M-CSF对大鼠BMSCs体外增殖和分化的作用及BMSCs移植对心肌梗死的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:心肌梗死(myocardial infarction,MI)后机体存在自然修复心肌和血管组织的过程,但不足以弥补MI造成的大范围心肌细胞缺失,亦不能防止心室重构和心功能衰竭的发生。心血管药物治疗目前虽有很多突破,但这些治疗方法都存在着无法逆转梗死期坏死心肌的缺陷,不能从根本上解决心肌细胞(cardiomyocytes,CMs)减少的问题。近年来发展的采用骨髓间充质干细胞(bone marrow mesenchymal stemcells,BMSCs)代替病变心脏中无收缩功能的瘢痕组织,形成新的心肌细胞,为治疗缺血性心脏病提供了新的方向。骨髓中由于BMSCs数量很少,必须体外扩增才能满足细胞移植的需要,而BMSCs增殖能力有限,本研究探讨巨噬细胞集落因子(macrophage colony-stimulating factor,M-CSF)对大鼠BMSCs的体外增殖和分化的影响及M-CSF扩增的BMSCs移植对心肌梗死的实验研究。
     第一部分大鼠间充质样干细胞的分离、培养及其生物学和电生理特性研究
     目的:从大鼠骨髓中分离培养骨髓间充质干细胞并进一步分析其生物学和电生理特性。
     方法:采用密度梯度离心和贴壁培养方法分离、培养大鼠BMSCs,细胞记数绘制BMSCs生长曲线,流式细胞仪检测BMSCs的CD44、CD29、CD45和CD34的表达及其细胞周期,5-氮杂胞苷(5-azacytidine,5-aza)诱导培养细胞,免疫组化检测诱导后心肌特异性分子肌钙蛋白I(cardiac-specific troponin I,cTnI)和肌球蛋白重链(myosin heavy chain,MHC)的表达,膜片钳技术检测诱导前后BMSCs电生理特性。
     结果:培养的BMSCs呈梭形贴壁生长,可连续传代培养;高表达CD44和CD29,而不表达CD45和CD34;细胞在接种后第3d即进入对数生长期,传代后培养3天的细胞周期检测结果显示G0+G1、S和G2+M期的比例分别为66.2%、23.8%和10.1%;经5-aza诱导3w后的第三代BMSCs细胞表达心肌特异性蛋白cTnI和MHC:第三代BMSCs诱导前记录到快速激活、长时开放的外向K+通道电流,未能记录到内向电流,经5-aza诱导3w后可记录到钠离子和钙离子通道电流。
     结论:BMSCs具有心肌细胞分化的潜能,5-aza诱导后BMSCs可由非兴奋性细胞分化为兴奋性细胞。
     第二部分M-CSF对大鼠BMSCs体外增殖和分化的作用
     目的:研究M-CSF对BMSCs体外增殖的作用,并分析经M*CSF扩增的BMSCs心肌分化潜能及其电生理特性。
     方法:细胞记数绘制不同浓度M-CSF对BMSCs生长增殖作用的生长曲线;流式细胞仪检测经M-CSF扩增的BMSCs CD44、CD29、CD45、CD34的表达及其细胞周期:5-aza诱导经M-CSF扩增的BMSCs,细胞免疫组化检测诱导后心肌特异性分子cTnI和MHC的表达;膜片钳技术检测M-CSF扩增的8MSCs经5-aza诱导3w后的心肌样细胞膜电流。
     结果:M-CSF浓度达到5ng/m1时对BMSCs有显著促进增殖作用;经M-CSF扩增BMSCs与自然生长的BMSCs相比,其CD44、CD29、CD45、CD34的表达未出现明显变化,但细胞周期显示其增殖能力增强;M-CSF扩增后的BMSCs经5-aza诱导2w后心肌细胞特异性蛋白cTnI和MHC均为阳性。M-CSF扩增后的BMSCs经5-aza诱导3w后,可记录到钠离子和钙离子通道电流。
     结论:M-CSF能促进BMSCs体外有效的增殖,而且体外扩增的BMSCs具有心肌分化的潜能。
     目的:模拟心肌环境及分析心肌环境对体外扩增的BMSCs分化的影响,同时建立大鼠心肌梗死(myocardial infarction,MI)模型,在体研究经M-CSF扩增的BMSCs移植对心梗后心功能的改善作用及其可能机制。
     方法:经M-CSF扩增后的BMSCs分别与心肌细胞和心肌条件培养液共培养1w后免疫组化检测cTnI的表达;制作大鼠心肌梗死模型,心脏超声检测心功能,BrdU标记移植细胞,心肌梗死区周边多点注射,BMSCs移植20d后心肌HE染色,病理组织学检查梗死区移植细胞cTnI表达和评价新生血管密度。
     结果:(1)经M-CSF扩增的与心肌细胞共培养2w后可诱导表达cTnI,而与心肌条件培养液共培养2w的BMSCs未见cTnI的表达;(2)C组(MSCs注射组)(SV=0.633±0.045ml,EF=(0.748±0.054)%)、D组(5-aza诱导BMSCs扩增组)(SV=0.641±0.065ml,EF=(0.756±0.058)%)和E组(BMSCs扩增组)(SV=0.651±0.062ml,EF=(0.762±0.069)%)与对照组(SV=0.459±0.052ml,EF=(0.646±0.025)%)相比心功能均明显改善(P<0.05),而C组、D组和E组间并无明显差别(P>0.05);(3)BrdU标记显示M-CSF扩增的BMSCs移植体内后,可表达心肌特异性蛋白cTnI;(4)梗死区新生血管密度M-CSF扩增BMSCs组(31±4条/视野)明显高于对照组(19±4条/视野)。
     结论:与心肌细胞的直接接触性培养可使M-CSF扩增的BMSCs分化为心肌细胞,M-CSF扩增的BMSCs移植对MI后心功能有明显改善作用;在梗死区周边注射WCSF扩增的BMSCs,移植细胞诱导或不诱导均不影响对心功能的改善作用。梗死区周边注射的M-CSF扩增的BMSCs可在梗死区中分化为心肌样细胞;M-CSF扩增的BMSCs可提高梗死区新生血管密度。因此,M-CSF可作为BMSCs有效生长体外促增殖因子,M-CSF扩增的BMSCs具有潜在的临床运用价值。
     综上所述,BMSCs具有心肌细胞分化的潜质,5-aza诱导后BMSCs可表达功能性的钠和钙离子通道,由非兴奋性细胞分化为兴奋性细胞。体外实验显示M-CSF是BMSCs的有效生长体外促增殖因子,而且扩增的BMSCs可具有心肌分化潜能。体外模拟心肌环境研究显示,直接接触可促使M-CSF扩增的BMSCs分化为心肌细胞。移植M-CSF扩增的BMSCs细胞对MI后心功能有明显改善作用,移植细胞诱导或不诱导均不影响对心功能的改善作用。M-CSF扩增的BMSCs细胞移植对MI后心功能有明显改善的作用机制可能与BMSCs在梗死区中分化为心肌样细胞和提高梗死区新生血管密度有关。
Background:Although several repair mechanisms have been described in the animals and human heart,all fall too limit to prevent clinical heart disease in most acute or chronic pathological cardiac conditions.Moreover,despite many breakthroughs in cardiovascular medicine,the complications of myocardial infarction remain a serious problem.Bone marrow mesenchymal stem cells could provide a promising strategy against myocardial infarctions and postinfarct congestive heart failure,based on that bone marrow mesenchymal stem cells can generate new cardiomyocytes in animals and human beings.
     However,due to its poor replicative capacity and short proliferative longevity,it is difficult to isolate enough MSCs from the bone marrow required for large areas of injured tissues.Thus,the expansion of MSCs in vitro is essential for cell transplantation.The purpose of this study was to identify macrophage colony-stimulating factor(M-CSF) contributing to production of MSCs and maintenance of their cardiomyocyte differentiation.
     PartⅠIsolation,Characterization and Cardiomyocyte Differentiative Potential of Rat BMSCs in vitro
     Objective:To isolate and expand a highly purified population of adult rat BMSCs, and to analyze its biological and electrophysiological characteristics.
     Methods:BMSCs were isolated from rat bone marrow with density gradient centrifugation and cultured in low-glucose DMEM supplemented with 10%fetal calf serum.Trypan blue staining and cell counting from day 1-7 were used for the cell concentration.Flow cytometry(FCM) was used to analyze the expression of CD44、CD29、CD45、CD11,and the cell cycle.To induce differentiation,BMSCs were treated with 5-azacytidine(5-aza) for 24h and then cultured with DMEM without 5-aza. Immunohistochemistry analysis were used to test the expression of MHC and cTnI. Patch-clamp recording technique was used to analyze electrophysiological characteristics of BMSCs.
     Result:FCM analysis showed that the BMSCs were CD44,CD29 positive,and CD45,CD11 negative.S phase of the passage 2 BMSCs is 23%.The passage 3 BMSCs that were induced by 5-aza could express MHC and cTnI.Before BMSCs were induced by 5-aza,only the outward currents of I_(K+) were recorded by Patch-clamp.The inward currents of I_(Ca2+) and I_(Na+) were be recorded after BMSCs induced by 5-aza for three weeks.
     Conclusion:BMSCs have cardiomyocyte differentiation potential and can be differentiated into excitability cells from unexcitability cells by 5-azacytidine.
     PartⅡThe effect of M-CSF on Proliferation and Cardiomyocyte Differentiation Potential of BMSCs in Vitro
     Objective:To investigate the effect of M-CSF on proliferation of rat BMSCs,and to analyze the cardiomyocyte differentiation potential of the BMSCs expanded by M-CSF.
     Methods:Trypan blue staining and cell counting were used to determine the effect of the different concentration of M-CSF on proliferation of rat BMSCs.FCM was used to analyze the expression of CD44、CD29、CD45、CD11,and the cell cycle of the BMSCs expanded by M-CSF.To analyze the cardiomyocyte differentiation potential of the BMSCs expanded by M-CSF,5-aza was used.Immunohistochemistry analysis was used to test MHC and cTnI expression of the induced BMSCs expanded by M-CSF.Patch-clamp recording was used to analyze electrophysiological characteristics of the BMSCs expanded by M-CSF.
     Result:M-CSF markedly accelerated proliferation of the BMSCs at the concentration of 5ng/ml of M-CSF.FCM analysis showed the BMSCs expanded by M-CSF were CD44,CD29 positive,and CD45,CD11 negative.S phase cells of the BMSCs cultured by M-CSF is markedly higher than those of the control.The BMSCs cultured by M-CSF induced by 5-aza could express MHC and cTnI.The inward I_(Ca2+) and I_(Na+) currents of BMSCs expanded by M-CSF were recorded after BMSCs were treated with 5-aza three weeks.
     Conclusion:BMSC proliferation could be markedly accelerated by M-CSF,and M-CSF stimulated BMSCs could retain the cardiomyocyte differentiation potential in Vitro.
     PartⅢBMSCs expanded by M-CSF as Transplantation Cells for Myocardial Ischemia Therapy
     Objective:To test the cardiac environment for BMSCs expanded by M-CSF and evaluate the effect of the cardiac environment on cardiomyocyte differentiation potential of the BMSCs.To investigate BMSCs expanded by M-CSF as transplantation cells to improve cardiac functions in rat MI model,and to explore the underlying mechanism.
     Methods:The BrdU-BMSCs expanded by M-CSF were co-cultured with rhythmically beating CM or cultured in the presence of conditioned media for one week. Immunohistochemistry analysis was used to test cTnT of the BrdU-BMSCs.Rat myocardial infarction model was established by ligating the left coronary artery.Cardiac function of MI was assessed by echocardiographic-Doppler.BrdU labeled BMSCs were injected directly into cardiac muscle around the infarct zone.After 20 days, immunohistochemistry analysis was used to test the cTnT expression of the transplantation BMSCs and capillary density in the infracted area.
     Results:The M-CSF expanded BrdU-BMSCs which were co-cultured with rhythmically beating CM showed cTnI but BrdU-BMSCs cultured with culture media without cardiomyocytes did not.Before the cellular implantation,the stroke volume(SV) and ejection fraction(EF) decreased in the MI heart(SV=0.382±0.033 ml,EF=(0.562±0.052)%) compared with the control group(SV=0.459±0.052ml,EF=(0.646±0.025) %).Twenty days after the M-CSF expanded BrdU-BMSCs implantation,the cardiac function was significantly improved in both induced(SV=0.641±0.065ml,EF=(0.756±0.058)%) and uninduced groups(SV=0.651±0.062ml,EF=(0.762±0.069)%) compared with the control(SV=0.459±0.052ml,EF=(0.646±0.025)%).However, cardiac functions didn't differ between the induced and uninduced groups.The infarct site had more cardiac-like tissue islands.The transplanted BMSCs were found in the infarct zone and the capillary desity was markedly higher than that of the control.
     Conclusions:Direct cell-cell contact between BMSCs and CMs was the prerequisite for the cardiomyocyte differentiation of BMSCs expanded by M-CSF.The M-CSF expanded BMSCs as transplantation cells can improve the cardiac function of MI. No matter whether the BMSCs were induced or not,the improvement of the cardiac function might result from myocardial regeneration and renascent capillary vein by engrafted cells.
     In summary,BMSCs have cardiomyocyte differentiation potential and can develop into excitability cells.BMSCs showed the inward currents of I_(Ca2+) and I_(Na+) induced by 5-azacytidine.M-CSF is an efficient growth factor in vitro for BMSCs and can retain the cardiomyocyte differentiation potential in Vitro.Direct cell-cell contact between BMSCs and CMs was the prerequisite for the BMSCs cardiomyocyte differentiation.The BMSCs expanded by M-CSF can improve the cardiac function after the cells were implanted around the infarct zone and its mechanism might result from myocardial regeneration and renascent capillary vein by engrafted cells.
引文
1.Maclellan WR,Schneider MD,Genetic dissection of cardiac growth control pathways.Annu Rev Physiol,2000,62:289-320.
    2.Ho KK,Anderson KM,Kannel WB,et al.Survival after the onset of congestive heart failure in Framingham heart study subjects.Circulation,1993;88:107-115.
    3.Heyndrickx GR,Baig H,N ellens P,et al.Depression of regional blood flow and wall thickening after brief coronary occlusions.Am J Physiol,1978;234:653-659.
    4.Ryan TJ,Antman EM,Brooks NH,et al.ACC/AHA guidelines for the management of patients with acute myocardial infarction:report of the American College of Cardiology/American Heart Association Task on Practice Guidelines.J Am Coll Cardial.1999,34:890-911.
    5.Heart and Stroke Statistical Update.Dallas,Tex:American Heart Association;2001.
    6.Beltrami AP,Urbanek K,Kajstura J,et al.Evidence that human cardiac myocytes divide after myocardial infarction.N Engl J Med,2001;344:1750-1757.
    7.Gill M,Dias S,Hattori K,et al.Vascular trauma induces rapid but transient mobilization of VEGF R 2(+) AC 133(+) endothelial precursor cells.Circ Res,2001;88:167-174.
    8.Nadal-Ginard B,Kajstura J,Leri A,et al.Myocyte death,growth,and regeneration in cardiac hypertrophy and failure.Circ Res,2003;92:139-150.
    9.Quaini F,Urbanek K,Beltrami AP,et al.Chimerism of the transplanted heart.N Engl J Med.2002;346:5-15.
    10.Olibetti G,Cigola E,Maestri R,et al.Aging,Cardiac hypertrophy and ischemic cardiomyopathy do not effect the proportion of mononucleated and multinucleated myocytes in the human heart.Mol Cell Cardiol.1996,28:1463-1477.
    11.Thomson JA,Itskovitz,Eldor J,et al.Embryonic stem cell lines derived from human blastocytes.Science,1998;282:1145-1147.
    12. Zhang YM, Hartzell C, Narlow M, et al. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation,2002;106:1294-1299.
    
    13. Zhang H. Song P. Tang Y. Zhang XL. Zhao SH. Wei YJ. Hu SS. Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution. Journal of Thoracic & Cardiovascular Surgery.2007;134(5):1234-40..
    
    14. Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs,2001,25(3)187-193.
    
    15. Graf T. Differentiation plasticity of hematopoietic cells. Blood, 2002; 99:3089-3101.
    
    16. Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999;284:143-147.
    
    17. Bartunek J. Croissant JD. Wijns W. et al. Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium. American Journal of Physiology - Heart & Circulatory Physiology. 2007;292(2):H1095-104..
    
    18. Zhang H. Song P. Tang Y. Zhang XL. Zhao SH. Wei YJ. Hu SS. Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution. Journal of Thoracic & Cardiovascular Surgery. 2007;134(5):1234-40.
    1 Wang JS, Shum TD, Galipeau J, et al . Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages[J]. J Thrac Cardioxasc Surg, 2000,120(5):999-1006.
    
    2 Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999,284(5411):143-147.
    
    3 Tomita S, Li R, Weisel RD, et al. Autologous Transplantation of bone marrow cells improves damaged heart function[J]. Circulation, 1999,100(19 Suppl):II247-256.
    
    4 Lazarus HM, Haynesworth ES, Gerson SL, et al. Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells; implication for therapeutic use. Bone Marrow Transplant, 1995,16(4):557-564.
    
    5 Boomsma RA. Swaminathan PD. Geenen DL. Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. International Journal of Cardiology. 2007; 122(1): 17-28.
    
    6 Heubach JF, Graf EM, Leutheuser J, et al. Electrophysiological properties of human mesenchymal stem cells[ J ]. J Physiol, 2004, 554(3):659.
    
    7 Lagostena L, Avitabile D, De Falco E, et al. Electrophysiological properties of mouse bone marrow c-kit+ cellsco-cultured onto neonatal cardiac myocytes[J]. Cardiovasc Res. 2005 Jun 1;66(3):482-492.
    
    8 Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method[J]. Exp Hematol,1974,2(2);83-92.
    
    9 Conger PA ,Minguell JJ . Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells [J].J Cell Physiol, 1999,181:67-78.
    
    10 Wakitani S. Saito T. Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 1995,18(12):1417-26.
    
    11 Tomita S, Weisel RD, Weisel RD. Autologous transplantation of bone marrow cells improves damaged heart function.Circulation,1999,100:247-256.
    
    12 Bittira B, Kuang JQ, et al. In vitro preprogramming of marrow stromal cells for myocardial regeneration [J]. Ann Thoracic Surg,2002,4(4): 1154-1159.
    13 Preston MR,el Haj AJ,Publicover SJ.Expression of Voltage-Operated Ca~(2+)Channels in Rat Bone Marrow Stromal Cells In Vitro[J].Bone,1996,19(2):101-106.
    14 Gui-Rong Li,Haiying Sun,Xiuling Deng,et al.Characterization of Ionic Currents in Human MesenchymalStem Cells from Bone Marrow[J].Stem cell,2005,23:371-382.
    15 Fukuda K.Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells[J].Congenit Anom(Kyoto),2002,42(1):1-9.
    16 陈军.膜片钳实验技术[M}.北京:科学出版社,2001.1-19
    17 Van Wagoner DR,Pond AL,McCarthy PM,et al.Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation[J].Circ Res,1997,80:772-781.
    18 Lin CS,Boltz RC,Blake JT,et al.Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation[J].J Exp Med,1993,177(3):637-645.
    19 Gu Y,Preston MR,El Haj AJ,et al.Three types of K+ currents in murine osteocyte-like cells(MLO-Y4)[J].Bone.2001,28(1):29-37.
    20 Gellens ME,George AL,Jr,et al.Primary structure and functional expression of the human tetrodotoxin-insensitive voltage-dependent sodium channel[J].Proc Natl Sci,1992,89:554-558.
    21 Bennett PB,Yazawa N,et al.Molecular mechanismfor an inherited cardiac arrhythmia[J].Nature,1995,367:683-693.
    22 Balke CW,Marban E,O'Rourke B.Calcium channels:structure,function,and regulation,in:Zipes,D.P,and Jalife,J.Cardiac electrophysiology:From cell to bedside[M].Philadelphia:WB Saunders,1999:8-21.
    1. Hou M. Yang KM. Zhang H. Zhu WQ. Duan FJ. Wang H. Song YH. Wei YJ. Hu SS. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. International Journal of Cardiology.2007;115(2):220-8.
    
    2. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999,284(5411):143-147.
    
    3. Wakitani S, Saito T, Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-aza cytidine [J]. Muscle Nerve,1995,18(12):1417-1426.
    
    4. Guo Z K, Ymlg J Q, Liu X D, et al. Bid cal features of mesenchymal stem cells from human bone marrow[J]. Chin Med J, 2001, 114: 950.
    
    5. Shinichi Tsutsumi, Atsushi Shimazu, Kazuko Miyazaki, et al . Retention of Multilineage Differentiation Potential of Mesenchymal Cells during Proliferation in Response to FGF. Biochemical and Biophysical Research Communications, 2001,288,413-419.
    
    6. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc Natl Acad Sci USA,2001;98:10344-10349.
    
    7. Seiler C, Pohl T, Wustmann K, et al. Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease: a randomized, double-blind, placebo-controlled study. Circulation,2001; 104:2012' 2017.
    
    8. Majumdar MK, Thiede MA, Mosca JD ,et al. Phenotypic and functional comparison of cultures of marrow derived mesenchymal stem cells and stromal cells[J] . J Cell Physi,1998,176(1):57.
    
    9. Tomita S, Li R, Weisel RD, et al. Autologous Transplantation of bone marrow cells improves damaged heart function[J]. Circulation, 1999,100(19 Suppl):II247-256.
    10.Sherr CJ.Colony-stimulating factor-1 receptor[J].Blood,1990,75(1):1-12.
    11.Uemura N,Ozawa K,Takahashi K,et al.Binding of anchored macrophage colony-stimulating factor(M-CSF) to its receptor mediates specific adhesion between stromal cell and M-CSF receptor-bearing hematopoietic cells[J].Blood,1993,82(9):2634-2640.
    12.杨文清,吴克复.巨噬细胞集落刺激因子及其受体参与非造血系统的发育和疾病的发生[J].国外医学临床生物化学与检验学分册,2000,21(3):137 139.
    13.Kirma N,Luthra R,Jones J,et al Overexpression of the colony-stimulating factor(CSF-1) and/or its receptor c-fms in mammary glands of transgenic mice results in hyperplasia and tumor formation[J].Cancer Res,2004,64(12):4162-70.
    14.Kuropkat C,Dunne AA,Plehn S,et al.Macrophage colony-stimulating factor as a tumor marker for squamous cell carcinoma of the head and Neck[J].Tumour Biol,2003,24(5):236-40.
    15.Rao Q,Zheng GG,Li G,et al.Membrane—bound macrophage colony-stinmlating factor mediated auto-juxtacrine ownregulates matrix metalloproteinase-9 release on J6-1 leukemic cell[J].Exp Biol Med(Maywood),2004,229(9):946-53.
    16.Orlic D,Kajstura J,Chimenti S,et al.Mobilized bone marrow cells repair the infracted heart,improving function and survival.Proc Natl Acad Sci USA,2001;98:10344-10349.
    17.Seiler C,Pohl T,Wustmann K,et al.Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease:a randomized,double-blind,placebo-controlled study.Circulation,2001;104:2012-2017.
    18.Bartunek J.Croissant JD.Wijns W.et al.Pretreatment of adult bone marrow mesenchymal stem cells with cardiomyogenic growth factors and repair of the chronically infarcted myocardium.American Journal of Physiology-Heart &Circulatory Physiology.2007;292(2):H1095-104.
    19.Cheng L,Qasba P,Vanguri P,et al.Human mesenchymal stem cells support megakaryocyte and pro2platelat formation from CD34 + hematopoietic progenitor cells [J]. J Cell Physil,2000,184(1) :58.
    
    20. Simard JM, Song Y, Tewari K,et al. Ionic channel currents in cultured neurons from human cortex[J].JNeurosci Res,1993,34 (2) :170-178.
    
    21. Lang RJ, Mulholland E, Exintaris B, et al. Characterization of the ion channel currents in single myocytes of the guinea pig prostate[J]. J Urol,2004,172 (3) : 1179-1187.
    
    22. Heubach J F , Graf E M,Judith Leutheuser et al. Electrophysiological properties of human mesenchymal stem cells [J]. J Physiol,2003;554:659-672.
    1. Hou M. Yang KM. Zhang H. Zhu WQ. Duan FJ. Wang H. Song YH. Wei YJ. Hu SS. Transplantation of mesenchymal stem cells from human bone marrow improves damaged heart function in rats. International Journal of Cardiology.2007; 115(2):220-8.
    
    2. Wang JS, Shum TD, Galipeau J, et al . Marrow stromal cells for cellular cardiomyoplasty: feasibility and potential clinical advantages[J]. J Thrac Cardioxasc Surg,2000,120(5):999-1006.
    
    3. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells [J]. Science, 1999,284(5411):143-147.
    
    4. Boomsma RA. Swaminathan PD. Geenen DL. Intravenously injected mesenchymal stem cells home to viable myocardium after coronary occlusion and preserve systolic function without altering infarct size. International Journal of Cardiology. 2007; 122(1): 17-28.
    
    5. Wakitani S. Saito T. Caplan AL Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 1995,18(12):1417-26.
    
    6. Toma C ,Pittenger MF ,Cahill KS ,et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart [J]. Circulation ,2002 ,105(1)93.
    
    7. Kopen GC, Prokockop DJ, and Phinney DG. Marrow stromal cells migrate throughout forebrain and cerebellum,and they differentiate into astrocytes after injection into neonatal mouse brains. Proc Natl Acad Sci USA, 1999,96:10711-10716.
    
    8. Nadal-Ginard B, Kajstura J, Leri A, et al. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res, 2003;92:139-150.
    
    9. Tomita S, Li RK, Weisel RD , et al. Autologous transplantation of bone marrow cella improves damaged heart function[J ]. Circulation, 1999, 100: 247-256
    
    10. Orlic D, Kajstura J, Chimenti S, et al. Mobilized bone marrow cells repair the infracted heart, improving function and survival. Proc Natl Acad Sci USA,2001;98:10344-10349.
    11. Heart and Stroke Statistical Update. Dallas, Tex: American Heart Association; 2001.
    
    12. Zhang H. Song P. Tang Y. Zhang XL. Zhao SH. Wei YJ. Hu SS. Injection of bone marrow mesenchymal stem cells in the borderline area of infarcted myocardium: heart status and cell distribution. Journal of Thoracic & Cardiovascular Surgery. 2007; 134(5): 1234-40..
    
    13. Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs,2001,25(3)187-193.
    
    14. Wakitani S. Saito T. Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 1995, 18(12):1417-26.
    
    15. Shinya Fukuhara, Shinji Tomita, Seiji Yamashiro,et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J Thorac Cardiovasc Surg, 2003,125(6): 1470-1479.
    
    16. Mazhari R. Hare JM. Mechanisms of action of mesenchymal stem cells in cardiac repair: potential influences on the cardiac stem cell niche. Nature Clinical Practice Cardiovascular Medicine,2007;4(1):S21-6.
    
    17. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGF R 2(+) AC 133(+) endothelial precursor cells. Circ Res,2001;88:167-174.
    
    18. Ghostine S, Carrion C, Guarita Souza LC, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 2002;106:131-136.
    
    19. Dowell JD, Rubart M, Pasumarthi KBS, et al: Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 2003;58:336-350.
    1 Cohn JN, Bristow MR,Chien KR, et al. Report of the national hear, lung, and blood institute special emphasis panel on heart failure research. Circulation,1997,95:766-770.
    
    2 Ryan TJ, Antman EM, Brooks NH, et al. ACC/AHA guidelines for the management of patients with acute myocardial infarction: report of the American College of Cardiology/American Heart Association Task on Practice Guidelines. J Am Coll Cardial. 1999,34:890-911.
    
    3 Friedenstein AJ, Deriglasova UF, Kulagina NN, et al. Precursors for fibroblasts in different populations of hematopoietic cells as detected by the in vitro colony assay method[J]. Exp Hematol,1974,2(2); 83-92.
    
    4 Pittenger MF, Mackay AM, Beck SC,et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science,1999;284:143-147.
    
    5 Owens RA. Second generation adeno-associated virus type 2-based gene therapy systems with the potential for preferential integration into AAVS1. Curr Gene Ther.2002,2(2):145-159.
    
    6 Conger PA ,Minguell JJ . Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells [J] J Cell Physiol, 1999,181:67-.
    
    7 Zvaifler NJ, Marinova Z, Mutafchieva L, Adams G, et al. Mesenchymal precursor cells in the blood of normal individual [J]. Athritis Res ,2000,2:477-.
    
    8 Campagnoli C ,Roberts IAG,Kumar S ,et al. Identification of mesenchymal stem/ progenitor cells in human first-trimester fetal blood. liver ,ang bone marrow[J] .Blood ,2001 ,98(8):2396
    
    9 Bari C, Accio F , Tylzanowski P ,et al. Multipotent mesenchymal stem cells from adult human synovial membrane[J].Arth Rheu ,2001,44(8): 1928-.
    
    10 Zuk PA ,Zhu M ,Mizunon H ,et al. Multilineage cells from human adipose tissue: implication for cell-based therapies [J]. Tissue Eng.2001,7 (2) :211.
    
    11 Warejcka DJ , Harvey R, Taylor BJ, et al. A population of cells isolated from rat heart capable of differentiating into several mesodermal phenotype[J]. J Surg Res,1996,62(2)233.
    
    12 Williams J T , Southerland SS , Souza J , et al. Cells isolated from human skeletal muscle capable of differentiating into multiple mesodermal phenotype[J]. Am Surg,1999,65(1):22.
    
    13 Young HE, Steele TA, Bray RA, et al. Human reserve pluripotent stem cells are present in the connective tissue of skeletal muscle and dermis derived from fetal, adult, and geriatric donors[J]. Anat .Rec,2001,263(1):51.
    
    14 Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood [J]. Br J Haematol, 2000,109:235.
    
    15 Reyes M, Vedaillie C M. Characterizathm of maltipotent adult progenitor cells, a subpopulation of mesenchymal stem cells[J]. Ann New York Acad Sci.2001,93 8: 231.
    
    16 Javason, E.H., Colter, D.C., Schwarz, E.J., and Prockop, D.J.,. Rat Marrow Stromal Cells Are More Sensitive to Plating. Density and Expand More Rapidly from single-cell-derived colonies than human marrow stromal cells. Stem Cells 2001; 19:219-225.
    
    17 Bruder SP, Jaiswal N, Haynesworth SE. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem,1991,64(2): 278-294.
    
    18 Gordon, S.L. et al. Sep. 2001. Recovery of human mesenchymal stem cells following dehydration and rehydration. Cryobiology, 2001,43 (2): 182-187(6)
    
    19 Guo Z K, Ymlg J Q, Liu X D, et al. Bid cal features of mesenchymal stem cells from human bone marrow[J]. Chin Med J, 2001, 114: 950.
    
    20 Rodriguez JP, Rios S, Gonzalez M. Modulation of the proliferation and differentiation of human mesenchymal stem cells by copper. J Cell Biochem, 2002, 85 (1): 92-100.
    
    21 Woodbury D, Schwarz EJ, Prockop DJ, et al. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res , 2000 ; 61:364-370.
    
    22 Cassiede P , Dennis J E , Ma F , et al . Osteochondrogenic potential of marrow mesenchymal progenitor cells exposed to TGF beta 1 or PDGF2BB as assayed in vivo and in vitro. J Bone Miner Res, 1996;11:1264-1273.
    
    23 Vanden Bos C, Mosca JD, Winkles J, et al. Human mesenchymal stem cells respond to fibroblast growth factor. Hum Cell, 1997; 10: 45-50.
    
    24 Hanada K, Dennis JE, Caplan AI. Stimulatory effects of basic fibroblast growth factor and bone morphogenetic protein on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells. J Bone Miner Res, 1997;12:1606-1614.
    
    25 Shinichi Tsutsumi, Atsushi Shimazu, Kazuko Miyazaki, et al. Retention of Multilineage Differentiation Potential of Mesenchymal Cells during Proliferation in Response to FGF. Biochemical and Biophysical Research Communications, 2001,288,413-419.
    
    26 Hakuno D ,Fukuda K,Makino S ,et al.Bone marrow derived regenerated cardiomyocytes (CMG Cells) express functional adrenergic and muscarinic receptors [J]. Circulation, 2002 ,105 (3) :380
    
    27 Tofna C ,Pittenger MF ,Cahill KS ,et al. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart [J ]. Circulation ,2002 ,105(1) 93。
    
    28 Wakitani S. Saito T. Caplan AI. Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle & Nerve, 1995, 18(12):1417-26.
    
    29 Tomita S, Weisel RD, Weisel RD. Autologous transplantation of bone marrow cells improves damaged heart function.Circulation, 1999,100: 247-256.
    
    30 Fukuda K. Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs,2001,25(3)187-193.
    
    31 Strauer BE, Brehm M, Zeus T, et al: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002;106:1913-1918.
    
    32 Condorelli G, Borello U, De Angelis L, et al. Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle: Implications for myocardial regeneration. Proc Natl Acad Sci USA 2001;98:10733-10738.
    
    33 Shinya Fukuhara, Shinji Tomita, Seiji Yamashiro,et al. Direct cell-cell interaction of cardiomyocytes is key for bone marrow stromal cells to go into cardiac lineage in vitro. J Thorac Cardiovasc Surg, 2003,125(6):1470-1479.
    
    34 Sunil Rangappa, John W. C. Entwistle, Andrew S. Wechsler, et al. Cardiomyocyte-mediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg, 2003;126:124-132.
    
    35 Van Kempen M, van Ginneken A, de Grijs I, et al. Expression of the electrophysiological system during murine embryonic stem cell cardiac differentiation [J]. Cell Physiol Biochem, 2003,13 (5): 263 - 270.
    
    36 Viatchenko KS, Fleischmann BK,L iu Q, et al. Intracellular Ca2+ osciuations drive spontaneous contractions in cardiomyocytes during early development [J]. Proc Natl Hcad,1999,96 (14): 8259 - 8264.
    
    37 LeuranguerV,Monteil A, Bourinet E, et al. T2type calcium currents in rat during postnatal development: contribution to hormone secretion [J]. AM J Heart Circ Physiol,2000,279 (5): H2540-2548.
    
    38 Heubach JF, Graf EM, Leutheuser J, et al. Electrophysiological properties of human mesenchymal stem cells[ J ]. J Physiol, 2004, 554(3):659.
    
    39 Lagostena L, Avitabile D, De Falco E, et al. Electrophysiological properties of mouse bone marrow c-kit+ cellsco-cultured onto neonatal cardiac myocytes[J]. Cardiovasc Res. 2005 Jun 1 ;66(3):482-492.
    
    40 Preston MR, el Haj AJ, Publicover SJ.Expression of Voltage-Operated Ca 2+ Channels in Rat Bone Marrow Stromal Cells In Vitro[J]. Bone,1996,19(2):101-106.
    
    41 Gui-Rong Li, Haiying Sun, Xiuling Deng, et al.Characterization of Ionic Currents in Human MesenchymalStem Cells from Bone Marrow[J].Stem cell, 2005,23:371-382.
    
    42 Fukuda K. Molecular characterization of regenerated cardiomyocytes derived from adult mesenchymal stem cells [J].Congenit Anom (Kyoto), 2002,42 (1): 1 - 9.
    43 Kohyama J,Abe H,Shimazaki T,et al.Brain from bone:efficient "meta-differentiation" of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent[J].Differentiation,2001,68(4-5):235-244.
    44 Jingsong Zhou,Leanne Cribbs,Jianxun Yi,et al(1998).Molecular Cloning and Functional Expression of a Skeletal Muscle Dihydropyridine Receptor from Rana catesbeiana[J].Biol Chem,1998,273(39):25503-25509.
    45 Simard JM,Song Y,Tewari K,et al.Ionic channel currents in cultured neurons from human cortex[J].J Neurosci Res,1993,34(2):170-178.
    46 Lang RJ,Mulholland E,Exintaris B,et al.Characterization of the ion channel currents in single myocytes of the guinea pig prostate[J].J Urol,2004,172(3):1179-1187.
    47 Zholos AV,Fenech CJ,Prestwich SA,et al.Membrane currents in cultured human intestinal smooth muscle cells[J].J Physiol,2000,528(3):521-537.
    48 Sherr CJ.Colony-stimulating factor-1 receptor[J].Blood,1990,75(1):1-12.
    49 Uemura N,Ozawa K,Takahashi K,et al.Binding of anchored macrophage colony-stimulating faetor(M-CSF) to its receptor mediates specific adhesion between stromal cell and M-CSF receptor-bearing hematopoietic cells[J].Blood,1993,82(9):2634-2640.
    50 杨文清,吴克复.巨噬细胞集落刺激因子及其受体参与非造血系统的发育和疾病的发生[J].国外医学临床生物化学与检验学分册,2000,21(3):137 139.
    51 Kirma N,Luthra R,Jones J,et al Overexpression of the colony—stimulating faetor(CSF-1)and/or its receptor c—fms in mammary glands of transgenic mice results in hyperplasia and tumor formation[J].Cancer Res,2004,64(12):4162-70.
    52 Kuropkat C,Dunne AA,Plehn S,et al.Macrophage colony-stimulating factor as a tumor marker for squamous cell carcinoma of the head and Neck[J].Tumour Biol,2003,24(5):236-40.
    53 Rao Q,Zheng GG,Li G,et al.Membrane-bound macrophage colony-stimulating factor mediated auto-juxtacrine own regulates matrix metalloproteinase—9 release on J6-1 leukemic cell[J].Exp Biol Med(Maywood),2004,229(9):946-53.
    54 Orlic D,Kajstura J,Chimenti S,et al.Mobilized bone marrow cells repair the infracted heart,improving function and survival.Proc Natl Acad Sci USA,2001;98:10344-10349.
    55 Seiler C,Pohl T,Wustmann K,et al.Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease:a randomized,double-blind,placebo-controlled study.Circulation,2001;104:2012-2017.
    56 Majumdar MK,Thiede MA,Mosca JD,et al.Phenotypic and functional comparison of cultures of marrow derived mesenehymal stem cells and stromal cells[J].J Cell Physi,1998,176(1):57.
    57 陈运贤 欧瑞明,钟雪云,等.粒细胞集落刺激因子动员骨髓干细胞治疗大鼠急性心肌梗死.中国病理生理杂志,2002,18:1-3.
    58 陈运贤,欧瑞明,钟雪云,等.自体骨髓干细胞原位移植治疗急性心肌梗死的临床研究.中国病理生理杂志,2003,19(4):452-454
    59 达万明,培雪涛.造血干细胞移植.北京:人民卫生出版社,2000,53-72.
    60 Anversa P,Nad al-Ginard B.Myocyte renewal and ventricular remodeling.Nature,2002,415:240-243.
    61 Pillarisetti K,Gupta SK:Cloning and relative expression analysis of rat stromal cell derived factor-1(SDF-1):SDF-1α mRNA is selectively induced in rat model of myocardial infarction.Inflammation,2001;25:293-300.
    62 Orlic D,Hill JM,Arai EA:Stem cells for myocardial regeneration.Circ Res,2002;91:1092-1102.
    63 Condorelli G,Bo rello U,Angelis DE,et al.Cardiomyocytes induce endothelial cells to transdiferentiate into cardiac muscle:implicatimts for myocardium regeneration.PNAS,2001,9:10733-10738.
    64 张少衡,贾竹青,郭静萱,等.骨髓细胞移植上调血管内皮生因子及其受体的表达并改善缺血心脏功能.北京大学学报(医学版),2003,35(4):429-433.
    65 Ying QL,Nichols J,Evans EP.Changing potency by spontaneous fusion.Nature, 2002, 416: 545-548.
    
    66 Anderlini P, Przepiorka D, Champlin R, et al: Biological and clinical effects of granulocyte colony-stimulating factor in normal individuals. Blood 1996;88:2819-2825.
    
    67 Buffon A, Biasucci LM, Liuzzo G, et al: Widespread coronary inflammation in unstable angina.N Engl J Med 2002;347:5-12.
    
    68 Park JL, Luchessi BR: Mechanisms of myocardial reperfusion injury. Ann Thorac Surg 1999;68:1905-1912.
    
    69 Kocher AA, Schutser MD, Bonaros N, et al: Use of stem cells for treatment of cardiovascular disorders. Eur Surg 2002;34:111-113.
    
    70 Seiler C, Pohl T, Wustmann K, et al: Promotion of collateral growth by granulocyte-macrophage colony-stimulating factor in patients with coronary artery disease. A randomised, double-blind, placebo-controlled study. Circulation 2001;104:2012-2017.
    
    71 Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that human cardiac myocytes divide after myocardial infarction. N Engl J Med,2001;344:1750-1757.
    
    72 Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGF R 2(+) AC 133(+) endothelial precursor cells. Circ Res,2001;88:167-174.
    
    73 Nadal-Ginard B, Kajstura J, Leri A, et al. Myocyte death, growth, and regeneration in cardiac hypertrophy and failure. Circ Res, 2003;92:139-150.
    
    74 Quaini F, Urbanek K, Beltrami AP, et al. Chimerism of the transplanted heart. N Engl J Med.2002;346:5-15.
    
    75 Olibetti G, Cigola E, Maestri R, et al. Aging, Cardiac hypertrophy and ischemic cardiomyopathy do not effect the proportion of mononucleated and multinucleated myocytes in the human heart. Mol Cell Cardiol. 1996,28:1463-1477.
    
    76 Kollet O, Spiegel A, Peled A, et al: Involvement of SDF-1/CXCR-4 interactions in the migration of immature CD34+ cells into liver of transplanted NOD/SCID mice (abstract). Blood 2001.
    
    77 Szilvassy SJ, Bass MJ, Van Zant G, et al: Organ-selective homing defines engraftment kinetics of murine hematopoietic stem cells and is compromised by ex-vivo expansion. Blood 1999;93:1557-1566.
    
    78 Denning-Kendall P, Singha S, Bradley B, et al: Cytokine expansion culture of cord blood CD34+ cells induced marked and sustained changes in adhesion receptor and CXCR4 expressions. Stem Cells 2003;21:61-70.
    
    79 Orlic D, Kajstura J, Chimenti S, et al: Bone marrow cells regenerate infarcted myocardium.Nature 2001;410:701-705.
    
    80 Borisov AB: Regeneration of skeletal and cardiac muscle in mammals: Do nonprimate models resemble human pathology? Wound Repair Regen 1999;7:26-35.
    
    81 Tomita S, Mickle DAG, Weisel RD, et al: Improved heart function with myogenesis and angiogenesis after autologous porcine bone marrow stromal cell transplantation. J Thorac Cardiovasc Surg 2001; 122:699-705.
    
    82 Wang JS, Shum-Tim D, Chedrawy E, et al: The coronay delivery of marrow stromal cells for myocardial regeneration: Pathophysiological and therapeutic implications. J Thorac Cardiovasc Surg 2001:122:699-705.
    
    83 Poss KD, Wilson LG, Keating MT: Heart regeneration in zebrafish. Science 2002;298:2188-2190.
    
    84 Leferovich JM, Bedelbaeva K, Samulewics S, et al: Heart regeneration in adult MRL mice. Proc Natl Acad Sci USA 2001;98:9830-9835.
    
    85 Condorelli G, Borello U, De Angelis L, et al: Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle: Implications for myocardial regeneration. Proc Natl Acad Sci USA 2001;98:10733-10738.
    
    86 Badorff C, Brandes RP, Popp R, et al: Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107:1024-1032.
    
    87 Jackson KA, Majka SM, Wang H, et al: Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J Clin Invest 2001;107:1395-1402.
    
    88 Aicher A, Brenner W, Zuhayra M, et al: Assessment of the tissue distribution of transplanted human endothelial progenitor cells by radioactive labeling. Circulation 2003; 107:2134-2139.
    
    89 Ghostine S, Carrion C, Guarita Souza LC, et al. Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation 2002;106:131-136.
    
    90 Takayuki S, Kuang JQ, Bittira B, et al: Xenotransplant cardiac chimera: Immune tolerance of adult stem cells. Ann Thorac Surg 2002;74:19-24。
    
     91 Gordon DW, Nolta JA, Jin Y-S, et al: Migration of mesenchymal stem cells to heart allografts during chronic rejection. Transplantation 2003;75:679-685.
    
    92 Liechty KW, Mackenzie TC, Shaaban AF, et al: Human mesenchymal stem cells engraft and demonstrate site-specific differentiation after in utero transplantation in sheep. Nat Med 2000; 11:1282-1286.
    
    93 Li Ren-Ke, Mickle DAG, Weisel RD, et al: Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg 2001;72:1957-1963.
    
    94 Sun Y, Kiani MF, Postleth AE, et al: Infarct scar as living tissue. Basic Res Cardiol 2002;97:343-347.
    
    95 Ren G, Michael LH, Entman ML, et al: Morphological characteristics of the microvasculature in healing myocardial infarcts. J Histochem Cytochem 2002;50:71-79.
    
    96 Leferovich JM, Bedelbaeva K, Samulewics S, et al: Heart regeneration in adult MRL mice. Proc Natl Acad Sci USA 2001;98:9830-9835.
    
    97 Badorff C, Brandes RP, Popp R, et al: Transdifferentiation of blood-derived human adult endothelial progenitor cells into functionally active cardiomyocytes. Circulation 2003;107: 1024-1032.
    
    98 Hamano K, Li TS, Kobayashi T, et al: Therapeutic angiogenesis induced by local autologous bone marrow cell implantation. Ann Thorac Surg 2002;73:1210-1215.
    99 Dowell JD, Rubart M, Pasumarthi KBS, et al: Myocyte and myogenic stem cell transplantation in the heart. Cardiovasc Res 2003;58:336-350.
    100 Kocher AA, Schuster MD, Szabolcs MJ, et al: Neovascularisation of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 2001;7:430-436.
    
    101 Isner JM: Myocardial Gene Therapy. Nature 2002;415:234-239.
    
    102 Carmeliet P: Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389-395.
    
    103 Asahara T, Masuda H, Takahashi T, et al: Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularisation. Circ Res 1999;85:221-228.
    
    104 Emerson CP, Dohmann HFR, Borojevic R, et al: Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischaemic heart failure. Circulation 2003;107:2294-2302.
    
    105 Sakai T, Li R-K, Weisel RD, et al: Cardiothoracic transplantation: Fetal cell transplantation: A comparison of three cell types. J Thorac Cardiovasc Surg 1999;118:715-725.
    
    106 Mangi AA, Noiseux N, Kong D, He H, Rezvani M, Ingwall JS, Dzau VJ: Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 2003;9:1195-1201.
    
    107 Zhang M, Methot D, Poppa V, et al: Cardiomyocyte grafting for cardiac repair: Graft cell death and anti-death strategies. J Mol Cell Cardiol 2001;33:907-921.
    
    108 Strauer BE, Kornowsky R: Stem cell therapy in perspective. Circulation 2003;107:929-934.
    
    109 Li Ren-Ke, Mickle DAG, Weisel RD, et al: Optimal time for cardiomyocyte transplantation to maximize myocardial function after left ventricular injury. Ann Thorac Surg 2001;72:1957-1963.
    110 Assmus B, Schachinger V, Teupe C, et al: Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE - AMI). Circulation 2002; 106:3009-3017.
    111 Stamm C, Westphal B, Kleine H-D, et al: Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 2003;361:45-46.