用户名: 密码: 验证码:
典型人造目标自动识别算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着遥感图象分辨率的提高,图象数据量有了爆炸式的增长。如何从海量图象数据中及时、准确地获取所需信息并加以利用,成为需要解决的重大问题。如果完全靠传统的人工方法对大幅面高分辨率遥感图象进行判读和识别,效率和精度都无法保证。因此,利用计算机对遥感图象中的感兴趣目标进行自动识别,辅助判读人员完成判读工作具有非常重要的意义。本文在对现有典型人造目标自动识别技术进行分析的基础上,以感兴趣的大中型水上桥梁目标和圆形目标群为研究对象,深入研究了其在复杂背景下大幅面高分辨率遥感图象中的目标特性并实现了目标的快速筛选与识别,取得了一些有价值的研究成果。
     本文对遥感图象的目视判读、自动判读和交互判读进行了简要介绍并对它们的优缺点进行了分析,然后对高分辨遥感图象数据的特点进行了总结并指出开展高分辨率遥感图象目标自动识别进行辅助判读的必要性和紧迫性,最后对高分辨遥感图象中的道路、建筑物、桥梁和机场等人造目标识别技术进行了分析,提出了存在的主要问题。
     针对现有桥梁识别算法的不足,建立了一种基于知识的水上桥梁识别算法。根据桥梁在高分辨遥感图象中的功能特征、灰度特征、几何特征和空间上下文特征,建立了水上桥梁的先验知识库;根据高分辨率遥感图象中河流的灰度特征和形状特征利用模糊分割和聚类的方法对河流区域进行粗分割,并根据桥梁与河流之间的空间关系提出了一种确定感兴趣区域的方法,利用该方法自动提取出感兴趣区域的子图象,然后对感兴趣区域子图象进行分割、轮廓跟踪、直线拟合等操作获取潜在水上桥梁的特征,最后再根据水上桥梁的先验知识对潜在桥梁进行验证。在水上桥梁识别的过程中,河流和桥梁的先验知识始终贯穿其中,从而大大提高了检测和识别速度。
     通过对高分辨遥感图象中的圆形目标特征进行详细分析,建立了一种基于圆检测技术和空间分布关系的圆形目标群识别方法。该方法充分利用圆形目标群中的单一目标在外观上表现为圆形以及圆形目标集群分布的特点,利用圆检测技术从图象中检测出候选圆目标,然后利用候选圆目标的空间分布和数量关系来确认各个圆形目标群区域,在消除虚警的同时,完成了圆形目标群的识别。为了从图象中快速提取出圆形目标,本文在RCD(Randomized Circles Detection)算法的基础上,对采样点的选取方法以及证据积累过程中与像素有关的运算方法进行改进,提出了一种改进的随机圆检测算法;另外,根据圆形目标的几何特征,提出了两种快速圆检测算法;并对上述三种圆检测算法进行了对比实验。
     实验分析表明,本文建立的自动识别复杂背景下大幅面高分辨率遥感图象中水上桥梁和圆形目标群这两类典型人造目标的方法是快速而有效的,可辅助判读人员快速完成人造目标的判读筛选工作,具有重要的现实意义。
At present, the image data are dramatically increased with the resolution of remote sensing imagery being higher. It has become an important issue how to timely acquire the useful information from abundant image data. The efficiency and precision of interpretation and recognition from large breadth remote sensing images with high resolution are not assured if the traditional manual methods are only applied. It has important value for assisting interpreters to accomplish imagery interpretation by recognizing automatically targets in remote sensing imagery with computers. In this dissertation, the recognizing and locating techniques for man-made targets such as bridges and cirlular target clusters are investigated based on existed ATR techniques. The target features and recognition methods of typical man-made objects in high resolution satellite imagery with large size and complicated background is deeply investigated, and some valuable results are achieved.
     The advantages and disadvantages of visual interpretation, automatic interpretation and interactive interpretation are discussed. The characteristics of data from high resolution remote sensing imagery are summarized and the necessity of developing aided interpretation is pointed out. The main shortcomings of recognition techniques of man-made objects in high resolution remote sensing imagery are presented.
     A knowledge-based recognition algorithm of bridge over rivers is presented in order to overcome the shortcomings of existed algorithms. Firstly, the repository of bridges over rivers is set up in terms of the function features, gray features, geometric features and spatial context features. Secondly, river areas are coarsely segmented based on fuzzy theory and clustering analysis. Moreover, a method of selecting regions of interest (ROI) is proposed in terms of the spatial relationship between rivers and bridges. With the method, sub-images are automatically obtained. Lastly, image segmentation, contour tracking and line fitting are implemented to extract candidate bridges in each sub-image and every candidate bridge is verified using priori knowledges of bridges. During the process of bridge recognition, priori knowledges have been used all the time to speed up detecting and recognizing.
     By analyzing the features of cirlular-target clusters in high resolution satellite remote sensing imagery, the recognition method of cirlular target clusters is presented based on circle detection techniques and spatial distribution relationship of circular objects. With the characteristics that circular objects always locate together in each target cluster, possible circular objects are firstly detected using circle detection technologies. Then, the regions of circular-target clusters are validated using the relationships of spatial distribution and quantity of possible circular objects. Cirlular target clusters are recognized by eliminating false circular objects. In order to rapidly extract circular-target culsters, an improved circle detection approach is proposed based on RCD (Randomized Circles Detection) algorithm, which has ameliorations in two ways of sampling pixel selecting and operation on pixels in evidence-collecting process. In addition, two new algorithms are presented to quickly detect circles. In the end, three algorithms are compared with one another by experiments.
     The experimental analyses show that the methods proposed in this dissertation for automatically recognizing bridges and circular-target culsters in high resolution satellite imagery with large breadth and complicated backgrounds are fast and effective. It has the important realism sense for interpreters to quickly interpret and screen out man-made objects.
引文
1 (美)利尔桑德.遥感与图像解译.电子工业出版社, 2003
    2李补莲.自动目标识别(ATR)技术发展述评.现代防御技术, 2000, 28(2): 10~14
    3郁文贤,郭桂蓉. ATR技术研究现状和发展趋势.系统工程与电子技术,1994, 16(6): 25~30
    4余静,游志胜.自动目标识别与跟踪技术研究综述.计算机应用研究, 2005, 22(1): 12~15
    5 G. J. Owirka, S. D. Halverwen and L. M. Novak. An Algorithm for Detecting Groups of Targets. IEEE International Radar Conference, 1995: 641~643
    6 G. Gao, G. Y. Kuang, Q. Zhang, et al. Fast Detecting and Locating Groups of Targets in High-Resolution SAR Images. Pattern Recognition, 2007, 40(4): 1378~1384
    7 H. Ren, Q. Du, J. Wang, et al. Automatic Target Recognition for Hyperspectral Imagery Using High-Order Statistics. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(4): 1372~1385
    8 J. C. Meng, W. L. Yang. Nearest Neighbor Classifier Based on Riemannian Metric in Radar Target Recognition. IEEE International Radar Conference, 2005: 851~853
    9 H. M. Zhang, W. Gao, X. L. Chen, et al. Object Detection Using Spatial Histogram Features. Image and Vision Computing, 2006, 24(4): 327~341
    10 Y. Shan, H. S. Sawhney, B. Matei, et al. Shapeme Histogram Projection and Matching for Partial Object Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(4): 568~577
    11 M. Sarfraz. Object Recognition Using Fourier Descriptors: Some Experiments and Observations. Proceedings of the International Conference on Computer Graphics, Imaging and Visualisation (CGIV'06), 2006: 281~286
    12 M. Sarfraz. Object Recognition Using Moments: Some Experiments and Observations. Proceedings of the Geometric Modeling and Imaging-NewTrends (GMAI'06), 2006: 189~194
    13 E. Saber, Y. Xu and A. M. Tekalp. Object Recognition by Partial Shape Matching Guided Search. IEEE International Conference on Acoustics, Speech, and Signal Processing(ICASSP 2005), 2005, 2: 145~148
    14 B. Ravichandran, A. Gandhe, R. Smith, et al. Robust Automatic Target Recognition Using Learning Classifier Systems. Information Fusion, 2007, 8(3): 252~265
    15 X. Wang, B. Xiao, J. F. Ma, et al. Scaling and Rotation Invariant Analysis Approach to Object Recognition Based on Radon and Fourier–Mellin Transforms. Pattern Recognition, 2007, 40(12): 3503~3508
    16 T. Umetani, Y. Mae, T. Arai, et al. Automated Identification of Partially Exposed Metal Object. Automation in Construction, 2007, 16(6): 842~851
    17 X. K. Liu, M. G. Gao and X. J. Fu. A Nearest Neighbor Fuzzy Classifier for Radar Target Recognition Using Combined Features. Proceedings of the 8th International Conference on Signal Processing (ICOSP '06), 2006, 3
    18沈景悦,吴秀清,刘严岩.一种基于模糊融合的遥感图像目标识别方法.计算机工程与应用, 2005, 16: 83~85
    19陈海燕,戚飞虎.模糊集在目标识别上的应用.计算机应用研究, 2000, (2): 106~108
    20胡步发.一种基于模糊聚类的自动目标识别算法.福州大学学报(自然科学版), 2001, 29(3): 50~53
    21 J. E. Hunter. Human Motion Segmentation and Object Recognition Using Fuzzy Rules. IEEE International Workshop on Robots and Human Interactive Communication, 2005: 210~216
    22 A. D. Amo, D. Gomez and J. Montero. Spectral Fuzzy Classification System for Target Recognition. 22nd International Conference of the North American Fuzzy Information Processing Society, 2003: 495~499
    23 Z. G. Cao, Q. Sun and T. X. Zhang. Knowledge-Based Recognition Algorithm for Long-Range Infrared Bridge Images. SPIE, 2001, 4379: 168~175
    24 M. Foedisch, C. Schlenoff and M. Shneier. Towards an Approach for Knowledge-Based Road Detection. Proceedings of the 2005 ACM workshop on Research in knowledge representation for autonomous systems, 2005: 1~8
    25 J. Xue, S. Ruan, B. Moretti, et al. Fuzzy Knowledge-Based Recognition of Internal Structures of the Head. Pattern Recognition Letters, 2001, 22(3-4): 395~405
    26何国威,刘建国,周春晓,等.基于知识的红外数字图像中铁路的识别.红外与激光工程, 2000, 29 (6): 55~59
    27 Z. L. Ma, H. B. Wang, X. Y. Lao, et al. A Knowledge-Based Target Recognition Method for Remote Sensing Image. IEEE International Conference on Integration Technology (ICIT '07), 2007: 414~417
    28 B. Zhu, J. Z. Li and A. J. Chen. Knowledge Based Recognition of Harbor Target. Journal of Systems Engineering and Electronics, 2006, 17(4): 755~759
    29 J. C. Trinder, Y. Wang. Automatic Road Extraction from Aerial Images. Digital Signal Processing, 1998, 8(4): 215~224
    30 S. Y. Lee, Y. K. Ham and R. H. Park. Recognition of Human Front Faces Using Knowledge-Based Feature Extraction and Neuro-Fuzzy Algorithm. Pattern Reeognition, 29(11): 1863~1876
    31 Y. Cohen, M. Shoshany. Analysis of Convergent Evidence in an Evidential Reasoning Knowledge-Based Classification. Remote Sensing of Environment, 2005, 96(3-4): 518~528
    32 W. Isaac. A Framework for a General Model-Based ATR Theory. SPIE, 2004, 5427: 449~458
    33 M. Barzohar, D. B. Cooper. Automatic Finding of Main Roads in Aerial Images by Using Geometric-Stochastic Models and Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(7): 707~721
    34 Y. Liu, T. Ikenaga and S. Goto. An MRF Model-Based Approach to the Detection of Rectangular Shape Objects in Color Images. Signal Processing, 2007, 87(11): 2649~2658
    35 J. Wang. A Parametric Scattering Centers Model with Frequency Dependence for Radar Target Recognition. 2004 Asia-Pacific Radio Science Conference, 2004: 98~100
    36 K. T. Kim, J. H. Bae and H. T. Kim. Effect of AR Model-Based Data Extrapolation on Target Recognition Performance. IEEE Transactions onAntennas and Propagation, 2003, 51(4): 912~914
    37 Q. Zheng, S. Z. Der and H. I. Mahmoud. Model-Based Target Recognition in Pulsed Ladar Imagery. IEEE Transactions on Image Processing, 2001, 10(4): 565~572
    38 K. Copsey, A. Webb. Bayesian Gamma Mixture Model Approach to Radar Target Recognition. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1201~1217
    39 P. David, D. DeMenthon. Object Recognition in High Clutter Images Using Line Features. Proceedings of the Tenth IEEE International Conference on Computer Vision (ICCV’05), 2005, 2: 1581~1588
    40 N. Bourbakis, P. Yuan and S. Makrogiannis. Object Recognition Using Wavelets, L-G Graphs and Synthesis of Regions. Pattern Recognition, 2007, 40(7): 2077~2096
    41 G. A. Carpenter, S. Martens, E. Mingolla, et al. Biologically Inspired Approaches to Automated Feature Extraction and Target Recognition. Proceedings of the 33rd Applied Imagery Pattern Recognition Workshop (AIPR'04), 2004: 61~66
    42 S. A. Rizvi, N. M. Nasrabadi. Fusion Techniques for Automatic Target Recognition. Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop (AIPR'03), 2003: 27~32
    43 Y. Qiu, J. Wu, H. Huang, et al. Multi-Sensor Image Data Fusion Based on Pixel-Level Weights of Wavelet and the PCA Transform. IEEE International Conference on Mechatronics and Automation, 2005, 2: 653~658
    44 N. C. Parmar, M. M. Kokar. Target Detection in Fused X-band Radar and IR Images Using the Functional Minimization Approach to Data Association. Proceedings of the 1994 9th IEEE International Symposium on Intelligent Control. 1994:51~56
    45 K. C. Kwak, W. Pedrycz. Face Recognition: A Study in Information Fusion Using Fuzzy Integral. Pattern Recognition Letters, 2005, 26(6): 719~733
    46 W. J. Chen, L. H. Dou, J. Chen. A Target Recognition Method Based on Feature Level Data Fusion. Proceedings of the 4th World Congress on Intelligent Control and Automation (WCICA'02), 2002, 3: 2094~2098
    47 P. K. Hou, X. J. Wang, and X. Z. Shi. Target Recognition Using Fuzzy Fusion Classifier. Proceedings of the Third International Conference on Information Fusion, 2000, 2: THC2/9~THC213
    48 X. B. Song, Y. Abu-Mostafa, J. Sill, et al. Robust Image Recognition by Fusion of Contextual Information. Information Fusion, 2002, 3(4): 277~287
    49 J. H. Wang, X. Li, T. F. Tao, et al. Target Recognition Based on Rough Set and Data Fusion in Remote Sensing Image. Proceedings of the 6th World Congress on Intelligent Control and Automation (WCICA'06), 2006: 10420~10424
    50王延平,袁杰,廖原,等.利用信息融合技术的缺损目标识别方法.中国图象图形学报, 2000, 5(3): 237~240
    51蓝金辉,马宝华,蓝天,等. D-S证据理论数据融合方法在目标识别中的应用.清华大学学报(自然科学版), 2001, 41(2): 53~55, 59
    52曹兰英,朱自谦,夏良正.基于小波神经网的SAR图像识别算法.测控技术, 2005, 24(7): 14~16, 23
    53刘怡光,游志胜.一种用于图像目标识别的神经网络及其车型识别应用.计算机工程, 2003, 29(3): 30~32
    54 W. Ning, W. G. Chen and X. G. Zhang. Automatic Target Recognition of ISAR Object Images Based on Neural Network. Proceedings of the 2003 International Conference on Neural Networks and Signal Processing (ICNNSP'03), 2003, 1: 373~376
    55李予属,余农,吴常泳,等.红外航空图像自动目标识别的形态滤波神经网络算法.航空学报, 2002, 23(4): 368~372
    56 J. H. Lee, I. S. Choi and H. T. Kim. Natural Frequency-Based Neural Network Approach to Radar Target Recognition. IEEE Transactions on Signal Processing, 2003, 51(12): 3191~3197
    57 G. Edwards, J. P. Tate. Target Recognition and Classification Using Neural Networks. Proceedings of MILCOM, 2002, 2: 1439~1442
    58 S. Qiao, T. F. Xu, J. Z. Song, et al. The Design of Parallel Neural Network Target Recognition System with Many DSP. Proceedings of the International Conference on Machine Learning and Cybernetics, 2003, 5: 3130~3133
    59 Y. Z. Shen, Q. C. Wang and S. M. Yu. A Target Recognition of Wavelet Neural Network Based on Relative Moment Features. Proceedings of the 5th WorldCongress on Intelligent Control and Automation (WCICA'04), 2004, 5: 4089~4091
    60 E. Avci, I. Turkoglu and M. Poyraz. Intelligent Target Recognition Based on Wavelet Packet Neural Network. Expert Systems with Applications, 2005, 29(1): 175~182
    61 S-i Park, M. J. T. Smith and R. M. Mersereau. Target Recognition Based on Directional Filter Banks and Higher-Order Neural Networks. Digital Signal Processing, 2000, 10(4): 297~308
    62 X. R. Xue, Q. M. Zeng and R. C. Zhao. A New Method of SAR Image Target Recognition Based on SVM. Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium (IGARSS '05), 2005, 7: 4718~4721
    63 A. L. Ding, F. Liu and L. C. Jiao. Intelligent Target Recognition Based on Hybrid Support Vector Machine Proceedings of the Fifth International Conference on Computational Intelligence and Multimedia Applications (ICCIMA '03), 2003: 21~26
    64 D. Casasent, Y. C. Wang. A Hierarchical Classifier Using New Support Vector Machines for Automatic Target Recognition. Neural Networks, 2005, 18(5-6): 541~548
    65 D. Casasent, Y. C. Wang. Automatic Target Recognition Using New Support Vector Machine. 2005 IEEE International Joint Conference on Neural Networks (IJCNN '05), 2005, 1: 84~89
    66张艳宁,郑江滨,等.基于支撑矢量机的遥感图像目标识别.西北工业大学学报, 2002, 20(4): 536~539
    67 L. Zhang, W. A. Zhou and L. C. Jiao. Radar Target Recognition Based on Support Vector Machine Proceedings of the 5th International Conference on Signal Processing (ICOSP '00), 2000, 3: 1453~1456
    68 H. Y. Wang, N. Tian, X. M. Zhang, et al. Alternate Feature Optimization for 3-Class Underwater Target Recognition Based on SVM Classifiers. Proceedings of the 2003 International Conference on Neural Networks and Signal Processing (ICNNSP '03), 2003, 1: 144~148
    69 Q. Zhao, J. C. Principe. Support Vector Machines for SAR Automatic TargetRecognition. IEEE Transactions on Aerospace and Electronic Systems, 2001, 37(2): 643~654
    70梁路宏,艾海舟,肖习攀,等.基于模板匹配与支持矢量机的人脸检测.计算机学报, 2002, 25(1): 22~29发
    71 L. I. Perlovsky. MLANS Application to Sensor Fusion. SPIE, 1993, 1955: 61~64
    72孙家抦.遥感原理与应用.武汉大学出版社, 2003.
    73濮静娟.遥感图像目视判读的原理与方法.中国科学技术出版社, 1999
    74王双亭,朱宝山.遥感图像判绘.解放军出版社, 2002
    75刘亚岚,阎守邑,王涛.遥感图像人机交互判读方法研究及其应用.地理与地理信息科学, 2003, 19(1): 27~31.
    76马祖陆,茹锦文,刘光慧.遥感图像屏幕判读识别法在贵州岩溶山区土地调查中的应用.中国岩溶, 2003, 14(3): 217~222.
    77刘亚岚.遥感影像群判读技术的试验研究.中国科学院研究生院博士学位论文, 2004
    78张志龙.基于遥感图像的重要目标特征提取与识别方法研究.国防科学技术大学博士论文, 2005
    79 R. R. Hoffman. The Problem of Extracting the Knowledge of Experts from the Perspective of Experimental Psychology. AI Magazine, 1987, 8(2): 53~67.
    80朱光良. IKONOS等高分辨率遥感技术的发展与应用分析.地理信息科学, 2004, 6(3): 108~110
    81马廷.高分辨卫星影像及其信息处理的技术模型.遥感信息, 2001, (3): 6 ~ 10.
    82 G. G. Wilkinson. Recent Development in Remote Sensing Technology and the Importance of Computer Vision Analysis Techniques. Machine Vision and Advanced Image Processing in Remote Sensing, Springer, 1999: 5~11
    83梅建新.基于支持向量机的高分辨率遥感影像的目标检测研究.武汉大学博士学位论文, 2004
    84谢凤英,姜志国,秦世引.对偶空间上的高分辨率遥感影像道路提取.宇航学报, 2006, 27(5): 1034~1038
    85汪闽,骆剑承,周成虎,等.结合高斯马尔可夫随机场纹理模型与支撑向量机在高分辨率遥感图像上提取道路网.遥感学报, 2005, 9(3): 271~276
    86 J. B. Mena, J. A. Malpica. An Automatic Method for Road Extraction in Rural and Semi-Urban Areas Starting from High Resolution Satellite Imagery. Pattern Recognition Letters, 2005, 26(9): 1201~1220
    87 R. Peteri, J. Celle and T. Ranchin. Detection and Extraction of Road Networks from High Resolution Satellite Images. Proceedings of the International Conference on Image Processing (ICIP '03), 2003, 1: 301~304
    88 S. Gautama, W. Goeman and J. D'Haeyer. Robust Detection of Road Junctions in Vhr Images Using an Improved Ridge Detector. XXth ISPRS Congress, 2004, XXXV: 815~820
    89 D. Haverkamp. Extracting Straight Road Structure in Urban Environments Using Ikonos Satellite Imagery. Optical Engineering, 2002, 41(9): 2107~2110
    90曲延云,郑南宁,李翠华,等.基于支持向量机的显著性建筑物检测.计算机研究与发展, 2007, 44(1): 141~147
    91文贡坚,李德仁,叶芬.从卫星遥感全色图像中自动提取城市目标.武汉大学学报(信息科学版), 2003, (2): 212~218
    92 Y. F. Wei, Z. M. Zhao and J. H. Song. Urban Building Extraction from High-Resolution Satellite Panchromatic Image Using Clustering and Edge Detection. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '04), 2004, 3: 2008~2010
    93 Q. M. Qin, S. J. Chen, W. J. Wang, et al. The Building Recognition of High Resolution Satellite Remote Sensing Image Based on Wavelet Analysis. Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, 2005: 4533~4538
    94 T. Hosomura. House Detection from High Resolution Satellite Image by Using Double Window. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '05), 2005, 5: 3732~3733
    95 D. Koc, M. Turker. Automatic Building Detection from High Resolution Satellite Images. Proceedings of 2nd International Conference on Recent Advances in Space Technologies, 2005: 617~622
    96 W. Liu, V. Prinet. Building Detection from High-resolution Satellite Image Using Probability Model. Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS '05), 2005, 6: 3888~3891
    97骆剑承,明冬萍,沈占锋,等.高分辨率遥感影像桥梁特征提取方法研究.计算机应用研究, 2006, 151~153
    98吴樊,王超,张红,等.基于知识的中高分辨率光学卫星遥感影像桥梁目标识别研究.电子与信息学报, 2006, 28(4): 587~591
    99程辉,于秋则,田金文,等.基于小波支持向量机分割的SAR图像桥梁目标检测.华中科技大学学报, 2006, 34(4): 52~55
    100 N. Loménie, J. Barbeau and R. Trias-Sanz. Integrating Textural and Geometric Information for an Automatic Bridge Detection System. Proceedings of the 2003 IEEE International Geoscience and Remote Sensing Symposium (IGARSS '03), 2003, 6: 3952~3954
    101 B. Hou, Y. Li and L. C. Jiao. Segmentation and Recognition of Bridges in High Resolution SAR Images. Proceedings of the 2001 CIE International Conference on Radar, 2001: 479~482
    102董书勇,吴巍.一种遥感图像中机场跑道的提取方法.武汉理工大学学报(信息与管理工程版), 2006, 28(7): 152~155
    103 M. Mueller, K. Segl and H. Kaufmann. Edge- and Region-Based Segmentation Technique for the Extraction of Large, Man-Made Objects in High-Resolution Satellite Imagery. Pattern Recognition, 2004, 37(8): 1619~1628
    104 M. Mueller, K. Segl, A. Knoll. Detection of Large Regular Objects in High Resolution Panchromatic Satellite Data Using a Combined Edge-Region-Based Segmentation Approach. Proceedings of the 10th Australasian Remote Sensing and Photogrammetry Conference (ARSPC), 2000: 1354~1361
    105李艳,彭嘉雄.港口目标特征提取与识别.华中科技大学学报, 2001, 29(6): 10~12
    106吴皓,刘政凯,张荣. TM图像中桥梁目标识别方法的研究.遥感学报, 2003, 7(6): 478~484
    107聂烜,赵荣椿,张艳宁.一种从航空图片中自动检测桥梁的方法.西北工业大学学报, 2003, 21(5): 599~602
    108徐胜荣,李忠兴.自然景物中桥梁目标识别方法的研究.浙江大学学报,1995 ,29(3): 257~281
    109 Z. G. Cao, Q. Sun and T. X. Zhang. A Knowledge-Based RecognitionAlgorithm for Long-Range Infrared Bridge Images. Proceedings of SPIE - The International Society for Optical Engineering, 2001, 4379: 168~175
    110 H. X. Chen, Z. K. Shen and J. J. Shen. Method for Searching Bridge in IR Images. IEEE Aerospace and Electronics Systems Magazine, 1998, 13(7): 21~24
    111 D. P. Mandal, C. A. Murthy and S. K. Pal. Analysis of IRS Imagery for Detecting Man-Made Objects with a Multivalued Recognition System. IEEE Transactions on Systems, Man and Cybernetics, 1996, 26(2): 241~247
    112 R. L. Vergnet, P. Saint-Marc and J. L. Jezouin. A Generic Bridge Finder. Automated CAD-Based Vision, 1991, 2(3): 176~185
    113 Y. Wang and Q. F. Zheng. Recognition of Roads and Bridges in SAR Images. IEEE International Radar Conference, 1995: 399~404
    114 F. L. Su, Y. Zhu and H. T. Ge. An Algorithm of Bridge Detection in Radar Sensing Images Based on Fractal. Proceedings of the 3rd International Conference on Microwave and Millimeter Wave Technology, 2002: 410~413
    115 J. J. Zheng, X. K. Yan, C. C. Shi, et al. Recognition of Bridges over Water Based on Fracatal and Rough Sets Theory in Aerial Photography IR Image. The 8th International Conference on Signal Processing, 2006, 4: 1~4
    116陈水利,李敬功,王向公.模糊集理论及其应用.科学出版社, 2005
    117 M. Gokhale, J. Frigo, K. Mccabe. Experience with a Hybrid Processor: K-Means Clustering. The Journal of Supercomputing, 2003, 26(2): 131~148
    118张莉,周伟达,焦李成.核聚类算法.计算机学报, 2002, 2002, 25(6): 587~590
    119 (希)西奥多里蒂斯.模式识别.电子工业出版社, 2004: 324~339
    120李金宗.模式识别导论.高等教育出版社, 1994: 313~314
    121喻杰,许化溪.一种易于实现的适于细胞图像连通区域的标记算法.江苏大学学报(医学版), 2005, 15(2): 152~153,155
    122何斌,马天予,王运坚,等. Visual C ++数字图像处理.人民邮电出版社, 2001: 435~444
    123 A. Perez, R. C. Gonzalez. An Iterative Threshold Algorithm for Image Segment. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(6):742~751
    124 H. K. Yuen, J. Princen, J. Illingworth, et al. Comparative Study of Hough Transform Methods for Circle Finding. Image Vision Computing, 1990, 8(1): 71~77
    125 Q. Ji, Y. Xie. Randomised Hough Transform with Error Propagation for Line and Circle Detection. Pattern Analysis and Application, 2003, 6(1): 55~64
    126 R. O. Duda, P. E. Hart. Use of the Hough Transformation to Detect Lines and Curves in Pictures. Communications of the ACM, 1972, 15(1): 11~15
    127 L. Xu, Erkki Oja and Pekka Kultanen. A New Curve Detection Method: Randomized Hough Transform (RHT). Pattern Recognition Letters, 1990, 11(5): 331~338
    128 D. S. Luo, X. H. He, Q. Z. Teng, et al. Triplet Circular Hough Transform for Circle Detection. Journal of Electronics, 2002, 19(2): 356~362
    129 S. H. Chiu, J. J. Liaw. An Effective Voting Method for Circle Detection. Pattern Recognition Letters, 2005, 26(2): 121~133
    130 V. F. Leavers. The dynamic generalized Hough transform: Its relationship to the probabilistic Hough transform and an application to the concurrent detection of circles and ellipse. CVGIP: Image Understanding, 1992, 56(3): 381~398
    131张红民,张玉坚.基于广义Hough变换的圆心坐标快速提取方法.江汉石油学院学报,2000, 22(2): 64~66
    132 A. Goneid, S. El-Gindi, A. Sewisy. A Method for the Hough Transform Detection of Circles and Ellipses Using a 1-Dimensional Array. Proceeding of the IEEE International Conference on Systems, Man, and Cybernetics, 1997, 4: 3154~3157
    133 E. R. Davies. A High Speed Algorithm for Circular Object Location. Pattern Recognition Letters, 1987, 6(5): 323~333
    134 D. Ioannou, W. Huda and A. F. Laine. Circle Recognition through a 2D Hough Transform and Radius Histogramming . Image Vision Computing, 1999, 17(1): 15~26
    135 H. S. Kim, J. H. Kim. A Two-Step Circle Detection Algorithm from the Intersecting Chords. Pattern Recognition Letters, 2001, 22(6/7): 787~798
    136 C. H. Ho, L. H. Chen. A Fast Ellipse/Circle Detector Using GeometricSymmetry. Pattern Recognition, 1995, 28(1): 117~124
    137 K. K. Y. Raymond, K. S. T. Peter and N. K. L. Dennis. Modification of Hough Transform for Circles and Ellipses Detection Using a 2-Dimensional Array. Pattern Recognition, 1992, 25(9): 1007~1022
    138 D. Dori, W. Y. Liu. Stepwise Recovery of Arc Segmentation in Complex Line Environments. International Journal on Document Analysis and Recognition, 1998, 1 (1): 62~71
    139 V. Nagasamy, N. A. Langrana. Engineering Drawing Processing and Vectorization System. Computer Vision, Graphics and Image Processing, 1990, 49(3): 379~397
    140张习文,欧宗瑛.基于单义域邻接图的圆弧与圆识别.中国图象图形学报, 2000, 5(1): 70~74
    141 T. C. Chen, K. L. Chung. An Efficient Randomized Algorithm for Detecting Circles. Computer Vision and Image Understanding, 2001, 83(2): 172~191
    142 J. N. Kapur, P. K. Sahoo and A. K. C. Wong. A New Method for Gray-Level Picture Thresholding Using the Entropy of the Histogram. Computer Vision, Graphics, and Image Processing, 1985, 29(3): 273~285
    143 K. R. Castleman.数字图像处理.电子工业出版社, 2002
    144靖常峰,刘仁义,刘南.大数据量遥感图像处理系统算法模块的设计及实现.浙江大学学报(理学版), 2005, 32(4): 471~474

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700