et al.Expression profiling of primary tumors and matched lymphatic and lung metastases in a xenogeneic breast cancer model.Am J Pathol.2005,166:1565-1579.
    [46]Clark,E.A.,et al..Genomic analysis of metastasis reveals an essential role for RhoC.Nature.2000,406:532-535.
    [47]Yang,J.et al.Twist,a master regulator of morphogenesis,plays an essential role in tumor metastasis.Cell.2004,117:927-939.
    [48]Minn,A.J.et al.Genes that mediate breast cancer metastasis to lung.Nature.2005, 436:518-524.
    [49]Kerbel, R.S., et al.A model of human cancer metastasis: extensive spontaneous and artificial metastasis of a human pigmented melanoma and derived variant sublines in nude mice.J Natl Cancer Inst.1984,72,93-108.
    [50]Chishima T,et al.Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression[J].Cancer Res,1997,57:2042- 2047.
    [51]Bernards,R.& Weinberg,R.A.Metastasis genes:a progression puzzle.Nature.2002,418:823.
    [52]Segal,E.,et al..A module map showing conditional activity of expression modules in cancer.Nat Genet.2004,36:1090-1098.
    [53]Segal,E.et al.Module networks:identifying regulatory modules and their condition-specific regulators from gene expression data.Nat Genet.2003,34,166-176.
    [54]Tusher V G,et al.Significance analysis of microarrays applied to the ionizing radiation response [J].PNAS.2001,4 10:511,625,121.
    [55]Bittner M,et al.Molecular classification of cutaneous malignant melanoma by gene expression profiling.Nature.2000,406:536-540.
    [56]Garber ME,et al.Diversityofgene expression in adenocarcinoma of the lung.Proc Natl Acad Sci USA.2001,98:13784-13789.
    [57]Bhattacharjee A,et al.Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses.Proc Natl Acad Sci USA.2001,98:13790-13795.
    [58]Ramaswamy S,Golub TR.DNA microarrays in clinical oncology.J Clin Oncol.2002,20:1932-1941.
    [59]Liotta,L.A.& Kohn,E.C.Cancer's deadly signature.Nat Genet .2003 ,33:10-11.
    [60]Liotta,L.& Petricion,E.Molecular profiling of human cancer.Nature Rev.Genet.2000,1:48-56.
    [61]Golub,T.R.Editorial:Genome-wide views of cancer.N.Engl.J.Med.2001,344:601-602.
    [62]Kononen,J.et al.Tissue microarrays for high throughput molecular profiling of tumor specimens.Nature Med.1998,4:844-847.
    [63]Zhang L,et al.Gene expression profiles in normal and cancer cells.Science.1997,276:1268-1272.
    [64]Notterman DA,et al.Transcriptional gene expression profiles of colorectal adenoma,adenocarcinoma,and normal tissue examined by oligonucleotide arrays.CancerRes.2001,61:3124-3130.
    [65]Kitahara O, et al.Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia.Cancer Res.2001,61:3544-3549.
    [66]Van 't Veer,L.J.et al.Gene expression profiling predicts clinical outcome of breast cancer.Nature.2002,415:530-536.
    [67]Huang,E.et al.Gene expression predictors of breast cancer outcomes.Lancet.2003,361:1590-1596.
    [68]Bieche,I.,et al.Identification of a three-gene expression signature of poor-prognosis breast carcinoma.Mol Cancer.2004,3:37.
    [69]Woelfle,U.et al.Molecular signature associated with bone marrow rnicrometastasis in human breast cancer.Cancer Res.2003,63:5679-5684.
    [70]Yu,K.et al.A molecular signature of the Nottingham prognostic index in breast cancer.Cancer Res.2004,64:2962-2968.
    [71]Bieche, I.et al.Molecular profiling of inflammatory breast cancer:identification of a poor-prognosis gene expression signature.Clin Cancer Res .2004,10:6789-6795 .
    [72]Parker,B.S.et al.Alterations in vascular gene expression in invasive breast carcinoma.Cancer Res.2004,64:7857-7866.
    [73]Jansen,M.R et al.Molecular classification of tamoxifen-resistant breastcarcinomas by gene expression profiling.J Clin Oncol.2005,23:732-740.
    [74]Wang,Y et al.Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer.Lancet.2005,365:671-679.
    [75]Paik,S.et al.A multigene assay to predict recurrence of tamoxifen-treated,node-negative breast cancer.N Engl J Med.2004,351:2817-2826.
    [76]Garber,M.E.et al.Diversity of gene expression in adenocarcinoma of the lung.Proc.Natl.Acad.Sci.USA .2001,98:13784-13789.
    [77]Latil,A.et al.Gene expression profiling in clinically localized prostate cancer:a four-gene expression model predicts clinical behavior.Clin Cancer Res.2003,9:5477-5485.
    [78]Glinsky,G.V.,et al..Gene expression profiling predicts clinical outcome of prostate cancer.J Clin Invest .2004,113:913-923 .
    [79]Hynes,R.O.Metastatic potential:generic predisposition of the primary tumor or rare,metastatic variants-or both? Cell.2003,113:821-823.
    [80]Ramaswamy,S,et al.A molecular signature of metastasis in primary solid tumors.Nat Genet.2003,33:49-54.
    [81]Vermeulen L,et al.Single-cell cloning of colon cancer stem cells reveals a multi-lineage differentiation capacity.Proc Natl Acad Sci USA.2008 Sep 9;105:13427-13432.
    [82]Zou GM.Cancer initiating cells or cancer stem cells in the gastrointestinal tract and liver.J Cell Physiol.2008 Jul 23;217:598-604.
    [83]Lee CJ,et al.Human pancreatic cancer stem cells:implications for how we treat pancreatic cancer.Transl Oncol.2008 Mar;l:14-18.
    [84]Lu ZQ,et al.Expression and significance of CD44(+) ESA(+)CD24(-/low),stem cell markers for breast cancer,in non-small-cell lung carcinoma.Ai Zheng.2008 Jun;27:575-579.
    [85]Lee CJ,et al.Pancreatic cancer stem cells.J Clin Oncol.2008 Jun 10;26:2806-2812.
    [86]Riker AI,et al.The gene expression profiles of primary and metastatic melanoma yields a transition point of tumor progression and metastasis.BMC Med Genomics.2008 Apr 28;1:13.
    [87]Wang L,et al.Altered expression of desmocollin 3,desmoglein 3,and beta-catenin in oral squamous cell carcinoma:correlation with lymph node metastasis and cell proliferation.Virchows Arch.2007 ,451 :959-966.
    [88]Boelens MC,et al.Differential expression and distribution of epithelial adhesion molecules in non-small cell lung cancer and normal bronchus.J Clin Pathol.2007 ,60:608-614.
    [89]Franke WW,et al.The desmosome and the syndesmos:cell junctions in normal development and in malignancy.Princess Takamatsu Symp.1994;24:14-27.
    [90]Collins JE,et al.A study of desmosomes in colorectal carcinoma.Br J Cancer.1990 ;62:796-805.
    [91]Thorsen K,et al.Alternative splicing in colon,bladder,and prostate cancer identified by exon array analysis.Mol Cell Proteomics.2008 Jul;7:1214-1224.
    [92]Yang S,et al.Molecular basis of the differences between normal and tumor tissues of gastric cancer.Biochim Biophys Acta.2007 Sep;1772:1033-1040.
    [93]Gardina PJ,et al.Altemative splicing and differential gene expression in colon cancer detected by a whole genome exon array.BMC Genomics.2006 27;7:325.
    [94]Yang H,et al.Caffeine suppresses metastasis in a transgenic mouse model:a prototype molecule for prophylaxis of metastasis.Clin Exp Metastasis.2004;21:719-735.
    [95]Shackelford D,et al.Targeted degradation of the AML1/MDS1/EVI1 oncoprotein by arsenic trioxide.Cancer Res.2006 ,1;11360-11369.
    [96]Fuchs O.EVI1 and its role in myelodysplastic syndrome,myeloid leukemia and other malignant diseases.Cas Lek Cesk.2006;145:619-624.
    [97]Liu Y,et al.Evil is a survival factor which conveys resistance to both TGFbeta- and taxol-mediated cell death via PI3K/AKT.Oncogene.2006 15;25:3565-3575.
    [98]Svingen T,et al.Altered HOX gene expression in human skin and breast cancer cells.Cancer Biol Ther.2003 ,2:518-523.
    [99]Buyse IM,et al.Physical mapping of the retinoblastoma interacting zinc finger gene RJZ to D1S228 on chromosome lp36.Genomics.1996 May 15;34:119-121.
    [100]Ward SM,et al.Propagation of slow waves requires IP3 receptors and mitochondrial Ca2+ uptake in canine colonic muscles.J Physiol.2003 15; 549:207-218.
    [101]Maranto AR.Primary structure,ligand binding,and localization of the human type 3 inositol 1,4,5-trisphosphate receptor expressed in intestinal epithelium.J Biol Chem.1994 14;269:1222-1230.
    [102]Steinmann C,et al.Requirement of inositol 1,4,5-trisphosphate receptors for tumor-mediated lymphocyte apoptosis.J Biol Chem.2008 May 16;283:13506-13509.
    [103]Gschwendt M,et al.Lack of an effect of novel inhibitors with high specificity for protein kinase C on the action of the phorbol ester 12-O-tetradecanoylphorbol- 13-acetate on mouse skin in vivo.Carcinogenesis.1995,16:107-111.
    [104]Myat MM,et al.MARCKS regulates membrane ruffling and cell spreading.Curr Biol.1997 1;7:611-614.
    [105]Guo Y,et al.Quantitative proteomics analysis of human endothelial cell membrane rafts: evidence of MARCKS and MRP regulation in the sphingosine 1-phosphate-induced barrier enhancement.Mol Cell Proteomics.2007;6:689-696.
    [106]Weinstein IB.The roles of specific isoforms of protein kinase C in growth control and human colon cancer.Princess Takamatsu Symp.1991;22:277-283.
    [107]Zhang XA,et al.Requirement of the p130CAS-Crk coupling for metastasis suppressor KAIl/CD82-mediated inhibition of cell migration.J Biol Chem.2003,18:27319-27328.
    [108]Subramaniam V,et al.CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.Exp Mol Pathol.2007 ,83:207-215.
    [109]Guan H,et al.Targeting Lyn inhibits tumor growth and metastasis in Ewing's sarcoma.Mol Cancer Ther.2008 ;7:1807-1816.
    [110]Koo TH,et al.Syntenin is overexpressed and promotes cell migration in metastatic human breast and gastric cancer cell lines.Oncogene.2002 13;21:4080-4088.
    [111]Sarkar D,et al.mda-9/syntenin:recent insights into a novel cell signaling and metastasis-associated gene.Pharmacol Ther.2004 ;104:101-115.
    [112]Helmke BM,et al.Melanoma metastasis is associated with enhanced expression of the syntenin gene.Oncol Rep.2004 ;12:221-228.
    [113]Sarkar D,et al.mda-9/Syntenin:more than just a simple adapter protein when it comes to cancer metastasis.Cancer Res.2008;68:3087-3093.
    [114]Pardo M,et al.Biomarker discovery from uveal melanoma secretomes:identification of gplOO and cathepsin D in patient serum.J Proteome Res.2007;6:2802-2811.
    [115]Meerschaert K,et al.The tandem PDZ domains of syntenin promote cell invasion.Exp Cell Res.2007 ;313:1790-1804.
    [116]Beekman JM,et al.The ins and outs of syntenin,a multifunctional intracellular adaptor protein.J Cell Sci.2008;121:1349-1355.
    [117]Yang JB,et al.Syntenin:a novel PDZ domain-containing scaffolding protein associated with human melanoma metastasis.Zhong Nan Da Xue Xue Bao Yi Xue Ban.2007;32:204-212.
    [118]Boukerche H,et al.mda-9/Syntenin regulates the metastatic phenotype in human melanoma cells by activating nuclear factor-kappaB.Cancer Res.2007 15;67:1812-1822.
    [119]Plummer SM,Holloway KA,Manson MM,et al.Inhibition of cyclo-oxygenase 2 expression in colon cells by the chemopreventive agent curcumin involves inhibition of NF-kappaB activation via the NIK/IKK signalling complex. Oncogene.1999 ;18:6013-6020.
    [120]Kim JM,et al.Nuclear factor-kappa B activation pathway in intestinal epithelial cells is a major regulator of chemokine gene expression and neutrophil migration induced by Bacteroides fragilis enterotoxin.Clin Exp Immunol.2002;130:59-66.
    [121]Jin SH,et al.Thalidomide suppresses the interleukin 1 beta-induced NFkappaB signaling pathway in colon cancer cells.Ann N Y Acad Sci.2002 ,973:414-418.
    [122]Royuela M,et al.TNF-alpha/IL-1/NF- kappaB transduction pathway in human cancer prostate.Histol Histopathol.2008 ;23:1279-1290.
    [123]Rangaswami H,et al.Osteopontin stimulates melanoma growth and lung metastasis through NIK/MEKK1-dependent MMP-9 activation pathways.Oncol Rep.2007 ;18:909-915.
    [124]Ahn DH,et al.TNF-alpha activates MUC2 transcription via NF-kappaB but inhibits via JNK activation.Cell Physiol Biochem.2005;15:29-40.
    [125]Cao Y,et al.77:Osterix,a transcription factor for osteoblast differentiation,mediates antitumor activity in murine osteosarcoma.Cancer Res.2005 15;65:1124-1128.
    [126]Clines GA,et al.Dickkopf homolog 1 mediates endothelin-1-stimulated new bone formation.Mol Endocrinol.2007;21:486-498.
    [127]Qin X,et al.Proliferation and migration mediated by Dkk-l/Wnt/beta-catenin cascade in a model of hepatocellular carcinoma cells.Transl Res.2007;150:281-294.
    [128]Hall CL,et al.The role of Wnts in bone metastases.Cancer Metastasis Rev.2006;25:551-558.
    [129]Yuen HF,et al.TWIST modulates prostate cancer cell-mediated bone cell activity and is upregulated by osteogenic induction.Carcinogenesis.2008 ;29:1509-1518.
    [130]Hall CL,et al.Dickkopf-1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis.Prostate.2008 ;68:1396-1404.
    [131]Dai J,et al.Prostate cancer induces bone metastasis through Wnt-induced bone morphogenetic protein-dependent and independent mechanisms.Cancer Res.2008 ;68:5785-5794.
    [132]Varella-Garcia M.Stratification of non-small cell lung cancer patients for therapy with epidermal growth factor receptor inhibitors: the EGFR fluorescence in situ hybridization assay.Diagn Pathol.2006;1:19.
    [133]Okuda K, et al.Epidermal growth factor receptor gene mutation,amplification and protein expression in malignant pleural mesothelioma.JCancerRes ClinOncol.2008;134:1105-1 111.
    [134]Hanawa M,et al.EGFR protein over-expression and gene amplification in squamous cell carcinomas of the esophagus.Int J Cancer.2006; 118:1173-1180.
    [135]Hirsch FR,et al.Epidermal growth factor receptor in non-small-cell lung carcinomas:correlation between gene copy number and protein expression and impact on prognosis.J Clin Oncol.2003;21:3798-3807.
    [136]Ionescu DN,et al.Protein expression and gene amplification of epidermal growth factor receptor in thymo-mas.Cancer.2005;103:630-636.
    [137]Latil,A.et al.Gene expression profiling in clinically localized prostate cancer:a four-gene expression model predicts clinical behavior.Clin Cancer Res.2003,9:5477-5485.
    [138]Boussioutas,A.et al.Distinctive patterns of gene expression in premalignant gastric mucosa and gastric cancer.Cancer Res.2003,63:2569-2577.
    [139]Chen,X.et al.Variation in gene expression patterns in human gastric cancers.Mol Biol Cell.2003,14:3208-3215.
    [140]Rosenwald,A.et al.The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma.Cancer Cell.2003,3:185-197.
    [141]Barden,C.B.et al.Classification of follicular thyroid tumors by molecular signature:results of gene profiling.Clin Cancer Res .2003,9:1792-1800.
    [142]Wells,S.I.et al.Transcriptome signature of irreversible senescence in human papillomavirus-positive cervical cancer cells.Proc Natl Acad Sci U S A.2003,100:7093-7098.
    [143]Ginos,M.A.et al.Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck.Cancer Res.2004,64:55-63.
    [144]Giordano T.J.et al.Organ-specific molecular classification of lung,colon and ovarian adenocarcinomas using gene expression profiles.Am.J.Pathol.2001,159:1231-1238.
    [145]Birkenkamp-Demtroder K,et al.Gene expression in colorectal cancer.Cancer Res.2002,62:4352-4363.
    [146]Yanagawa R,et al.Genome-wide screening of genes showing altered expression in liver metastases of human colorectal cancers by cDNA microarray.Neoplasia.2001,3:395-401.
    [147]Singh,D.et al.Gene expression correlates of clinical prostate cancer behavior.Cancer Cell.2002,1:203-209.
    [148]Pomeroy,S.L.et al.Prediction of central nervous system embryonal tumour outcome based on gene expression.Nature.2002,415:436-442.
    [149]Shipp,M.A.et al.Diffuse large B-cell lymphoma outcome prediction by gene expression profiling and supervised machine learning.Nat.Med.2002,8:68-74.