SA型碳化硅纤维的连续化技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先驱体法制备的SiC纤维是高性能陶瓷基复合材料(CMC)的关键增强材料。随着航空航天事业的发展,要求用于CMC的增强纤维具有优异的高温性能。通过在先驱体中引入铝元素烧结制备的近化学计量比SA型SiC纤维具有耐超高温特性,将在高技术复合材料领域发挥重要作用。
     本文对SA型SiC纤维的连续制备工艺进行了全面分析,重点对先驱体PACS的合成、高温烧结中存在问题和各个工艺之间的相互关系进行了系统研究。揭示了PACS主要合成机理,在此基础上改进了合成工艺,提高PACS中铝引入的稳定性。在研究了先驱体纤维组成和连续烧结过程对纤维烧结影响的基础上,设计了新的连续烧结工艺,可避免纤维在烧结过程中发生晶粒粗化,提高了SA型SiC纤维连续化制备过程的稳定性。
     采用FTIR、~1H NMR和UV-Vis等手段对PSCS和Al(AcAc)_3的反应过程进行实时跟踪,发现合成过程三个阶段的主要反应:在RT~325℃的第Ⅰ阶段,主要发生PSCS裂解重排和扩链反应,Si-Si-Si链转变为Si-C-Si链,并生成Si-H键;在325~420℃的第Ⅱ阶段,主要是PSCS的Si-H键与Al(AcAc)_3之间的反应;在420℃以上的第Ⅲ阶段,主要发生分子间缩合反应,由于Al(AcAc)_3的多官能团交联作用,这一阶段分子量和支化度急剧增加。
     在以上研究基础上,解决了反应过程中铝含量波动的问题,并缩短了合成时间。研究表明,延长反应时间可减少铝的损失并提高(?),而延长第Ⅰ阶段反应时间最为有利;据此调整合成升温制度并稳定精制工艺后,实现了PACS铝含量的可控性。针对合成时间过长不利于实际生产的问题,在裂解柱中填充填料来促进裂解重排和扩链反应,使整个合成时间缩短了近一半。并且,由此合成的PACS的Si-Si-Si链含量更低,(?)更大,分子量分布更窄。
     对PACS的流变性研究表明,PACS熔体是假塑性流体。当软化点在190~220℃时,PACS的粘流活化能为190~260 kJ/mol。PACS的粘度在100 Pa.s左右时可纺性好。随着铝含量增加,PACS粘度增大,导致纺丝温度过高,可纺性变差。采用PCS与PACS共混提高了可纺性,同时保持PACS的高分子量部分,纺出纤维的平均直径可从18μm左右下降到12μm左右。
     PACS纤维的预氧化是整个制备过程中的重要步骤。纤维中由此引入的氧具有多重作用,既使纤维交联确保下一步高温烧结时不并丝,又会在高温下带走纤维中富余碳使SA型SiC纤维达到近化学计量比。但研究表明,纤维中氧含量过高将造成过多孔缺陷,甚至使纤维富硅,同时也会使铝失效导致SA型SiC纤维发生晶粒粗化。一般当PACS纤维的预氧化增重率约8.5wt%时,能制备出近化学计量比的连续纤维。研究还发现铝含量变化对PACS纤维的预氧化过程具有较大的影响,体现在铝含量提高其预氧化程度增加,但铝含量超过临界值后交联度反而下降。最终,本文在综合氧的多重作用并确定最佳氧含量范围后,通过实时称重预氧化装置实现了预氧化程度的精确控制。
     在对PACS预氧化纤维高温连续烧结制备SA型SiC纤维的研究过程中发现以下规律。PACS纤维中含有少量的铝(>0.2wt%)就能有效抑制β-SiC晶粒增长,但当铝含量进一步增加时,其抑制晶粒长大作用基本不变。通过EFTEM分析发现铝原子富集于晶界,证实了铝的抑晶机理;由此认为,连续烧结时,纤维中氧含量过高将与铝结合,使铝不能有效进入β-SiC晶格,导致铝的抑制晶粒长大的作用失效。此外,铝在PACS纤维中起到交联作用,故适当过量的铝有助于降低预氧化程度,减少预氧化过程中引入的氧;一步连续烧结对PACS预氧化纤维氧含量要求高,并且SiC_xO_y相分解过快是导致纤维存在较多孔缺陷和发生晶粒粗化的重要原因;二步烧结过程中SiC_xO_y纤维富碳层的存在导致气体扩散受阻是纤维制备不稳定的重要原因。根据以上研究,设计了新的烧结工艺。此工艺对PACS纤维氧含量要求适中,并可协调和控制SiC_xO_y相分解和致密化过程:第一步将PACS预氧化纤维在1500~1600℃下连续预烧,使SiC_xO_y相分解速度降低;第二步将纤维在1800℃左右连续烧结,使纤维尽可能致密化。此烧结新工艺具有较好的性能重复性,制备出的连续SA型SiC纤维在1800℃氩气中热处理1小时不出现晶粒粗化,强度保留率为77%。
Polymer-derived SiC fiber is one of the most important reinforcing materials for high performance ceramic matrix composites(CMC).Ultra-high-temperature performance requirement is keeping proposed for CMC reinforcements with the development of aerospace technology.Among the strategies for improving the high-temperature performance,the most accessible method is to prepare near-stoichiometric SiC fiber by introducing small amount of aluminum(SA type SiC fiber) through ultra-high-temperature sintering.
     In this work,the whole preparation processes for SA type SiC fiber were completely investigated.The synthesis mechanism of PACS was revealed and the composition and quality of PACS were under well control based on the understanding of the reaction and improved techniques.In addition,the main factors of sintering, including compositions of cured precursor fiber and continuously sintering process, were studied.As a result,a new sintering process was designed and studied.Finally, grain coarsening was avoided during the sintering process and the SA type SiC fiber can be prepared more stably.
     The reaction between PSCS and Al(AcAc)_3 was traced by FTIR,~1H NMR and UV-Vis and compared with the reaction without Al(AcAc)_3.The results suggest that the synthesis of PACS can be divided into 3 stages and the main reactions during the stages were clarified.At the first stage(RT~325℃),the main reaction is Kumada rearrangements of PSCS,where the Si-Si-Si chains transform into Si-C-Si,and the chains grow;At the second stage(325~420℃),the main reaction is the one between Al(AcAc)_3 and SioH bonds of PSCS;At the third stage(~420℃),the main reaction is condensation between chains,where the(?) and branching degree are dramatically increased due to the multifunctional structure of Al(AcAc)_3.
     Based on the studies above,Al content in PACS was well controlled by prolonging reaction time of the first stage.To overcome the unfavorable long reaction time,fillings were introduced into the pyrolysis system,which promotes the Kumada rearrangement reaction and the chains growth significantly.In addition,PACS obtained by this method is characterized by lower Si-Si-Si chains,higher(?) and narrower molecular weight distribution.
     The rheology study shows that,the melting PACS is a pseudo-plasticity liquid.Its apparent viscosity energy is at the range of 190~250 kJ/mol when its softening point is at the range of 190~220℃.The relationship between the spirmability and the viscosity of PACS was established.It is revealed that the higher Al content in PACS will increase the viscosity,leading a higher spinning temperature and poorer spinnability.The spinnability is improved by blending PCS with PACS.As a result,the average fiber diameter becomes finer from 18 to 12μm while the high molecular weight parts are kept in the blends.
     Air curing of PACS fiber is the crucial procedure in the processes for SA type SiC fiber.The oxygen introduced during air curing plays complicated roles.Firstly,fiber shape will be kept in the sintering process aider fiber being crosslinked by oxygen; secondly,near-stiochiometric compositions can be achieved since the excess carbon will connect with oxygen to release from the fiber as CO gas.Whereas,the study suggests that over-high oxygen content in cured PACS fiber brings some disadvantages:pore faults will come forth in the obtained fiber,even the fiber will be rich in silicon;grain coarsening during sintering process tends to happen due to the oxygen consumes Al. When the weight gains of PACS fiber during curing is about 8.5wt%,the obtained fiber is near-stoichiometric.In addition,it was found that the curing of PACS fiber is affected by its Al content.Its gel content is increasing before Al content increases to a threshold, and then its gel content is decreasing.Finally,aider an oxygen range of cured PACS fibers was determined by balance the positive and negative effects of oxygen,the curing degree has been precisely controlled by an air curing equipment with a simultaneous weighing system.
     By the studies on continuously sintering of cured PACS fibers for SA type SiC fiber,some results were concluded as following.Grain growth ofβ-SiC can be controlled during sintering when Al content of PACS fiber is more than 0.2wt%.But excessive aluminum does not help to control grain sizes.The EFTEM investigation found that aluminum tends to concentrate at grain boundary.It proved the mechanism of the Al in controlling the grain growth.It suggests that oxygen would connect with aluminum when oxygen content is high.As a result,aluminum can not enter toβ-SiC lattice,which cause its mechanism controlling grain growth not to work.In addition, properly higher content of aluminum favors to lower curing degree and oxygen introducing during curing,as the cross-linkage of aluminum in PACS.
     The one step sintering process demands higher oxygen in cured PACS fibers.And SiC_xO_y phase decomposition rate is over high.So,pore faults and grain coarsening tend to happen during one step sintering.During the two steps sintering process,the carbon layer on Si-C-O fiber tends to prohibit the gas release so that SA type SiC fiber preparation is unstable.Therefore,the problems of grain coarsening and pore faults can not be avoided by the existing continuously sintering processes.
     Base on the studies above,a new sintering method was designed and studies.It demands lower oxygen content for cured PACS fiber.In addition,it can control decomposition of SiC_xO_y phase and densifieation process.The sintering method can be interpreted as follows:a cured PACS fiber was continuously pyrolyzed at the range of 1500~1600℃,where SiC_xO_y phase decomposed slowly;The obtained fiber was continuously sintered at about 1800℃where the fiber can be densified.The SA type SiC fiber prepared this way can avoid grain coarsening with good reproducibility.The strength reservation of the obtained fiber is 77%after been heated at 1800℃for 1hr in Ar.
引文
[1]王零森,特种陶瓷.中南工业大学出版社:长沙.1994.
    [2]Johnson D.W.,Evans A.G.,Goettler R.W.,Ceramic Fibers and Coatings:Advanced Materials for the Twenty-first Century.National Academy Press:Washington D.C,1998.
    [3]Russell J.D.,High-performance synthesis fibers for composites.National Academy Press:Washington D.C.,1992.
    [4]Shigeto N.,The application of SiC fiber reinforced composites to aero-engines,Ceramic Japan,1999,34(4):58-62.
    [5]Korb L.J.,The shuttle orbiter thermal protection system,Am.Ceram.Soc.Bull.,1981,60(11):1188-1193.
    [6]Katoh Y.,Kohyama A.,Hinoki T.,Progress in SiC-based ceramic composites for fusion applications,Fusion Sci.Technol.,2003,44:155-162.
    [7]Cooke T.F.,Inorganic fibers-a literature review,J.Am.Ceram.Soc.,1991,74(12):2959-2978.
    [8]Okamura K.,Shimoo T.,SiC-based fibers prepared via organic-to-inorganic conversion process-a review,J.Ceram.Soc.Jpn.,2006,114(6):445-454.
    [9]吴人洁,复合材料.天津大学出版社:天津,2002.
    [10]张立同,新型碳化硅陶瓷基复合材料的研究进展,航空制造技术,2003,(01):24-32.
    [11]赵稼祥,先进复合材料的发展与展望,材料工程,2000,(10):40-44.
    [12]Lewinsohn C.A.,Jones R.H.,Colombo P.,Riccardi B.,Silicon carbide-based materials for joining silicon carbide composites for fusion energy applications,J.Nucl.Mater.,2002,307-311(Part 2):1232-1236.
    [13]Galasso F.,Basche M.,Kuehl K.,Preparation,structure and properties of continuous silicon carbide filaments,J.Appl.Phys.Lett.,1966,9(1):37-39.
    [14]石南林,高性能CVD法SiC纤维的研制,材料导报,2000,14(7):53-54.
    [15]Dong S.M.,Chollon G.,Labruge C.,Lahaye R.,M.,Characterization of nearly stoichiometric SiC ceramic fibres,J.Mater.Sci.,2001,36:2371-2381.
    [16]Dicarlo J.A.,Creep limitation of current polyerystalline ceramic fibers,Compos.Sci.Technol.,1994,51(2):213-217.
    [17]Okada K.,Kato H.,Kubo R.,Preparation of silicon carbide fiber from activated carbon fiber and gaseous silicon monoxide,Ceram.Eng.Sci.Proc.,1995,16(4):45-54.
    [18]Karou O.Process for producing silicon carbide fiber.US Patent Application 20010008651,2001.
    [19]Ryu Z.Y.,Zheng J.T.,Wang M.Z.,Preparation and characterization of silicon-carbide fibers from activated carbon-fibers,Carbon,2002,40(5):715-720.
    [20]Hasegawa I.,Nakamura T.,Motojima S.,Synthesis of continuous silicon carbide fibers through sol-gel processing,J.Mater.Chem.,1995,(5):193-194.
    [21]Yajima S.,Okamura K.,Josaburo H.,Mamoru O.,Synthesis of continuous SiC fibers with high tensile strength,J.Am.Ceram.Soc.,1976,59(7-8):324-427.
    [22]Yajima S.,hayashi J.,Okamura K.,Pyrolysis of a polyborodiphenylsiloxane,Nature,1977,266:521-522.
    [23]Yajima S.,Hasegawa Y.,Hayashi J.,Iimura M.,Synthesis of continuous silicon carbide fibre with high tensile strength and high Young's modulus,J.Mater.Sci.,1978,13(12):2569-2576.
    [24]Okamura K,Ceramic fibres from polymer precursors,Composites,1987,15(2):107-120.
    [25]Laine R.M.,Babonneau F.,Preeeramic polymer routes to silicon carbide,Chem.Mater.,1993,5:260-279.
    [26]Marc B.,Pillot J.P.,Comprehensive chemistry of polycarbosilane,polysilazane and polyearbosilazane as precursors of ceramics.,Chem.Rev.,1995,95:1443-1477.
    [27]楚增勇,冯春祥,宋永才,先驱体法SiC纤维国内外研究与开发现状,无机材料学报,2002,17(2):193-201.
    [28]Richter R.,Roewer G.,Bohme U.,Busch K.,Organosilicon polymers-synthesis,architecture,reactivity and applications,Appl.Organomet.Chem.,1997,11:71-106.
    [29]Okamura K.,Ceramic fibers from polymer precursors,Compos.Part.A-appl.S,1987,18(2):107-120.
    [30]Lipowitz J.,Polymer-derived ceramic fibers,Am.Ceram.Soc.Bull.,1991,70(12):1888-1894.
    [31]Ishikawa T.,Shibuya M.,Yamamura T.,The conversion process from polydimethylsilane to polyearbosilane in the presence of polyborodiphenylsiloxane,J.Mater.Sci.,1990,25(6):2809-2814.
    [32]Yamamura T.,Ishikawa T.,Shibuya M.,Hisayuki T.,Okamura K.,Development of a new continuous Si-Ti-C-O fibre using an organometallic polymer precursor,J.Mater.Sci.,1988,23(7):2589-2594.
    [33]Chollon G.,Aldacourrou B.,Capes L.,Pailler R.,Naslain R.,Thermal behaviour of a polytitanocarbosilane-derived fibre with a low oxygen content:the Tyranno Lox-E fibre,J.Mater.Sci.,1998,33:901-911.
    [34]Ishikawa T.,Kohtoku Y.,Kumagawa K.,Production mechanism of polyzirconocarbosilane using zirconium(Ⅳ) acetylaeetonate and its conversion of the polymer into inorganic materials,J.Mater.Sci.,1998,33:161-166.
    [35]Yamaoka H.,Ishikawa T.,Kumagawa K.,Excellent heat resistance of Si-Zr-C-O fibre,J.Mater.Sci.,1999,34:1333-1339.
    [36]Suzuki K.,Kumagawa K.,Kamiyarna T.,Shibuya M.,Characterization of the medium-range structure of Si-Al-C-O,Si-Zr-C-O and Si-Al-C Tyranno fibers by small angle X-ray scattering,J.Mater.Scl.,2002,37:949-953.
    [37]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamarnura T.,Fabrication and mechanical properties of new improved Si-M-C-(O) Tyranno fiber,Ceram.Eng.Sci.Proc.,1998,19(3):65-72.
    [38]Kumagawa K.,Yamaoka H.,Shibuya M.,Yamamura T.,Thermal stability and chemical corrosion resistance of newly developed continuous Si-Zr-C-O Tyranno fiber,Ceram.Eng.Sci.Proc.,1997,18(3):113-118.
    [39]Ishikawa T.,Kohtoku Y.,Kumagawa K.,Yamamura T.,Nagasawa T.,High-strength alkali-resistant sintered SiC fibre stable to 2,200℃,Nature,1998,391:773-775.
    [40]Hasegawa Y.,Okamura K.,Synthesis of continuous silicon carbide fibre,part 3:Pyrolysis process of polycarbosilane and structure of the products,J.Mater.Sci.,1983,18:3633-3648.
    [41]Idesaki A.,Narisawa M.,Okamura K.,Sugimoto M.,Morita Y.,Seguchi T.,Itoh M.,Fine silicon carbide fibers synthesized from polycarbosilane-polyvinylsilane polymer blend using electron beam curing,J.Mater.Sci.,2001,36 357-362.
    [42]Masaki N.,Akira I.,Shuhei K.,Kiyohito O.,Use of blended precursors of poly(vinylsilane) in polycarbosilane for silicon carbide fiber synthesis with radiation curing,J.Am.Ceram.Soc.,1999,82(4):1045-1051.
    [43]Idesaki A.,Narisawa M.,Okamura K,Sugimoto M.,Tanaka S.,Morita Y.,Seguchi T.,Masayoshi I.,Fine SiC fiber synthesized from organosilicon polymers:relationship between spinning temperature and melt viscosity of precursor polymers,J.Mater.Sci.,2001,(36):5565-5569.
    [44]Rabe J.A.,Lipowitz J.,Lu P.P.Curing preceramic polymers by exposure to nitrogen dioxide.US Patent,5,051,215.
    [45]Hasegawa Y.,New curing method for polycarbosilane with unsaturated hydrocarbons and application to thermally stable SiC fibre,Compos.Sci.Technol.,1994,51(2):161-166.
    [46]Okamura K.,Seguchi T.,Application of radiation curing in the preparation of polycarbosilane derived SiC fibers,J.Inorg.Organomet.P.,1992,2(1):171-179.
    [47]Hasegawa Y.,SiC fiber prepared from polycarbosilane cured without oxygen,J.Inorg.Organomet.P.,1992,2(1):161-169
    [48]Ishikawa T.,Recent developments of the SiC fiber Nicalon and its composites,including properties of the SiC fiber Hi-Nicalon for ultra-high temperature,Compos.Sci.Technol.,1994,51(2):135-144.
    [49]Hasegawa Y.,Iimura M.,Yajima S.,Synthesis of continuous silicon carbide fibre,J.Mater.Sci.,1980,15(3):720-728.
    [50]Bouillon E.,Mocaer D.,Villeneuve J.F.,Pailler R.,Naslain R.,Monthioux M.,Oberlin A.,Guimon C.and Pfister G,Composition-microstructure-property relationships in ceramic monofilaments resulting from the pyrolysis of a polycarbosilane precursor at 800 to 1400℃,J.Mater.Sci.,1991,26(6):1517-1530.
    [51]Ly H.Q.,Taylor R.,Day R.J.,Frank H.,Conversion of polycarbosilane(PCS) to SiC-based ceramic Part Ⅱ.Pyrolysis and characterisation,J.Mater.Sci.,2001,36:4045-4057.
    [52]Hasegawa Y.,Synthesis of continuous silicon carbide fibre,part 6 pyrolysis process of cured polycarbosilane fibre and structure of SiC fibre,J.Mater.Sci.Technol.,1989,24:1177-1190.
    [53]李晓霞,连续碳化硅纤维的制备工艺与基础研究,博士学位论文,国防科技大学,长沙,1998.
    [54]Takeda M.,Saeki A.,Sakamoto J.I.,Imai Y.,Ichikawa H.,Effect of hydrogen atmosphere on pyrolysis of cured polycarbosilane fibers,J.Am.Ceram.Soc.,2000,83(5):1063-1069.
    [55]Hemida A.T.,Pailler R.,Naslain R.,Continuous SiC-based model monofilaments with a low free carbon content part Ⅰ:from the pyrolysis of a polycarbosilane precursor under an atmosphere of hydrogen,J.Mater.Sci.,1997,32:2359-2366.
    [56]Shimoo T.,Okamura K.,Yamanaka T.,Oxidation behavior of Si-C-O fibers(Nicalon) in alumina,J.Mater.Sci.,2001,36:4137-4143.
    [57]Bodet R.,Lamon J.,Jia N.,Tressler R.E.,Microstructural stability and creep behavior of Si-C-O(Nicalon) fibers in carbon monoxide and argon environments,J.Am.Ceram.Soc.,1996,79(10):2673-2686.
    [58]Shimoo T.,Chen H.,Okamura K.,Pyrolysis of Si-C-O fibers(Nicalon) at temperature from 1473K to 1673K,J.Ceram.Soc.Jpn.,1992,100(1):48-53.
    [59]Sugimoto M.,Toshio S.,Okamura K.,Seguchi T.,Reaction mechanisms of silicon carbide fiber synthesis by heat treatment of polycarbosilane fibers cured by radiation:I evoved gas analysis,J.Am.Ceram.Soc.,1995,78(4):1013-1017.
    [60]Shimoo T.,Okamura K.,Tsukada I.,Seguchi T.,Thermal stability of low-oxygen SiC fibers fired under different conditions,J.Mater.Sci.,1999,34:5623-5631.
    [61]Shimoo T.,Okamura K.,Takeuchi H.,Effect of reduced pressure on oxidation and thermal tability of polycarbosilane-defived SiC fibers,J.Mater.Sci.,2003,38:4973-4979.
    [62]Shimoo T.,Sugimoto M.,Okamura K.,J.Ceram.Soc.Jpn.,1991,98(Int.Edition):1336-1341.
    [63]Lipowitz J.,Barnard T.,Bujalski D.,Rabe J.,Zank G.,Zangvil A.,Xu Y.,Fine-diameter polycrystalline SiC fibers,Compos.Sci.Technol.,1994,51(2):167-171.
    [64]Michael D.S.,Effect of composition and heat treatment conditions on the tensile strength and creep resistance of SiC-based fibers,J..Eur.Ceram.Soc.,1999,19:2305-2315.
    [65]Bunsell A.,Piant A.,A review of the development of three generations of small diameter silicon carbide fibres,J.Mater.Sci.,2006,41(3):823-839.
    [66]Havel M.,Colomban P.,Rayleigh and Raman images of the bulk/surface nanostructure of SiC based fibres,Composites Part B:Engineering,2004,35(2):139-147.
    [67]Havel M.,Colomban P.,Raman and Rayleigh mapping of corrosion and mechanical aging in SiC fibres,Compos.Sci.Technol.,2005,65(3-4):353-358.
    [68]Gouadec G.,Colomban P.,Non-destructive mechanical characterization of SiC fibers by Raman spectroscopy,J.Eur.Ceram.Soc.,2001,21(9):1249-1259.
    [69]Yun H.M.,DiCarlo J.A.Comparison of the tensile,creep,and rupture strength properties of stoichiometric SiC fibers;NASA TM—1999-209284;1999.
    [70]楚增勇,先驱体法碳化硅纤维缺陷形成机理与性能提高研究,博士学位论文,国防科技大学,长沙,2003.
    [71]王军,含过渡金属的碳化硅纤维的制备及其电磁性能,博士学位论文,国防科技大学,长沙,1997.
    [72]肖汉宁,高朋召,高性能结构陶瓷及其应用,化学工业出版社:北京,2006.
    [73]Morishitaw K.,Ochiai S.,Okuda H.,Inshikawa T.,Sato M.,Inoue T.,Fracture toughness of a crystalline silicon carbide fiber(Tyranno-SA3),J.Am.Ceram.Soc.,2006,89(8):2571-2576.
    [74]Simon G.,Bunsell A.R.,Mechanical and structural characterization of Nicalon silicon carbide fibre,J.Mater.Sci.,1984,19:3649-3657.
    [75]Sawyer L.C.,JAMIESON M.,Brikowski D.,Haider M.I.,Chen R.W.,Strength,structure,and fracture properties of ceramic fibers produced from polymeric precursors:I,base-Line studies,J.Am.Ceram.Soc.,1987,70(11):798-810.
    [76]Mah T.,Hecht N.L.,Mccullum D.E.,Hoenigman J.R.,Kim H.M.,Katz A.P.,Lipsitt H.A.,Thermal stability of SiC fibres(Nicalon),J.Mater.Sci.,1984,19:1191-1201.
    [77]Clark T.J.,Arons R.M.,Stamatoff J.B.,Rabe J.,Thermal degradation of Nicalon SiC fiber,Ceram.Eng.Sci.Proc.,1985,6:576-578.
    [78]Clark T.J.,Jaffe M.,Rabe J.,Langley N.R.,Thermal Stability Characterization of SiC Fibers:I,Mechanical Property and Chemical Structure Effects,Ceram.Eng.Sci.Proc.,1986,7(7-8):901-913.
    [79]Shimoo T.,Okamura K.,Morisada Y.,Active-to-passive oxidation transition for polycarbosilane-derived silicon carbide fibers heated in Ar-O_2 gas mixtures,J.Mater.Sci.,2002,37:1793-1800.
    [80]Shimoo T.,Morsada Y.,Okamura K.,Oxidation behavior of Si-M-C-O fibers under wide range of oxygen partial pressures,J.Mater.Sci.,2002,37:4361-4368.
    [81]Clark T.J.,Prack E.R.,Haider M.I.,Sawyer L.C.,Oxidation of SiC ceramic fiber,Ceram.Eng.Sci.Proc.,1987,8:717-731.
    [82]Porte L.,Sartre A.,Evidence for a silicon oxycarbide phase in the Nicalon silicon carbide Fiber,J.Mater.Sci.,1989,24:271-275.
    [83]Shimoo T.,Toyoda F.,Okamura K.,Oxidation kinetics of low-oxygen silicon carbide fiber,J.Mater.Sci.,2000,35:3301-3306.
    [84]Shimoo T.,Ito M.,Okamura K.,Takeda M.,Effect of vacuum heat treatment on elcetron-beam-irradiation-cured polycarbosiane fibers,J.Am.Ceram.Soc.,2001,84(1):111-116.
    [85]Shimoo T.,Okamura K.,Mutoh W.,Oxidation behavior and mechanical properties of low-oxygen SiC fibers prepared by vacuum heat-treatment of electron-beam-cured poly(carbosilane) precursor,J.Mater.Sci.,2003,38:1653-1660.
    [86]余煜玺,含铝碳化硅纤维的连续化制备与研究,博士学位论文,国防科技大学,长沙,2005.
    [87]Le Coustumer P.,Monthioux M.,Oberlin A.,Understanding Nicalon fibre,J.Eur.Ceram.Soc.,1993,11(2):95-103.
    [88]Laffon C.,Flank A.M.,Lagarde P.,Laridjani M.,Study of Nicalon-based ceramic fibers and powders by EXAFS spectrometry,X-ray diffractometry and some additional methods,J.Mater.Sci.,1989,24:1503-1512.
    [89]Lipowitz J.,Rabe J.A.,Frevel L.K.,Miller R.L.,Characterization of Nanoporosity in Polymer-derived Ceramic Fibers by X-ray Scattering Techniques,J.Mater.Sci.,1990,25:2118-2124.
    [90]Lipowitz J.,Freeman H.A.,Chen R.T.,Prack E.R.,Composition and Structure of Ceramic Fibers Prepared from Polymer Precursors,Adv.Ceram.Mater.,1987,2(2):1121-1128.
    [91]Hochet N.,Berger M.H.,Bunsell A.R.,Microstmctural evolution of the latest generation of small-diameter SiC-based fibers tested at high temperature,J.Microsc-oxford.,1997,185:243-258.
    [92]Seguchi T.,New trend of radiation application to polymer modification-irradiation in oxygen free atmosphere and at elevated temperature,Radiat.Phys.Chem.,2000,57(3-6):367-371.
    [93]Takeda M.,Sakamoto J.I.,Imai Y.,Ichikawa H.,Thermal stability of the low-oxygen-content silicon carbide fiber,Hi-NicalonTM,Compos.Sci.Technol.,1999,59(6):813-819.
    [94]Toreki W.,Batich C.D.,Sacks M.D.,Saleem M.,Choi G.J.,Morrone A.A.,Polymer-derived silicon carbide fibers with low oxygen content and improved thermomechanical stability,Compos.Sci.Technol.,1994,51(2):145-159.
    [95]Berger M.H.,Hochet N.,Bunsell A.R.,Microstmcture and thermo-mechanical stability of a low-oxygen Nicalon fibre,J.Microsc-oxford.,1995,177(3):230-241.
    [96]Berger M.H.,Hochet N.,Bunsell A.R.,Microstructure and high temperature mechanical behaviour of new polymer derived SiC based fibers,Ceramic Eng.Sci.Proc.,1998,19 39-46.
    [97]Chollon G.,Pailler R.,Naslain R.,Thermal stability of a PCS-derived SiC fiber with a low oxygen content(Hi-Nicalon),J.Mater.Sci.,1997,32:327-347.
    [98]Berger M.H.,Bunsell A.R.,The microstructure of low oxygen Nicalon fiber,Adv.Compos.Lett.,1993,2:87-89.
    [99]Lipowitz J.,Rabe J.A.,Zangvil A.,Xu Y.,Structure and properties of sylramic~(TM) silicon carbide fiber-A polycrystalline,stoichiometric β-SiC composition,Ceramic Eng.Sci.Proc.,1997,15(3):147-157.
    [100]Yun H.M.,Dicarlo.J.A.,Comparison of the tensile,creep,and rupture strength properties of stoichiometric SiC fibers,Ceram.Eng.Sci.Proc.,1999,20(3):259-272.
    [101]Takeda M.,Urano A.,Sakamoto J.I.,Imai Y.,Microstructure and oxidative degradation behavior of silicon carbide fiber Hi-Nicalon type S,J.Nucl.Mater.,1998,258-263:1594-1599.
    [102]Ichikawa H.,Recent advances in Nicalon ceramic fibres including Hi-Nicalon type S,Annales de Chimie Science des Matiaux,2000,25(7):523-528.
    [103]Dicario J.A.,Yun H.M.,Handbook of Ceramic Composites.Kluwer:Boston,2005.
    [104]DiCarlo J.A.,Yun H.M.New high-performance SiC fiber developed for ceramic composites;SiC/SiC material development under the NASA UEET program:2001.
    [105]Folsom A.,Katz A.P.,Microstructural stability of Nicalon at 1000℃ in air after exposure to salt(NaCI) water,J.Am.Ceram.Soc.,1995,78(7):1992-1996.
    [106]Bamard T.D.,Lipowitz J.,Nguyen K.T.Process to produce silicon carbide fibers using a controlled concentration of boron oxide vapor.US Patent 6,261,509 B1,2001.
    [107]Lipowitz J.,Rape J.A.Preparation of polycrystalline ceramic fibers.US Patent 5,279,780,1994.
    [108]Deleeuw D.C.,Lipowitz J.,Rape J.A.Preparation of substantially polycrystalline silicon carbide fibers from methylpolydisilylazanes.US Patent 5,268,336,1993.
    [109]连续碳化硅纤维研究课题组 连续碳化硅纤维研究-技术报告系列;2001.
    [110]王应德,冯春祥,宋永才,邹治春,碳化硅纤维连续化工艺研究,宇航材料工艺,1997,27(2):21-25.
    [111]Chu Z.Y.,Song Y.C.,Xu Y.S.,Fu Y.B.,Enhanced irradiation cross-linking of polycarbosilane,J.Mater.Sci.Lett.,1999,I8:1793-1795.
    [112]Chu Z.Y.,Song Y.C.,Feng C.X.,Xu Y.S.,Fu Y.B.,A model SiC-based fiber with a low oxygen content prepared from a vinyl-containing polycarbosilane precursor,J.Mater.Sci.Lett.,2001,20(585-587).
    [113]毛仙鹤,碳化硅纤维制备的基础问题研究-聚碳硅烷的高产率合成和低氧含量碳化硅纤维的制备,博士学位论文,国防科技大学,长沙,2007.
    [114]薛金根,干法纺丝法制备低氧含量碳化硅纤维,博士学位论文,国防科技大学,长沙,2006.
    [115]曹峰,耐超高温碳化硅纤维新型先驱体研究及纤维制备,博士学位论文,国防科技大学,长沙,2002.
    [116]Song Y.C.,Feng C.,Tan Z.,Lu Y.,Structure and properties of polytitanocarbosilane as the precursor of SiC-TiC fibre,J.Mater.Sci.Lett.,1990,(9):1310-1313.
    [117]Song Y.C.,Hascgawa Y.,Yang S.J.,Sato M.,Ceramic fibres from polymer precursor containing Si-O-Ti bonds,J.Mater.Sci.,1988,23:1911-1920.
    [118]Fan X.L.,Cao F.,Song Y.C.,Li X.D.,Preparation of Si-C-O-N-B ceramic fibers from polycarbosilane,J.Mater.Sci.Lett.,1999,18:629-630.
    [119]Cao F.,Li X.D.,Peng P.,Feng C.X.,Wang J.,Kim D.P.,Structural evolution and associated properties on conversion from Si-C-O-Al ceramic fibers to Si-C-Al fibers by sintering,J.Mater.Chem.,2002,12:606-610.
    [120]Cao F.,Kim D.P.,Li X.D.,Feng C.X.,Song Y.C.,Synthesis of polyaluminocarbosilane and reaction mechanism study,J.Appl.Polym.Sci.,2002,85:2787-2792.
    [121]陈志彦,连续Si-Fe-C-O纤维及其结构吸波材料的研究,博士学位论文,国防科技大学,长沙,2005.
    [122]郑春满,聚铝碳硅烷纤维的无机化及生成碳化硅纤维的连续化过程研究,博士学位论文,国防科技大学,2006.
    [123]范小琳,低氧含量碳化硅纤维的研制,博士学位论文,国防科技大学,长沙,1999.
    [124]Yu Y.,Zhang Y.,Yang J.,Tang M.,Synthesis and characterization of ceramic precursor aluminum-containing polycarbosilane and its pyrolysis,J.Inorg.Organomet.Polym.,2007,17(3):569-575.
    [125]Yu Y.,Li X.,Cao F.,Synthesis and characterization of polyaluminocarbosilane,J.Mater.Sci.,2005,40(8):2093-2095.
    [126]赵大方,李效东,郑春满,胡天娇,采用聚硅碳硅烷与乙酰丙酮铝合成聚铝碳硅烷的机理,北京科技大学学报,2007,29(2):130-134.
    [127]郑春满,李效东,王浩,赵大方,胡天骄,耐超高温连续Si-Al-C纤维的一步法制备与表征,中国科学E辑,2008,38(7):1072-1079
    [128]张国建,吴义伯,刘春佳,罗学涛,控制热解气氛制备近化学计量SiC纤维的研究,厦门大学学报,2006,45(5):683-687.
    [129]Chen L.,Zhang L.,Cai Z.,Yu Y.,Gu H.,Zhang L.,Effects of oxidation curing and sintering additives on the formation of polymer-derived near-stoichiometric silicon carbide fibers,J.Am.Ceram.Soc.,2008,91:428-436.
    [130]余煜玺,李效东,曹峰,郑春满,王应德,王军,先驱体转化法制备连续SiC(On)纤维,稀有金属材料与工程,2006,(04):164-167.
    [131]郑春满,李效东,余煜玺,曹峰,先驱体转化法制备耐高温Si-Al-C-O纤维,材料工程,2004,(12):25-28.
    [132]郑春满,李效东,余煜玺,赵大方,曹峰,高温烧结制备含铝碳化硅纤维,硅酸盐学报,2006,34(05):531-535.
    [133]郑春满,刘世利,李效东,王浩,赵大方,连续SiC(Al)纤维耐超高温性能及其机理,物理化学学报,2008,26(4):971-977.
    [134]Zheng C.M.,Li X.D.,Wang H.,Zhao D.F.,Hu T.J.,Evolution of crystallization and its effects on properties during pyrolysis of Si-Al-C-(O) fibers,J.Mater.Sci.,2008,43:3314-3319.
    [135]方惠群,于俊生,史坚,仪器分析,科学出版社:北京,2002.
    [136]Ly H.Q.,Taylor R.,Day R.J.,Frank H.,Conversion of polycarbosilane(PCS) to SiC-based ceramic Part 1.Characterization of PCS and curing products,J.Mater.Sci.,2001,36:4037-4043.
    [137]王浩,聚碳硅烷纤维的预氧化及无机化研究,硕士学位论文,国防科技大学,2000.
    [138]Hemida A.T.,Birot M.,Pillot J.P.,Dunogues J.,Pailler R.,Synthesis and characterization of new precursors to nearly stoichiometric SiC ceramics Part Ⅰ The copolymer route,J.Mater.Sci.,1997 32:3475-3483.
    [139]马礼敦,高等结构分析,复旦大学出版社:上海.2002.
    [140]宁永成,有机化合物的结构鉴定与有机波谱学.科学出版社:北京.2001.
    [141]杜庭发,现代仪器分析.国防科技大学:长沙,1994.
    [142]连续碳化硅纤维课题组 连续碳化硅纤维研究-技术报告系列;2001.
    [143]刘伟,李伯耿,沈炯,潘仁祖,间规聚苯乙烯的Mark-Houwink方程K,α的订定及应用,高分子材料科学与工程,2003,19(3):187-189.
    [144]Nielsen L.E.,PolymerRheology.科学出版社:北京,1983.
    [145]ASTM Test Method D3379-75 A.B.o.A.S.,American Society for Testing and Materials,Philadelphia,PA,1998:131.
    [146]薛金根,王应德,宋永才,从LPS馏分出发合成先驱体聚碳硅烷,国防科技大学学报,2006,28(2):35-38.
    [147]宋永才,商瑶,冯春祥,聚二甲基硅烷的热分解研究,高分子学报,1995,(6):753-757.
    [148]薛金根,王应德,冯春祥,宋永才,先驱体聚碳硅烷的合成研究进展,有机硅材料,2004,(02):27-30.
    [149]宋永才,王岭,冯春祥,聚碳硅烷的合成与特性研究,高分子材料科学与工程,1997,13(4):30-33.
    [150]程祥珍,谢征芳,宋永才,肖加余,反应温度对聚二甲基硅烷高压合成聚碳硅烷性能的影响,高分子学报,2005,(6):851-855.
    [151]程祥珍,宋永才,谢征芳,肖加余,液态聚硅烷高温高压合成聚碳硅烷工艺研究,国防科技大学学报,2004,(04):62-67.
    [152]程祥珍,宋永才,谢征芳,肖加余,王应德,液态聚硅烷高压合成聚碳硅烷先驱体的组成与结构表征,材料工程,2005,(01):58-61.
    [153]程祥珍,宋永才,谢征芳,肖加余,王应德,聚二甲基硅烷高温高压合成聚碳硅烷工艺研究,材料工程,2004,(08):39-43.
    [154]程祥珍,肖加余,谢征芳,宋永才,聚二甲基硅烷高压合成聚碳硅烷的组成、结构及性能表征,宇航材料工艺,2004,(05):39-43.
    [155]Matsui S.,Paul D.R.,Pervaporation separation of aromatic/aliphatic hydrocarbons by crosslinked poly(methyl acrylate-co-acrylic acid) membranes,J of Membrane Sci,2002,195:229-245.
    [156]冯春祥,宋永才,谭自烈,元素有机化合物及其聚合物,国防科技大学出版社:长沙,1999.
    [157]Chao C.C.,Tsa D.S.,Si-Al-C gas separation membranes derived from polydimethylsilanc and aluminum acetylacetonate,J.Membrane.Sci.,2001,192:209-216.
    [158]杨南如,岳文海,无机非金属材料图谱手册,武汉工业大学出版社:武汉,2000.
    [159]Li X.D.,Edirisinghe M.J.,Evolution of the ceramic structure during thermal degradation of a Si-Al-C-O precursor,Chem.Mater.,2004,16:1111-1119.
    [160]Babonnean F.,G.D.S.,Thorne K.J.,Mackenzie J.D.,Chemical characterization of Si-Al-C-O precursor and its pyrolysis,J.Am.Ceram.Soc.,1991,74(7):1725-1728.
    [161]Li X.D.,Edirisinghe M.J.,A new aluminum coordination site in Si-C-Al-N-(O) ceramics,J.Am.Ceram.Soc.,,2003,86(12):2212-2214.
    [162]郑春满,李效东,余煜玺,王浩,曹峰,赵大方,耐超高温SiC(Al)纤维先驱体—聚铝碳硅烷纤维的研究,高分子学报,2006,(06):768-773.
    [163]刘辉,聚碳硅烷纤维成型的基础研究,硕士学位论文,国防科学技术大学,长沙,2002.
    [164]刘辉,叶红齐,冯春祥,PCS的沉淀分级对SiC纤维性能的影响,当代化工,2003,32(03):125-128.
    [165]刘辉,王应德,冯春祥,吴文华,朱美芳,陈彦模,聚碳硅烷流变性能研究,合成纤维工业,2001,24(5):23-25.
    [166]王应德,蓝新艳,王鲁,薛金根,姜勇刚,聚碳硅烷纤维成形过程的稳定性研究,国防科技大学学报,2004,26(6):21-24.
    [167]蓝新艳,王应德,薛金根,王鲁,熔融纺丝态下的聚碳硅烷纺丝特性,宇航材料工艺,2005,(1):35-38.
    [168]王应德,薛金根,蓝新艳,宋永才,肖加余,连续聚碳硅烷纤维的断裂机理与可纺性研究,高技术通讯,2004,(8):47-50.
    [169]蓝新艳.聚碳硅烷纤维成形过程研究.硕士学位论文,国防科学技术大学,长沙,2004.
    [170]郑春满,李效东,余煜玺,赵大方,曹峰,聚铝碳硅烷纤维预氧化过程组成结构演变的研究,化学学报,2006,64(15):1581-1586.
    [171]马克H.F.,阿特拉斯S.M.,契尼亚E.,化学纤维结构及纺丝原理,化学工业出版社:北京,1980.
    [172]徐佩弦,高聚物流变学及其应用,化学工业出版社:北京,2003.
    [173]金日光,高聚物流变学及其在加工中的应用,化学工业出版社:北京.1986.
    [174]程祥珍.聚碳硅烷的高温高压合成与碳化硅纤维制备研究,国防科技大学,长沙,2004.
    [175]何曼君,陈维孝,董西侠,高分子物理,修订版.复旦大学出版社:上海,2000.
    [176]Ichikawa H.,Machino,F.,Mitsuno,S.,Ishikawa,T.,Okamura,K.and Hasigawa,Y.,Synthesis of continuous silicon carbide fibre.Part 5.Factors affecting stability of polycarbosilane to oxidation,J.Mater.Sci.,1987,18(2):4352-4356.
    [177]Ichikawa H.,Machino F.,Teranishi H.,Ishikawa T.,Oxidation reaction of polycarbosilane,J.Am.chem.Soc.,1990,224:619-617
    [178]郑春满,李效东,余煜玺,王浩,冯春祥,预氧化聚碳硅烷纤维热分解动力学及其机理,新型炭材料,2007,22(02):171-176.
    [179]Wang H.,Li X.D.,Li X.X.,Zhu B.,Kim D.P.,The kinetics of oxidation curing of polycarbosilane fibers,Korean J.Chem.Eng.,2004,21(4):901-904.
    [180]郑春满,李效东,王浩,赵大方,胡天娇,预氧化聚铝碳硅烷纤维的热分解动力学及其机 理,化学学报,2007,(04):355-360.
    [181]郑春满,朱冰,李效东,王亦菲,聚碳硅烷纤维的热交联研究,高分子学报,2004,(2):246-250.
    [182]余煜玺,李效东,曹峰,王应德,王军,郑春满,冯春祥,先驱体法制备的含铝SiC纤维的组成和结构研究,无机材料学报,2006,21(01):94-102.
    [183]Rahaman M.N.,Ceramic processing and sintering,2nd edition.Marcel Dekker Inc:New York,2003.
    [184]Zheng C.,Li X.,Yu Y.,Zhao D.,Conversion of polyaluminocarbosilane(PACS) to Si-Al-C-(O) fibers:evolutions and effect of oxygen,T.Nonferr.Metal Soc.,2006,16(2):254-258.
    [185]Zheng C.,Li X.,Yu Y.,Zhao D.,Cao F.,Effect of oxygen on the mechanical properties of polymer-derived Si-Al-C-O fibers,The Fourth China International Conference on High-Performance Ceramics(CICC-4),2005,Chengdu,Sichuan Province,P.R.China.
    [186]Sawyer L.C.,Chen R.T.,Haimabch F.,Harget P.J.,Thermal stability characterization of SiC fibers:Ⅱ,Fractography and structure,Ceram.Eng.Sci.Proc.,1986,7:914-930.
    [187]黄智恒,贾德昌,杨治华,周玉,碳化硅陶瓷的活化烧结与烧结助剂,材料科学与工艺,2004,12(1):103-106.
    [188]崔国文,缺陷、扩散与烧结,清华大学出版社:北京,1990.
    [189]肖汉宁,碳化硅超细粉末的制备及热压烧结机理和强化增韧的研究,博士学位论文,湖南大学,长沙,1991.
    [190]Zhao D.F.,Li X.D.,Wang H.,Effects of oxygen content on the properties of Ultra-High-Temperature resistant Si-Al-C fibers,Key Eng.Mater.,2008,368-372:1774-1777.
    [191]Karlin S.,Colomban P.,Micro-Raman study of SiC fibre-oxide matrix reaction,Composites Part B:Engineering 1998,29B:41-50.
    [192]Yu Y.,Tang X.,Li X.,Characterization and microstructural evolution of SiC(OAl) fibers to SiC(Al) fibers derived from aluminum-containing polycarbosilane,Compos.Sci.Technol.,2008,68(7-8):1697-1703.
    [193]Kaneko K.,Honda S.,Nagano T.,Saitoh T.,Analytical investigation of grain boundaries of compressive deformed Al-doped sintered β-SiC,Mater.Sci.Eng.,2000,A285(1-2):136-143.