Kapton等离子体注入/沉积鞘层动力学及抗原子氧侵蚀效应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
距地球表面200~700km的低地球轨道是航天飞机、空间站以及一些卫星的主要运行轨道。原子氧是低地球轨道氧化能力强,对航天器影响最为严重的因素之一,它能使航天器零部件性能衰减而导致服役失败,尤其是应用于热控涂层、太阳能电池帆板中的聚合物及其复合材料对原子氧特别敏感。本文针对如何提高聚合物Kapton表面抗原子氧侵蚀的性能,从性能评价设备的研制、聚合物表面等离子体注入鞘层动力学、防护涂层制备和原子氧侵蚀机理等方面展开研究,以提高卫星、空间站等航天器的在轨服役寿命。
     基于加速暴露试验的思路和电感耦合射频放电技术,研制了原子氧辐照地面模拟器。该模拟器可获得纯净的高密度氧等离子体,进行长时间持续辐照,且等效原子氧束流密度可连续调节。当射频功率为400W时,获得高达1016 atom/cm2·s的等效原子氧束流密度,相对低地球轨道的原子氧束流密度其加速暴露能力约为100倍。聚合物Kapton材料的质量损失随辐照时间的增加呈线性增加的趋势,其侵蚀表面的凹坑密度呈下降趋势。
     基于NASA长期飞行试验数据及其对原子氧与Kapton材料作用提出的假设,将原子氧侵蚀视为粒子输运过程,采用Monte Carlo模型,利用Visual C++编程进行了数值仿真,研究了原子氧环境及掺杂对侵蚀效应的影响和裂纹间侵蚀过程中的交互作用。低能量原子氧模拟器辐照所产生侵蚀腔体的深度较小而宽度较大。离子注入掺杂可以有效地提高Kapton表面抗原子氧侵蚀的性能。为进一步提高改性层的抗原子氧侵蚀性能,需要采用等离子体注入/沉积或复合膜层方法降低改性层中有机成分或碳的含量,同时提高膜层的致密度,降低膜层与原子氧反应的系数。裂纹所产生的原子氧侵蚀效应是巨大的,特别是膜层表面存在大量裂纹时,由于裂纹间原子氧侵蚀的交互作用,裂纹的危害性更强。当ANI发生转变时,原子氧侵蚀腔体底部出现“山丘”形貌,其倾斜度随原子氧攻角的增大而增大。相邻宽度大小不等的裂纹间原子氧侵蚀过程中存在交互作用,出现具有台阶的侵蚀腔体。
     由于聚合物导电性能较差以及表面电荷积聚所产生的电容效应致使其表面电位衰减,采用等离子体浸没离子注入对其表面改性,是非常困难的。利用等离子体动力学粒子模型,实时跟踪离子在等离子体鞘层中的运动形态及特性并进行统计分析。研究表明对于较薄的聚合物膜,电容效应影响较小,离子注入能量较高。而对于厚大聚合物材料,为消除电荷积聚、打火及施加偏压难的问题,栅网辅助等离子体浸没离子注入是非常理想的方法。研究了辅助栅网对二次电子发射的抑制作用和离子注入动力学行为。离子注入聚合物表面,其表面电位降低,在栅网与聚合物表面形成电场并抑制二次电子的发射。栅网对二次电子发射的抑制能力,随栅网间隙率的减小和高度的增加而增强。通过栅网上方鞘层内电场的加速作用,离子由栅网间隙穿过并以较高的能量注入聚合物表面。辅助栅网产生的阴影效应致使离子注入剂量不均,阴影效应可通过缩短脉宽,适当增大栅网的高度和间隙率来减弱。
     高能离子的注入在膜基界面处形成混合层,有利于提高膜基结合力和抵抗裂纹萌生和扩展的能力,但太高的注入能量使聚合物基体的光学透过率降低,吸收系数升高。射频辅助成膜有利于提高膜层的膜基结合力和改善光学性能。选择10kV负脉冲偏压和辅助射频功率200W的参数,通过铝/硅等离子体的注入/沉积制备了氧化铝/氧化硅复合涂层。该复合涂层具有良好的膜基结合力和抗裂纹萌生和扩展的能力,氧化硅膜的增透作用和硅等离子体的再注入作用Al2O3·SiO2新相形成,改善了氧化铝涂层的光学性能。原子氧辐照结果表明,复合涂层防护试样的质量损失不及Kapton基体质量损失的1/20,且光学性能稳定、表面仍较平整,表明等离子体注入/沉积技术可在热控涂层材料Kapton表面制备抗原子氧侵蚀性能优越的防护涂层。
     膜基界面的状态对膜基结合力尤为重要。采用X射线光电子能谱对原子氧侵蚀前后的氧化铝/氧化硅复合涂层进行了逐层剖析,重点研究了氧化硅与氧化铝和氧化铝与聚合物过渡区元素的结合状态。在氧化铝与聚合物和氧化硅与氧化铝交界面处分别形成了Al-O-C和Si-O-Al键,提高了膜基与膜层间的结合力。复合涂层中有机成分夹杂与原子氧反应生成易挥发的物质,形成缺陷为原子氧的侵蚀提供了条件。基于复合涂层原子氧的侵蚀行为,分析了原子氧侵蚀过程,主要包括原子氧与聚合物基体和有机成分夹杂及涂层的往复碰撞、原子氧吸附和向聚合物基体表面的扩散、原子氧与聚合物中的元素反应生成气体小分子并在聚合物表面下积聚形成气泡、气泡破裂气体溢出发生质量损失并反作用于防护涂层的复杂作用过程。
In low Earth orbit (LEO), between 200 and 700km altitude, where space shuttles and International Space Station (ISS) fly, atomic oxygen (AO) is the dominant atmospheric constituent. AO is highly reactive and erodes many materials commonly used in spacecrafts. This may degrade the performance of spacecraft components, leading to service failure. Some polymeric materials such as those used in thermal control blankets, solar arrays, and lightweight composite structures are particularly susceptible to AO. In the thesis, some topics on the fabrication of AO ground simulation apparatus, simulation of AO erosion of protected Kapton, enhancement anti-AO erosion of Kapton, sheath dynamics during plasma immersion implantation, performance evaluation, fabrication and interaction with AO of protective coating are discussed. These serve for improving service lifetime of satellites, ISS and other space shuttle.
     A radio frequency inductively-coupled plasma (RF-ICP) apparatus has been developed to simulate the AO environment encountered in LEO. Owing to the novel design, the apparatus can achieve stable, long lasting operation, pure and high density oxygen plasma beam. Furthermore, the effective AO flux can be regulated with large scale. The equivalent effective AO flux can reach 1016 atom/cm2·s at RF power of 400 W. The equivalent AO is about 100 times than that in the LEO environment. The mass loss measured from the Kapton sample changes linearly with the exposure time while the density of the eroded holes becomes smaller. The erosion mechanism of the polymeric materials by AO is complex and involves initial reactions at the gas-surface interface as well as steady-state materials removal.
     The results of LDEF and the hypothesis of erosion model proposed by NASA are utilized. The program is developed with Monte Carlo model and compiled by VC++ to simulate the interaction of protected Kapton with AO. The effect of different AO environment, improvement of erosion resistance of Kapton by ion implantation, and interaction between cracks were focused on during AO erosion. Compare with the space erosion result, the erosion cavity with shallower depth and wider width was obtained during low-energy AO exposure. The ion implantation technique shows excellent promivement for the protection of Kapton for space applications. To reduce the composition of organic compound and carbon in the film, some methods are to use plasma implantation/deposition or multiple-laryer films. These can reduce the AO reaction probability of modified Kapton, and provide excellent protection from erosion by AO. Crack is harmful for resistant to AO attack. When some cracks take place interaction during exposing to AO, the harm of cracks is more serious. The bottom of erosion cavity shows“massif-like”shape, and the gradient grows with the increase of ANI. The numerical simulation results can provide a useful guide to develop new protective coatings for aerospace application.
     Plasma immersion ion implantation (PIII) of insulating materials is inherently difficult because the voltage across the sheath is reduced by the voltage drop across the insulator due to dielectric capacitance and charge accumulating on the insulator surface during the pulse. The spatio-temporal evolution of plasma sheath, energy and dose of ion implantation has been simulated by particle-in-cell (PIC) modeling. Statistical results can be achieved through scouting each ion in the plasma sheath. For the thinner polymer, the dielectric capacitance could be neglected, and the incident energy of ion is high. But treating thick insulating parts, mesh-assisted plasma immersion ion implantation is a promising technique for overcoming charging, arcing and the difficulty of controlling the surface potential of the target. The internal electric field in the cage automatically builds up once plasma implantation starts. This electric field substantially suppresses the emission of secondary electrons from the insulator surface. With decreasing the ratio of mesh space and increasing the height of mesh, the capability of the secondary electron suppression was enhanced. Ions were accelerated toward the mesh passing through the apertures and implanted into the insulating materials with high energy. But the mesh casts a shadow on the sample surface leading to potential non-uniformity dose. And the shadow effect can be weakened by shortening the pulse, increasing the height and space ratio of mesh.
     Alumina film has been fabricated on Kapton substrate by aluminum plasma ion implantation and deposition in an oxidizing ambient and the effects of the bias voltage, thickness and power of assistant RF on the film properties are investigated. Rutherford backscattering spectrometry (RBS) and X-ray photoelectron spectroscopy (XPS) reveal successful deposition of alumina films on the polymer surface. Our results indicate that higher bombardment energy may lead to higher crack resistance and better film adhesion by inducing more extensive ion mixing and recoil implantation. However, a higher bias degrades the optical properties of the films as indicated by the higher absorbance. The crack onset strain, the adhesion, the cohesion, and the optical transmittance are increased with RF-assisted plasma ion implantation and deposition due to an enhanced ion bombardment, thus forming network densification. And multiple-layer alumina/silica films were fabricated by implantation and deposition with Al/Si plasmas using metal vapor vacuum arc source with -10kV bias and 200W assistant RF power. The hybrid processes can fabricate thicker protective film with higher crack resistance and better film adhesion. The multiple-layer films enhanced the optical transmittance compared to the single alumina layer. This may be attributed to enhanced-transmittance ofsilica and formation of the new material Al2O3·SiO2. The properties of anti-AO erosion were evaluated in ground-based facility. The multiple-layer alumina/silica films demonstrated slight attenuation of reflectance and twentieth mass loss. The slight change of solar specular reflectance, surface morphology and little mass loss of samples with multiple-layer films show that the techgnique is an effective method to protect Kapton material which was applied to thermal control system of spacecrafts.
     Since the interface greatly influenced the adhesion, XPS is employed in a study of interaction and AO erosion mechanisms of silica/alumina films on Kapton. The results revealed that bonding between the ceramic and the polymer occurred primarily via Al-O-C bonds, and Si-O-Al bonds were formed in the interface between silica and alumina coatings. These interfacial bonds play an important role in the enhancement of adhesion. The significant carbon content in the multiple-layer films can be explained by the presence of organic component, and reacts with AO to form volatile fragments. The reaction of organic carbon is the main route for AO to be introduced into the multilayer film. The erosion process of multiple-layer alumina/silica films induced by AO involving the collision, diffusion, reaction, gas release, and retroaction to protective films is proposed.
引文
1 J. J. Osborne, I. L. Harris, G. T. Roberts, A. R. Chambers. Satellite and Rocket-Borne Atomic Oxygen Sensor Techniques. Review of Scientific Instruments. 2001, 72: 4025-4041
    2 V. E. Skurat, E. A. Barbashev, Y. I. Dorofeev, A. P. Nikiforov, M. M. Gorelova, A. I. Pertsyn. Simulation of Polymer Film and Surface Behaviour in a Space Environment. Applied Surface Science. 1996, 92: 441-446
    3叶宗海,都亨,龚建村.中国的空间环境研究与空间环境预报.地球物理学进展. 1999, 14: 20-29
    4金恂叔.论航天器的环境试验和可靠性.中国空间科学技术. 1997, 5: 33-40
    5 C. S. Haley, I. C. Mcdade, S. M. L. Melo. An Assessment of a Method for Recovering Atomic Oxygen Density Profiles from Column Integrated Nightglow Intensity Measurements. Advances in Space Research. 2001, 27(6-7):1147-1152
    6 S. K. Rutledge, Phillip E. Paulsen, Thomas J. Steuber. Simulation of the Low Earth Orbital Atomic Oxygen Interaction With Materials by Means of an Oxygen Ion Beam. NASA/TM-1989-101971
    7 B. A. Banks, R. Demko. Atomic Oxygen Protection of Materials in Low Earth Orbit. NASA/TM-2002-211360
    8 Y. Nakayama, K. Imagawa, M. Tagashita, M. Nakai, H. Kudoh, M. Sugomoto, N. Kasai, T. Seguchi. Evaluation and Analysis of Thermal Control Materials under Ground Simulation Test for Space Environment Effects. 8th International Symposium on“Materials in a Space Environment”, 5th International Conference on“Protection of Materials and Structures from the LEO Space Environment”. Arcachon-France, 5-9 June 2000
    9 Q. Feng, Z. L. yang, Y. G. Ding, C. C. Wang, J. F. Cui, D. K. Yan. Development of a Combined Environment Effects Test Facility for Studying Degradation of Surface Properties of Spacecraft Materials. 8th International Symposium on“Materials in a Space Environment”, 5th International Conference on“Protection of Materials and Structures from the LEO SpaceEnvironment”. Arcachon- France, 5-9 June 2000
    10 S. Avcu, B. Celik. Structural Material Selection and Processing for Low Earth Orbit Spacecraft Regarding Atomic Oxygen Effects. Recent Advances in Space Technologies. 2003, 20: 589-594
    11 M. Finckenor, J. Visentine, S. Adam, J. Zwiener, V. Loebs. Contamination, UV Radiation, and Atomic Oxygen Effects on ISS Thermal Control Materials. AIAA-2003-1084
    12 V. Chernik, S. Naumov, S. Demidov, S. Sokolova, A. Kurilyonok, V. Svechkin. Atomic Oxygen Ground and MIR Flight Testing of Polyimide Films with Various Protective Coatings. 8th International Symposium on“Materials in a Space Environment”, 5th International Conference on“Protection of Materials and Structures from the LEO Space Environment”. Arcachon-France, 5-9 June 2000
    13 D. Schwam, M. H. Litt. Evaluation of Atomic Oxygen Resistant Coatings for Space Structures. Advanced Performance Materials. 1996, 3: 153-169
    14李春东.薄膜二次表面镜空间辐照效应评价及预测.哈尔滨工业大学博士论文. 2000, 4-17
    15 Y. Nakayama1, K. Imagawa, M. Tagashira, M. Nakai, H. Kudoh, M. Sugimoto, N. Kasai, T. Seguchi. Evaluation and Analysis of Thermal Control Materials under Ground Simulation Test for Space Environment Effects. High Performance Polymers. 2001, 13: S433-S451
    16 J. H. Han, C. G. Kim. Low Earth Orbit Space Environment Simulation and its Effects on Graphite/Epoxy Composites. Composite Structures. 2004, 72: 218-226
    17闵桂荣.航天器热控制技术.第二版.宇航出版社, 1998: 3-15
    18闵桂荣,郭舜.航天器热控制.科学出版社, 1985: 7-15
    19高慎斌.卫星制造技术(下).宇航出版社, 1998: 57-65, 211-213
    20 J. W. Lucas. Heat Transfer and Spacecraft Thermal Control. New-York: Energy sources. 1970: 5-23
    21 P. A. Hansen. The Hubble Space Telescope Servicing Mission 3A Contamination Control Program. 8th International Symposium on“Materials in a Space Environment”, 5th International Conference on“Protection of Materials and Structures from the LEO Space Environment”. Arcachon-rance, 5-9 June 2000
    22 J. A. Townsend, P. A. Hansen, K. K. de Groh, B. A. Banks. Ground-based Testing of Replacement Thermal Control Materials for the Hubble Space Telescope. High Performance Polymers. 1999, 11: 63-79
    23 K. K. de Groh, D. C. Smith. Investigation of Teflon FEP Embrittlement on Spacecraft in Low Earth Orbit. NASA-TM-113153
    24 J. Lennhoff, G. Harris, J. Vaughn, D. Edwards, J. Zwiener. Electrically Conductive Space-Durable Polymeric Films for Spacecraft Thermal and Charge Control. High Performance Polymers. 1999, 11: 101-111
    25 K. K. de Groh, J. R. Gaier, R. L. Hall, M. J. Norris, M. P. Espe, D. R. Cato. Effects of Heating on Teflon? FEP Thermal Control Material from the Hubble Space Telescope. NASA/TM-1999-209085
    26 J. A. Townsend, P. A. Hansen, J. A. Dever, K. K. de Groh, B. A. Banks, L. Wang, C. He. Hubble Space Telescope Metalized Teflon? FEP Thermal Control Materials: On Orbit Degradation and Post-Retrievial Analysis. High Performance Polymers. 1999, 11(1): 81-100
    27 J. A. Dever, K. K. de Groh, B. A. Banks, J. A. Townsend. Effects of Radiation and Thermal Cycling on Teflon? FEP. High Performance Polymers.1999, 11(3): 123-140
    28沈志刚,赵小虎,王鑫.原子氧效应及其地面模拟试验. 2006年8月,国防工业出版社. 1-18
    29湛永钟,张国定.低地球轨道环境对材料的影响.宇航材料工艺. 2003, 1: 1-5
    30 J. W. Haffner. Natural Environmental Efects on SDI Spacecraft Surface Materials. Rockwell International. 1989, Report No.AFGL-TR-89-0084
    31朱光武,李保权.空间环境对航天器的影响及其对策研究.上海航天. 2002, 4: 1-7
    32范权福,田剑华.卫星表面原子氧通量和遭遇量的计算及讨论.空间科学学报. 1999, 19(2):167-172
    33王英鉴.中高层大气对卫星系统的影响.中国科学(A辑). 2000, 30:17-20
    34 S. Packirisamy, D. Schwam, M. H. Litt. Atomic Oxygen Resistant Coatings for Low Earth Orbit Space Structures. Journal of Materials Science. 1995, 30:308-320
    35 E. Grossman, I. Gouzman. Space Environment Effects on Polymers in Low Earth Orbit. Nuclear Instruments and Methods in Physics Research B. 2003, 208: 48-57
    36 J. W. Arenberg. Plans for Ensuring Survival of SBL Optics in the Low Earth Orbit Environment. AIAA-2001-2866
    37 S. Fasoulas, R. Forstner, T. Stockle. Flight Test of Solid Oxide Micro-Sensors on a Russian Reentry Probe. AIAA-2001-4724
    38 B. A. Banks, A. Snyder. Issues and Consequences of Atomic Oxygen Undercutting of Protected Polymers in Low Earth Orbit. NASA/TM-2002-211577
    39 E. M. Silverman. Space Environment Effects on Spacecraft: LEO Materials Selection Guide. NASA/CR-1995-4661
    40黄本诚,马有礼.航天器空间环境试验技术.国防工业出版社. 2002年1月
    41 A. Oshima, T. Seguchi, Y. Tabata. ESR Study on Free Radicals Trapped in Crosslinked Polytetrafluoroethylene (PTFE)-II Radical Formation and Reactivity. Radiation Physics and Chemistry. 1999, 55: 61-71
    42盛磊.原子氧环境对聚合物及其复合材料性能的影响.中国空间科学技术. 1994, 5: 54-61
    43 K. K. de Groh, B. A. Banks, A. Hammerstrom, E. Youngstrom, C. Kaminski, L. Marx, E. Fine, J. D. Gummow, J. D. Gummow, D. S. Wright. MISSE PEACE Polymers: An International Space Station Environmental Exposure Experiment. AIAA-2001-4923
    44多树旺,李美栓,张亚明,严川伟.低地轨道环境中的原子氧对空间材料的侵蚀与防护涂层.腐蚀科学与防护技术. 2002, 14: 152-156
    45 H. Kinoshita, J. Ikeda. A Fast Atomic Oxygen Beam Facility with in situ Testing/Analysis Capabilities. Review of Scientific Instruments. 1998, 69: 2273-2277
    46 B. A. Banks, B. M. Auer, S. K. Rutledge, C. M. Hill. Atomic Oxygen Interaction with Solar Array Blankets at Protective Coating Defect Sites. NASA-1991-N91- 207324
    47 K. K. Degroh, B. A. Banks. Atomic Oxygen Undercutting of LDEFAluminized-Kapton Multilayer Insulation. NASA-1992-N92-248186
    48 B. A. Banks, B. M. Auer, S. K. Rutledge, K. K. DeGroh, L. Gebauer. The Use of Plasm a Ashers and Monte Carlo Modeling for the Projection of Atomic Oxygen Durability of Protected Polymers in Low Earth Orbit. NASA-1993-N93-15596
    49 B. A. Banks, K. K. Degroh, B. M. Auer, L. Gebauer, J. L. Edwards. Monte Carlo Modeling of Atomic Oxygen Attack of Polymers with Protective Coatings on LDEF. NASA-1993-N93-282820
    50 B. A. Banks, T. J. Stueber, M. J. Norris. Monte Carlo Computational Modeling of the Energy Dependence of Atomic Oxygen Undercutting of Protected Polymers. NASA-N1998-0197294
    51 K. K. deGroh, B. A. Banks. A Sensitive Technique Using Atomic Force Microscopy to Measure the Low Earth Orbit Atomic Oxygen Erosion of Polymers. NASA/TM-2001-211346
    52 B. A. Banks, S. K. R. Miller, K. K. deGroh. Atomic Oxygen Effects on Spacecraft Materials. NASA/TM-2003-212484
    53 B. A. Banks, S. K. Miller, K. K. DeGroh. Low Earth Orbital Atomic Oxygen Interactions with Materials. NASA/TM-2004-213223
    54 B. A. Banks, K. K. deGroh, K. R. Sharon. Prediction of In-Space Durability of Protected Polymers Based on Ground Laboratory Thermal Energy Atomic Oxygen. NASA/TM-1996-107209
    55高劭伦,周定,蔡国飙,庄逢甘.低地球轨道环境原子氧对航天器表面材料聚酰亚胺作用的数值模拟.宇航学报. 1999, 20: 5-13
    56多树旺,李美栓,张亚明.空间材料的原子氧侵蚀理论和预测模型.材料科学研究学报. 2003, 17(2):113-120
    57 S. L. Koontz, L. J. Leger, J. T. Visentine, D. E. Hunton, J. B. Cross, C. L. Hakes. EOIM-III Mass Spectrometry and Polymer. Journal of Spacecraft and Rockets. 1995, 32: 483-495
    58 J. D. Beckerle, Q. Y. Johnson, S. T. Ceyer. Collision Induced Dissociative Chemisorption of CH4 on Ni(111) by Inert Gas Atoms: The Mechanism for Chemistry with a Hammer. Journal of Chemical Physics. 1989, 91: 5756-5777
    59陈来文. LEO环境原子氧与表面材料相互作用的理论研究.北京航空航天大学博士论文. 2001: 1-15
    60 J. K. Baird, Low-Earth-Orbit Atomic Oxygen Erosion of Polymer Surfaces. Journal of Spacecraft and Rockets. 1998, 35: 62-65
    61 R. W. Zwanzig. Collision of a Gas Atom with a Cold Surface. Journal of Chemical Physics. 1960, 32: 1173-1177
    62 C. Lee, L. W. Chen. Reactive Probability of Atomic Oxygen with Material Surfaces in Low Earth Orbit. Journal of Spacecraft and Rockets. 2000, 37(2): 252-256
    63陈来文,李椿萱.原子氧和石墨在近地轨道环境中反应概率的数值估算.宇航学报. 2000, 21(2): 64-69
    64陈来文,李椿萱.基于Lifshitz理论的相同电介质分子间等效吸引势.中国科学(A辑). 2000, 30(7): 631-638
    65 A. Gindulyte. Computational Chemistry: Modeling of Polymer Degradation by Atomic Oxygen in Low Earth Orbit. Doctor Thesis. The City University of New York 2000, 8-11
    66 Y. Yoshida, Y. Okazaki, K. Ito, S. I. Mizuguchi. Production of an Atomic Oxygen Beam by a Nozzle-Beam-Type Microwave Radical Source. Review of Scientific Instruments. 1995, 66 (8): 4166-4169
    67 J. W. Cuthbertson, W. D. Langer, R. W. Motley. Atomic Oxygen Beam Source for Orbital Environment Experiments. Materials and Manufacturing Processes. 1990, 5: 387-396
    68 M. Tagawa, M. Umeno, N. Ohmae. Influence of 5 eV Atomic Oxygen on Surface Properties of Ag Films and Graphite. AIAA-1990-728
    69王敬宜,于志战,蔡纯,李红,张景钦.同轴源原子氧地面模拟装置及其性能.中国空间科学技术. 1998, 5: 50-55
    70沈嘉年,何砚发,周龙江,李美栓.高通量中性原子氧束流的发生与控制.强激光与粒子束. 2001, 13: 228-232
    71孙刚,童靖宇,李金洪.微波电离型原子氧源的降能和中性化系统.中国空间科学技术. 1999, 6: 53-57
    72 G. B. Hoflund, R. I. Gonzalez. In situ Oxygen Atom Erosion Study of a Polyhedral Oligomeric Silsesquioxane-Polyurethane Copolymer. Journal of Adhesion Science and Technology. 2001, 15: 1199-1211
    73 G. B. Hoflund, M. L. Everett. Chemical Alteration of Poly(vinyl fluoride)Tedlar by Hyperthermal Atomic Oxygen. Applied Surface Science. 2005, 239: 367-375
    74 S. K. Rutledge, B. A. Banks. A Technique for Synergistic Atomic Oxygen and Vacuum Ultraviolet Radiation Durability Evaluation of Materials for Use in LEO. NASA/TM-1996-107230
    75 A. F. Whitaker, B. Z. Jang. Oxygen Plasma Environment: its Effect on Polymer. SAMPE Journal. 1994, 30: 30-40
    76 A. C. Bennett, K. Omidva. Alternative Method for the Thermos-Pheric Atomic Oxygen Density Determination. Advances in Space Research. 200l, 27(10):1685-1690
    77沈志刚,赵小虎,陈军,王忠涛,邢玉山,麻树林.灯丝放电磁场约束型原子氧效应地面模拟试验设备.航空学报. 2000, 21(5): 425-430
    78赵小虎,沈志刚,王忠涛,邢玉山.空间Kapton材料的原子氧\温度\紫外效应试验研究.北京航空航天大学学报. 2001, 27(6): 670-673
    79赵小虎,沈志刚,王忠涛,邢玉山,麻树林.空间用聚四氟乙烯材料的原子氧、温度、紫外辐射效应的试验研究.航空学报. 2001, 22(3):232-236
    80沈志刚,王忠涛,赵小虎,金海雯.空间太阳电池板银互连片原子氧效应模拟试验.北京航空航天大学学报. 2000, 26(6): 676-679
    81童靖宇,李金洪,刘锋.一种微波等离子体原子氧模拟装置.中国空间科学技术. 1995, 4: 60-65
    82 Y. X. Huang, X. B. Tian, S. Q. Yang, Paul K. Chu. A Ground-Based Radio Frequency Inductively Coupled Plasma Apparatus for Atomic Oxygen Simulation in Low Earth Orbit. Review of Scientific Instruments. 2007, 78: 103301-1-103301-4
    83初文毅.空间原子氧对聚合物薄膜损伤效应及机理研究.哈尔滨工业大学博士论文. 2007, 74-81
    84 R. Verker, E. Grossman, I. Gouzman, N. Eliaz. Residual Stress Effect on Degradation of Polyimide under Simulated Hypervelocity Space Debris and Atomic Oxygen. Polymer. 2007, 48: 19-24
    85 R. C. Tennyson. Protection of Polymeric Materials from Atomic Oxygen. High Performance Polymers. 1999, 11: 157-165
    86 R. C. Tennyson, W. D. Morison. Space Environmental effects on thin film dielectrics. Conference Record of the 1992 IEEE International Symposiumon Electrical Insulation, Baltimore, MD USA, June 7-10, 1992, 13-16
    87 Z. A. Inskanderova, J. I. Kleiman, Y. Gudimenko, A. Tkachenko, R. C. Tennyson, I. G. Brown, O. R. Monteiro. Metal Ion Implantation and Dynamic Ion Mixing for Protection of High-Performance Polymers from Severe Oxidative Environment Nuclear Instruments and Methods in Physics Research B. 1999, 148: 1090-1096
    88 K. Koski, J. H?ls?, P. Juliet, Z. H. Wang, R. Aimo, K. Pischow. Characterisation of Aluminium Oxide Thin Films Deposited on Polycarbonate Substrates by Reactive Magnetron Sputtering. Materials Science and Engineering B. 1999, 65: 94-105
    89 J. Thurn, R. F. Cook, Mechanical and Thermal Properties of Physical Vapour Deposited Alumina Films Part II Elastic, Plastic, Fracture, and Adhesive Behaviour. Journal of Materials Science. 2004, 39: 4809-4819
    90 S. W. Duo, M. S. Li, M. Zhu, Y. C. Zhou. Resistance of Polyimide/Silica Hybrid Films to Atomic Oxygen Attack. Surface and Coatings Technology. 2006, 200: 6671-6677
    91多树旺,李美栓,张亚明,韩恩厚,童靖宇,孙刚. Kapton抗原子氧侵蚀的Al2O3涂层研究.宇航学报. 2002, 23(4): 68-72
    92 C. L. Bungay, T. E. Tiwald, M. J. Devries, C. L. Bungay, T. E. Tiwald, M. J. Devries. Protection of Space Materials from the Space Environment. Proceedings of ICPMSE-4, Fourth International Space Conference, Toronto, Canada, April 23-24, 1998, p. 51
    93 J. W. Gilman, D. S. Schlitzer, J. D. Lichtenhan. Low Earth Orbit Resistant Siloxane Copolymers. Journal of Applied Polymer Science. 1996, 60 (4): 591-596
    94 M. R. Wertheimer, J. Cerny, J. E. Klemberg-Sapieha, L. Martinu, G. Czeremuszkin. Plasma-Deposited Coatings and Surface Fluorination for Protection of Spacecraft Materials against Atomic Oxygen Erosion. International Symposium on Materials in Space Environment, 7th,Toulouse, France, June 16-20, 1997, p. 393-402
    95 K. K. De Groh, B. A. Banks. Atomic Oxygen Undercutting of Long Duration Exposure Facility Aluminized-Kapton Multilayer Insulation. Journal of Spacecraft and Rockets. 1994, 31(4): 656-664
    96张蕾,严川伟,屈庆,孙刚,童靖宇,曹楚南.有机硅热控涂层的空间环境行为.腐蚀科学与防护技术. 2003, 15: 21-23
    97曾一兵,张廉正,于翘.空间环境下的有机热控涂层.宇航材料工艺. 1997, 3: 18-20
    98张蕾,严川伟,李绮. SiO2-K2SiO3涂层对空间材料Kapton的防护行为研究.中国腐蚀与防护学报. 2004, 24(2): 91-94
    99 X. Wang, X. H. Zhao, M. Z. Wang, Z. G. Shen. The Effects of Atomic Oxygen on Polyimide Resin Matrix Composite Containing Nano-Silicon Dioxide. Nuclear Instruments and Methods in Physics Research B. 2006, 243: 320-324
    100 A. A. Galuska. Adhesion Enhancement of Ni Films on Polyimide using Ion Processing. I. 28Si+ Implantation. Journal of Vacuum Science and Technology B. 1990, 8: 470-481
    101 Z. A. Iskanderova, J. Kleiman, Y. Gudimenko, W. D. Morison, R. C. Tennyson. Improvement of Oxidation and Erosion Resistance of Polymers and Composites in Space Environment by Ion Implantation. Nuclear Instruments and Methods in Physics Research B. 1997, 127/128: 702-709
    102 I. H. Tan, M. Ueda, R. S. Dallaqua, J. O. Rossi, A. F. Beloto, M. H. Tabacniks, N. R. Demarquette, Y. Inoue. Treatment of Polymers by Plasma Immersion Ion Implantation for Space Applications. Surface and Coatings Technology. 2004, 186: 234-238
    103 M. Ueda, K. G. Kostov, A. F. Beloto, N. F. Leite, K. G. Grigorov, Surface Modification of Polyethylene Terephthalate by Plasma Immersion Ion Implantation. Surface and Coatings Technology. 2004, 186: 295-298
    104 Z. A. Iskanderova, J. Kleiman, W. D. Morison, R. C. Tennyson. Erosion Resistance and Durability Improvement of Polymers and Composites in Space Environment by Ion Implantation. Materials Chemistry and Physics. 1998, 54: 91-97
    105 D. G. Zimcik, M. R. Wertheimert, K. B. Balmaint, R. C. Tennyson. Plasma- Deposited Protective Coatings for Spacecraft Applications. Journal of Spacecraft and Rockets. 1991, 28: 652-657
    106 J. H. Sanders, B. J. Tatarchuk. Pinhole plugging characteristics of silica/iron/silver protective coatings in atomic oxygen environments. ThinSolid Films. 1990, 192: 79-95
    107 H. T. Tsou, W. Kowbel. A Hybrid PACVD BC/CVD Si3N4 Coating for Oxidation Protection of Composites. Carbon. 1995, 33: 1289-1292
    108 G. Dennler, A. Houdayer, M. Latrèche, Y. Ségui, M. R. Wertheimer. Studies of the Earliest Stages of Plasma-Enhanced Chemical Vapor Deposition of SiO2 on Polymeric Substrates. Thin Solid Films. 2001, 382: 1-3
    109卢榆孙,冯煌东,翟厚明,王艺.防原子氧与抗辐射环境薄膜性能研究.空间科学学报. 1999, 4: 375-380
    110封伟,吴洪才.离子注入技术改性聚合物薄膜的研究进展.真空科学与技术学报. 2000, 20(1): 50-54
    111 Z. A. Iskanderova, J. Kleimana, Y. Gudimenkoa, R. C. Tennysonb, W. D. Morison. Comparison of Surface Modification of Polymeric Materials for Protection from Severe Oxidative Environments using Different Ion Sources. Surface and Coatings Technology. 2000, 127: 18-23
    112 R. Spolenak, L. Sauter, C. Eberl. Reversible Orientation-Biased Grain Growth in Thin Metal Films Induced by a Focused Ion Beam. Scripta Materialia. 2005, 53: 1291-1296
    113 R. M. Bradley, J. M. E. Harper, D. A. Smith. Theory of Thin-Film Orientation by Ion Bombardment during Deposition. Journal of Applied Physics. 1986, 60: 4160-4164
    114 H. A. Atwater, C. V. Thompson, H. I. Smith. Ion-Bombardment-Enhanced Grain Growth in Germanium, Silicon, and Gold Thin Films. Journal of Applied Physics. 1988, 64: 2337-2340
    115 H. A. Atwater, C. V. Thompson, H. I. Smith. Interface-Limited Grain-Boundary Motion during Ion Bombardment. Physical Review Letters. 1988, 60: 112-115
    116 M. Ueda, I. H. Tan , R. S. Dallaqua , J. O. Rossi, J. J. Barroso, M. H. Tabacniks. Aluminum Plasma Immersion Ion Implantation in Polymers. Nuclear Instruments and Methods in Physics Research Section B. 206 (2003) 760-766
    117 M. R. Wertheimer, J. E. Klemberg-Sapieha, H. P. Schreiber. Advances in Basic and Applied Aspects of Microwave Plasma Polymerization. Thin Solid Films. 1984, 115: 109-124
    118 H. W. Brandhorst, M. J. O’Neill, J. D. Lichtenhan. A Silicone/POSS Coating for Thin Film Solar Cells and Concentrators. NASA/CP-2005-213431
    119 R. L. Kiefer, R. A. Anderson, M. H. Y. Kim, S. A. Thibeault. Modified Polymeric Materials for Durability in the Atomic Oxygen Space Environment. Nuclear Instruments and Methods in Physics Research B. 2003, 208: 300-302
    120 R. Mutikainen. Multiple Layer Coating Scheme to Protect Polymer Films from Atomic Oxygen Erosion. Thin Solid Films. 1994, 238: 248-257
    121 M. L. Sander, S. F. Rowlands, P. G. Coombs. Self-healing UV-barrier Coating for Flexible Polymer Substrate.USA Patent: 5790304, 1998
    122 J. R. Conrad. Sheath Thickness and Potential Profiles of Ion-Matrix Sheaths for Cylindrical and Spherical Electrodes. Journal of Applied Physics. 1987, 62: 777-779
    123 J. R. Conrad, J. L. Radtke, R. A. Dodd, F. J. Worzala, N. C. Tran. Plasma Source Ion-Implantation Technique for Surface Modification of Materials. Journal of Applied Physics. 1987, 62: 4591-4596
    124 J. R. Conrad, S. Baumanne, R. Fleming, G. P. Meeker. Plasma Source Ion Implantation Dose Uniformity of a 2x2 Array of Spherical Targets. Journal of Applied Physics. 1989, 65: 1707-1712
    125 P. K. Chu. Recent Developments and Applications of Plasma Immersion Ion Implantation. Journal of Vacuum Science and Technology B. 2004, 22 (1): 289-296
    126 D. C. R. Santos, R. C. C. Rangel, R. P. Mota, N. C. Cruz, W. H. Schreiner, E. C. Rangel. Modification of Plasma Polymer Film by Ion Implantation. Materials Research, 2004, 7(3): 493-497
    127 I. G. Brown, A. Anders, S. Anders, M. R. Dickinson, R. A. MacGill. Metal Ion Implantation-Conventional vs Immersion. Journal of Vacuum Science and Technology B. 1994, 12(2): 823-827
    128 I. G. Brown. Vacuum Arc Ion Sources. Review of Scientific Instruments. 1994, 65: 3061-3081
    129 T. W. H. Oates, M. M. M. Bilek. Insulator Surface Charging and Dissipation During Plasma Immersion Ion Implantation using a Thin Conductive Surface Film. Journal of Applied Physics. 2002, 92: 2980-2983
    130 Ricky K. Y. Fu, Paul K. Chu, X. B. Tian. Influence of Thickness and Dielectric Properties on Implantation Efficacy in Plasma Immersion Ion Implantation of Insulators. Journal of Applied Physics. 2004, 95: 3319-3323
    131 A. Lacoste, F. L. Coeur, Y. Arnal, J. Pelletier, C. Grattepain. PBII Processing of Dielectric Layers: Physical Aspects Limitations and Experimental Results. Surface and Coatings Technology. 2001, 135: 268-273
    132 X. B. Tian, Ricky K.Y. Fu, J. Y. Chen, Paul K. Chua, I. G. Brown. Charging of Dielectric Substrate Materials during Plasma Immersion Ion Implantation. Nuclear Instruments and Methods in Physics Research B. 2002, 187: 485-491
    133 T. W. H. Oates, M. M. M. Bilek, D. R. Mckenzie. Plasma immersion ion implantation using polymeric substrates with a sacrificial conductive surface layer. Surface and Coatings Technology. 2002, 156:332-337
    134 Ricky K. Y. Fu and Ka Leung Fu. Effects of Mesh-Assisted Carbon Plasma Immersion Ion Implantation on the Surface Properties of Insulating Silicon Carbide Ceramics. Journal of Vacuum Science and Technology A. 2004, 22: 356-360
    135 R. C. Powles, D. T. K. Kwok, D. R. McKenzie, M. M. M. Bilek, Simulation of a Semitransparent Conducting Mesh Electrode For Plasma Immersion Ion Implantation. Physics of Plasmas. 2005, 12: 093507-1-093507-6
    136 Ricky K. Y. Fu, X. B. Tian, Paul K. Chu. Enhancement of Implantation Energy using a Conducting Grid in Plasma Immersion Ion Implantation of Dielectric/Polymeric Materials. Review of Scientific Instruments. 2003, 74: 3697-3700
    137马国佳,张华芳,武洪臣,蒋艳莉,彭丽平. SiC-C/SiC复合材料进行硼离子注入的工艺研究.真空. 2005, 42: 23-26
    138 G. A. Emmert. Model for Expanding Sheaths and Surface Charging at Dielectric Surfaces during Plasma Source Ion Implantation. Journal of Vacuum Science and Technology B. 1994,12(2): 880-883
    139施芸城.平面介质靶周围离子体鞘的特征.华东师范大学学报(自然科学版). 1999, 3: 59-63
    140 Z. L. Dai, Y. N. Wang. Dynamic Sheath Model at Pulsed-Biased Insulating Substrates. Journal of Applied Physics. 2002, 92: 6428-6433
    141 Z. L. Dai, Y. N. Wang. Comparison between Characteristics of Radio-Frequency Sheaths and Pulse Sheaths with Insulating Substrates. Surface and Coatings Technology. 2003, 165: 224-231
    142 X. C. Li, Y. N. Wang. Investigation of Secondary Electron Emission Effects in Plasma Immersion Ion Implantation with Dielectric Substrates. Thin Solid Films. 2006, 506-507: 307-310
    143 E. V. Barnat, T. M. Lu. Transient Charging Effects on Insulating Surfaces Exposed to a Plasma during Pulse Biased DC Magnetron Sputtering. Journal of Applied Physics. 2001, 90: 5898-5903
    144 T. W. H. Oates, J. Pigott, D. R. McKenzie, M. M. M. Bilek. Electric Probe Measurements of High-Voltage Sheath Collapse in Cathodic Arc Plasmas Due to Surface Charging of Insulators. IEEE Transactions on Plasma Science. 2003, 31(3): 438-443
    145 X. B. Tian, K. Y. Fu, P. K. Chu, S. Q. Yang. Plasma Immersion Ion Implantation of Insulating Materials. Surface and Coatings Technology. 2005, 196: 162-166
    146 X. B. Tian, S. Q. Yang, Y. X. Huang, Paul K Chu, Ricky K Y Fu. Implantation Dynamics of Plasma Implantation into Insulating Strips. Journal of Physics D: Applied Physics. 2004, 37: 50-54
    147 D. Kim, D. J. Economou. Simulation of a Two-Dimensional Sheath over a Flat Insulator-Conductor Interface on a Radio-Frequency Biased Electrode in a High-Density Plasma. Journal of Applied Physics. 2004, 95: 3311-3318
    148 D. Kim, Demetre J. Economou. Simulation of a Two-Dimensional Sheath over a Flat Wall with an Insulator /Conductor Interface Exposed to a High Density Plasma. Journal of Applied Physics. 2004, 94: 2852-2857
    149 http://www2.dupont.com/Kapton/en_US/products/HN/index.html
    150 P. K. Chu, B. Y. Tang, Y. C. Cheng, P. K. Ko. Principles and Characteristics of a New Generation Plasma Immersion Ion Implanter. Review of Scientific Instruments. 1997, 68: 1866-1874
    151 S. Lee, Y. C. Tien, C. F. Hsu, FTIR Analysis of Plasma Damage of Kapton. Plasmas and Polymers. 1999, 4: 229-239
    152 B. A. Latella, G. Triani, P. J. Evans. Toughness and Adhesion of Atomic Layer Deposited Alumina Films on Polycarbonate Substrates. Scripta materialia. 2007, 56: 493-496
    153 S. H. Hsiao, C. P. Yang, S. C. Huang, Polyimides from 1,5-bis(4-amino-2- trifluoromethylphenoxy)naphthalene and Aromatic Tetracarboxylic Dianhydrides. European Polymer Journal. 2004, 40: 1063-1074
    154 J. W. Connell, K. A. Watson1. Space Environmentally Stable Polyimides and Copolyimides Derived from Bis(3-aminophenyl)-3,5-di(trifluoromethyl) phenylphosphine Oxide. High Performance Polymers. 2001, 13: 23-34
    155 ASTM E-2089-00. Standard practices for ground laboratory atomic oxygen interaction evaluation of materials for space applications. In: Annual book of ASTM standards, vol. 15.03. West Conshohocken, PA, USA: ASTM International; 2002. p. 752-6
    156 J. Hopwood, C. R. Guarnieri, S. J. Whitehair, J. J. Cuomo. Langmuir Probe Measurements in an RF Induction Plasma. Journal of Vacuum Science and Technology A. 1993, 11: 152-156
    157 M. S. Barnes, J. C. Forster, J. H. Keller. Electron Energy Distribution Function Measurements in a Planar Inductive Oxygen Radio Frequency Glow Discharge. Applied Physics Letters. 1993, 62: 2622-2624
    158 J. Hopwood. Ion Bombardment Energy Distributions in a Low Pressure rf Induction Plasma. Applied Physics Letters. 1993, 62: 940-942
    159 J. Hopwood. Review of Inductively Coupled Plasmas for Plasma Processing. Plasma Sources Science Technology. 1992, 1: 109-116
    160 J. H. Keller. Inductive plasma for plasma processing. Plasma Sources Science Technology. 1996, 5: 166-172
    161 J. T. Visentine, L. J. Leger, J. F. Kuminecz, I. K. Spiker. STS-8 atomic oxygen effects experiment. AIAA-85-0415
    162 V. V. Rybkin, A. B. Bessarab, E. V. Kuvaldina, A. I. Maximov, V. A. Titov. Self-consistent Analysis of Low Temperature Oxygen Plasma and Processes of Its Interaction with Some Polymer Materials. Pure and Applied Chemistry. 1996, 68: 1041-1045
    163 N. Krstulovi?, I. Labazan, S Milo?evi?, U. Cvelbar, A Vesel, M. Mozeti?. Optical Emission Spectroscopy Characterization of Oxygen Plasma during Treatment of a PET Foil. Journal of Physics D: Applied Physics, 2006, 39:3799-3804
    164 T. Vrlini?, A. Vesel, U. Cvelbar, M. Krajnc, M. Mozeti?. Rapid SurfaceFunctionalization of Poly(ethersulphone) Foils Using a Highly Reactive Oxygen-Plasma Treatment. Surface and Interface Analysis, 2007, 39: 476-481
    165 E. J. H. Collart, J. A. G. Baggerman, R. J. Visser. On the Role of Atomic Oxygen in the Etching of Organic Polymers in a Radio-Frequency Oxygen Discharge. Journal of Applied Physics. 1995, 78 (1): 47-54
    166 N. Agarwal, S. Ponoth, J. Plawsky, P. D. Persans. Roughness Evolution in Polyimide Films due to Plasma Etching. Applied Physics Letters. 2001, 78: 2294-2296
    167 T. K. Minton, J. M. Zhang, D. J. Garton, J. W. Seale. Collision-Assisted Erosion of Hydrocarbon Polymers in Atomic-Oxygen Environments. High Performance Polymer. 2000, 12: 27-42
    168 W. S. Slemp, B. Santos-Mason, G. T. Sykes, W. G. Witte. Effects of STS-8 Atomic Oxygen Exposure on Composites, Polymer Films, and Coatings. AIAA-85-0421
    169 A. P. Nikiforov, V. E. Skurat. Kinetics of Polyimide Etching by Supersonic Beams Consisting of Atomic And Molecular Oxygen Mixtures. Chemical Physics Letters. 1993, 212: 43-49
    170 M. R. Reddy. Review Effect of Low Earth Orbit Atomic Oxygen on Spacecraft Materials. Journal of Materials Science. 1995, 30: 281-307
    171 B. A. Banks, K. K. deGroh, B. M. Auer, L. Gebauer, and J. L. Edwards, ibid., 1137
    172 K. K. deGroh, J. A. Terlep, T. M. Dever. Atomic oxygen Durability of Solar-concentrator Materials for Space Station Freedom. NASA/TM-1990-105378
    173 K. K. deGroh, B. A. Banks, D. C. Smith, Environmental Durability Issues for Solar Power Systems in Low Earth Orbit. NASA/TM-1995-106775
    174 S. K. Rutledge, J. A. Mihelcic. Undercutting of Defects in Thin Film Protective Coatings on Polymer Surfaces Exposed to Atomic Oxygen. NASA/TM-1990-101986
    175 J. W. Bartha, P. O. Hahn, F. Legoues, P. S. Ho. Photoemission Spectroscopy Study of Aluminum-Polyimide Interface. Journal of Vacuum Science and Technology A. 1985, 3: 1390-1393
    176 B. A. Banks, S. K. Rutledge, K. K. de Groh, B. M. Auer, M. J. Mirtich, L.Gebauer, C. M. Hill, R. F. Lebed. LDEF Spacecraft, Ground Laboratory, and Computational Modeling Implications on Space Station Freedom’s Solar Array Materials and Surfaces Durability. Photovoltaic Specialists Conference, 1991, Conference Record of the Twenty Second IEEE. p.1434-1439
    177林波,高劭伦,赵阳.原子氧环境对有保护Kapton材料基蚀作用的研究.上海航天. 2002, 6: 55-58
    178宋远红,宫野,王德真.等离子体源离子注入鞘层随时空演化的数值模拟.计算物理.1995, 12(4):528-534
    179 M. M. Shamim, J. T. Scheuer, R. P. Fetherston, J. R. Conrad. Measurement of electron emission due to energetic ion bormbardment in plasma source ion implantation. Journal of Applied Physics. 1991, 70: 4756-4759
    180 D. T. K. Kwok, Paul K. Chu, C. Chun. Ion Dose Uniformity for Planar Sample Plasma Immersion Ion Implantation. IEEE Transactions on Plasma Science. 1998, 26(6):1669-1679
    181 T. E. Sheridan. Computational Scheme for Simulating Plasma Dynamics during Plasma-Immersion Ion Implantation. ACTA METALLURGICA SIMCA. 2000, 13(2): 611-617
    182 J. P. Verboncoeur. Particle Simulation of Plasmas: Review and Advances. Plasma Physics and Controlled Fusion. 2005, 47: A231-A260
    183 A. I. Eriksson, L. Wedin, J. E. Wahlund, B. Holback. Analysis of Freja Charging Events: Modelling of Freja Observations by Spacecraft Charging Codes. Study of Plasma and Energetic Electron Environment and Effects. 1998, SPEE-WP120- TN2.0
    184 H. Rothard, R. Moshammer, J. Ullrich, H. Kollmus, R. Mann, S. Hagmann , T. J. M. Zouros. Differential Multi-Electron Emission Induced by Swift Highly Charged Gold Ions Penetrating Carbon Foils. Nuclear Instruments and Methods in Physics Research B. 2007, 258: 91-95
    185 B. Vayner, J. Galofaro, D. Ferguson, W. de Groot, C. Thomson, J. R. Dennison, R. Davies. The Conductor-Dielectric Junctions in a Low Density Plasma. NASA/TM-1999-209408
    186 K. G. Kostov, M. Ueda, I. H. Tan, N. F. Leite, A. F. Beloto, G. F. Gomes. Structural Effect of Nitrogen Plasma-Based Ion Implantation on Ultra-High Molecular Weight Polyethylene. Surface and Coatings Technology. 2004,186: 287-290
    187 H. Lim, Y. Lee, S. Han, Y. Kim, J. Cho, Kang-jin Kim. Reduction in Surface Resistivity of Polymers by Plasma Source Ion Implantation. Surface and Coatings Technology. 2002, 160: 158-164
    188 R. C. Powle, D. R. McKenzie, S. J. Meure, M. V. Swain, N. L. James. Nanoindentation response of PEEK modified by mesh-assisted plasma immersion ion implantation. Surface and Coatings Technology. 2007, 201: 7961-7969
    189 J. Y. Sze, B. K. Tay. Carbon Ion Implantation of Ultra-High Molecular Weight Polyethylene using Filtered Cathodic Vacuum Arc with Substrate Pulse Biasing. Surface and Coatings Technology. 2006, 200: 4104-4110
    190 K. S. Shamala, L. C. S. Murthy, K. N. Rao. Studies on Optical and Dielectric Properties of Al2O3 Thin Films Prepared by Electron Beam Evaporation and Spray Pyrolysis Method. Materials Science and Engineering B. 2004, 106: 269-274
    191 M. Mayer, SIMNRA User’s Guide, Report IPP 9/113, Max-Planck-Institut für Plasmaphysik, Garching, Germany, 1997
    192 W. J. Soer, W. H. Ming, C. E. Koning, R. A. T. M. van Benthem. Towards Anti-corrosion Coatings From Surfactant-Free Latexes Based on Maleic Anhydride Containing Polymers. Progress in Organic Coatings. 2007, 61: 224-232
    193 M. C. Zhang, E. T. Kang, K. G. Neoh, C. Q. Cui, T. B. Lim. Thermal Imidization of Poly(amic acid) Precursors on Glycidyl Methacrylate (GMA) Graft-Polymerized Aluminium and Copper Surfaces. Polymer. 2001, 42: 453-462
    194 P. Schuler, H. B. Mojazza, R. Haghighat, AO Resistant Films for Multi-Layer Insulation. High Performance Polymers. 2000, 12: 113-123
    195 C. C. Chiang, D. S. Wu, H. B. Lin, Y. P. Chen, T. N. Chen, Y. C. Lin, C. C. Wu, W. C. Chen, T. H. Jaw, R. H. Horng. Deposition and Permeation Properties of Sinx/Parylene Multilayers on Polymeric Substrates. Surface and Coatings Technology. 2006, 200: 5843-5848
    196 P. Panjan, M. ?ekada, B. Navin?ek, A New Experimental Method for Studying the Cracking Behaviour of PVD Multilayer Coatings. Surface andCoatings Technology. 2003, 174-175: 55-62
    197 C. J. Shih, V. F. Nesterenko, M. A. Meyers, Shear Localization and Commution in High-Strain-Rate Deformation of Silicon Carbide. Journal of Applied Physics. 1998, 83: 4660-4671
    198 D. E. Packham, in Adhesion Aspects of Polymeric Coatings, K. L. Mittal, Plenum Press, New York, 1983, pp. 19-44
    199 L. P. Buchwalter. Adhesion of Polyimides to Metal and Ceramic Surfaces: An Overview. Journal of Adhesion Science and Technology. 1990, 4: 697-721
    200 H. Weiss. Adhesion of Advanced Overlay Coatings: Mechanisms and Quantitative Assessment. Surface and Coatings Technology. 1995, 71: 201-207
    201 W. J. Lee, Y. S. Lee, S. K. Rha, Y. J. Lee, K. Y. Lim, Y. D. Chung, C. N. Whang. Adhesion and Interface Chemical Reactions of Cu/polyimide and Cu/TiN by XPS. Applied Surface Science. 2003, 205: 128-136
    202 R. I. Gonzalez. Synthesis and In-situ Atomic Oxygen Erosion Studies of Space-Survivable Hybrid Organic/Inorganic Polyhedral Oligomeric Silsesquioxane Polymers. University of Florida. 2002, 82-84
    203 A. F. Whitaker, B. Z. Jang. The Mass Loss Mechanisms of Polymers in a Radio Frequency Induced. Journal of Applied Polymer Science. 1993, 48: 1341-1367
    204 I. H. Tan, M. Ueda, R. S. Dallaqua, N. R. Demarquette, L. Gengembre. Magnesium Implantation by Plasma Immersion in Polymers for Oxidation Protection in Low Earth Orbit Environment. Plasma Processes and Polymers. 2007, 4: S1081-S1085
    205 Y. X. Huang, X. B. Tian, S. Q. Yang, R. K. Y. Fu, P. K. Chu. Optical and Mechanical Properties of Alumina Films Fabricated on Kapton Polymer by Plasma Immersion Ion Implantation and Deposition using Different Biases. Applied Surface Science. 2007, 253: 9483-9488
    206 Y. F. Zhang, Q. Chen, Z. D Wang, G. Q. Zhang, Y. J. Ge. Preparation of Cr Hard Coatings by Ion Beam Assisted Electron Beam Vapor Deposition on Ni and Cu Substrates. Surface and Coatings Technology. 2007, 201: 5190-5193
    207 A. Jain. A Physical Basis for Stress Reduction during Ion Beam Assisted Deposition. Scripta Metallurgica et Materialia. 1995, 32(4): 589-593
    208 B. A. Banks, M. J. Mirtich, S. K. Rutledge, D. M. Swec. Sputtered Coatings for Protection of Spacecraft Polymers. Thin Solid Films. 1985, 127: 107-114
    209 H. Over, A. P. Seitsonen. Surface Chemistry: Oxidation of Metal Surfaces. Science. 2002, 297: 2003-2005
    210 K. Thürmer, E. Williams, J. R. Robey. Autocatalytic Oxidation of Lead Crystallite Surfaces. Science. 2002, 297: 2033-2053
    211 R. Cueff, G. Baud, M. Benmalek, J. P. Besse, J. R. Butruille, H. M. Dunlop, M. Jacquet. Characterization and Adhesion Study of Thin Alumina Coatings Sputtered on PET. Thin Solid Films. 1995, 270: 230-236
    212 D. W. Hoffman, J. A. Thornton. The Compressive Stress Transition in Al, V, Zr, Nb and W Metal Films Sputtered at Low Working Pressures. Thin Solid Films. 1977, 45: 387-396
    213 H. Y. Seung, J. E. Whitten. The Interaction of Aluminum with a Urethane-substituted Polythiophene with Electroluminescence Applications. Synthetic Metals. 2000, 114: 305-312
    214 V. W. L. Lim, S. Li, E. T. Kang, K. G. Neoh, K. L. Tan. In situ XPS Study of Thermally Deposited Aluminium on Chemically Synthesized Polypyrrole Films. Synthetic Metals. 1999, 106: 1-11
    215 T. Yamarnoto. Electrically Conducting and Thermally Stableπ-Conjugated Poly(Arylene)s Prepared by Organometallic Processes. Progress in Polymer Science. 1992, 17: 1153-1205
    216 J. Kurdi, H. Ardelean, P. Marcus, P. Jonnard, F. Arefi-Khonsari. Adhesion Properties of Aluminium-Metallized/Ammonia Plasma-Treated Polypropylene Spectroscopic Analysis (XPS, EXES) of the Aluminium/Polypropylene Interface. Applied Surface Science. 2002, 189: 119-128
    217 G. Dennler, A. Houdayer, P. Raynaud, I. Séguy, Y. Ségui, M. R. Wertheimer. Growth Models of SiOx Films Deposited by Evaporation and Plasma-Enhanced Chemical Vapor Deposition on Polymer Substrates. Plasma and Polymers. 2003, 8: 43-59
    218 W. Possart, S. Dieckhoff. Adhesion Mechanisms in a Cyanurate Prepolymer on Siliconand on Aluminium. International Journal of Adhesion and Adhesives. 1999, 19: 425-434
    219 S. B. Amor, G. Baud, M. Jacquet, G. Nansé, P. Fioux, M. Nardin. XPS Characterisation of Plasma-Treated and Alumina-Coated PMMA. Applied Surface Science 2000, 153: 172-183
    220 Q. D. Ling, S. Li, E. T. Kang, K. G. Neoh, B. Liu, W. Huang. Interface Formation between the Al Electrode and Poly[2,7-(9,9-dihexylfluorene)- co-alt-2,5-(decylthiophene)] (PFT) investigated in situ by XPS. Applied Surface Science. 2002, 199: 74-82
    221 H. T. Tsou, W. Kowbel. A Hybrid PACVD SiC/CVD Si3N4/SiC Multilayer Coating for Oxidation Protection of Composites. Carbon. 1995, 33: 1279-1288
    222 J. A. Thornton, D. W. Hoffman. Stress-related Effects in Thin Films. Thin Solid Films. 1989, 171: 5-18
    223 E. H. Hirsch, I. K. Varga. Thin Film Annealing by Ion Bombardment. Thin Solid Films. 1980, 69: 99-105
    224 T. P. Nguyen, K. Amgaad, M. Cailler, V. H. Tran, S. Lefrant, XPS Analysis of Thermal and Plasma Treated Polyparaphenylene-Vinylene Thin Films and Their Interface Formed with Aluminum Layer. Synthetic Metals. 1995, 69: 495-496
    225 D. C. R. dos Santosa, R. de C. C. Rangela, R. P. Motaa, N. C. da Cruzb, W. H. Schreinerc, E. C. Rangel. Modification of Plasma Polymer Films by Ion Implantation. 2004, 7: 493-497
    226 Y. Zhang, K. L. Tan, B. Y. Liaw, D. J. Liaw, E. T. Kang. Thermal Imidization of Poly(amic acid)Precursors on Glycidyl Methacrylate(GMA) Graft- polymerized Si(100) Surface. Thin Solid Films. 2000, 374: 70-79
    227 Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra. J. F. Moulder, W. F. Stickle, P. E. Sobol, K. D. Bomben, Perkin-Elmer Corporation, Eden Prairie, 1992
    228 M. Ishida, H. Kim, T. Kimura, T. Nakamura. A New Etching Method for Single-crystal Al2O3 Film on Si Using Si Ion Implantation. Sensors and Actuators A: Physical. 1996, 53: 340-344
    229 R. Cueff, G. Baud, M. Benmalek, J. P. Besse, J. R. Butruille, M. Jacquet. X-ray Photoelectron Spectroscopy Studies of Plasma-Modified PET Surface and Alumina/PET Interface. Applied Surface Science. 1997, 115: 292-298
    230 M. Bou, J. M. Martin, T. L. Mogne, L.Vovelle. Chemistry of the Interface between Aluminium and Polyethyleneterephthalate by XPS. Applied Surface Science. 1991, 47: 149-161
    231 P. Bruesch, E. Halder, P. Kluge, J. Rhyner, P. Roggwiller, T. Stockmeier, F. Stuki, H. J. Wiesmann. Electrical Activity of Aluminum Implanted in Silicon: An Interface Problem in High-Power Devices. Journal of Applied Physics. 1990, 68: 2226-2234
    232 J. M. Burkstrand. Formation of a Copper-oxygen-polymer Complex on Polystyrene. Applied Physics Letters. 1978, 33: 387-389
    233 E. Ettedgui, H. Razafitrimo, K. L. Park, Y. Gao, B. R. Hsieh. X-ray Photoemission Spectroscopy Study of Band Bending at the Interface of Metal with Poly(p-phenylene vinylene). Surface and Interface Analysis. 1995, 23: 89-98
    234 S. L. Lim, K. L. Tan, E. T. Kang. Interactions of Evaporated Aluminum Atoms with Polyaniline Films-Effects of Dopant Anion and Adsorbed Oxygen. Synthetic Metals. 1998, 92: 213-222
    235 M. J. Vasile, B. J. Bachman. Aluminum Deposition on Polyimides: The Effect of in situ Ion Bombardment. Journal of Vacuum Science and Technology A. 1989, 7: 2992-2997
    236 L. Hanley, S. B. Sinnott. The Growth and Modification of Materials via Ion–Surface Processing. Surface Science. 2002, 500: 500-522
    237 T. J. Clark. Reactivity and Molecular Structure of Silicon-Oxygen-Carbon- Containing Films Derived from Organometallic Chemical Vapor Deposition (OMCVD). Scripta Materialia. 1996, 34(5): 825-830
    238 S. Gomez, P. G. Steen, W. G. Graham, Atomic Oxygen Surface Loss Coefficient Measurements in a Capacitive/Inductive Radio-Frequency Plasma. Applied Physics Letters. 2002, 81: 19-22
    239 J. C. Greaves, J. W. Linnett. The Recombination of Oxygen Atoms at Surfaces. Transactions of the Faraday Society. 1958, 54: 1323-1330