Caveolin-1调控肝细胞癌血管生成的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(Hepatocellular carcinoma,HCC)是世界上最常见的实体恶性肿瘤之一,手术切除和肝移植仍是目前最有效的治疗手段,但疗效不佳,术后复发和转移是其最主要原因。HCC是富血供肿瘤,血管生成被认为与HCC的侵袭转移密切相关,肿瘤细胞与血管内皮细胞之间的相互作用参与了该过程。
     Caveolin-1是细胞膜上内陷微区域的主要结构蛋白,在肿瘤侵袭转移和血管生成过程中发挥着重要作用。目前,对caveolin-1在不同肿瘤中的作用尚存在着两种完全不同的观点。Caveolin-1最初被认为是抑癌基因,但最近越来越多的研究发现,caveolin-1过表达参与了肿瘤的侵袭转移和血管生成。在有关HCC的研究中发现,下调caveolin-1能抑制不同淋巴道侵袭能力小鼠HCC的侵袭转移。本研究所前期采用SuperArray基因芯片技术对HCC转移相关基因进行筛选,发现caveolin-1是重要的促转移候选基因之一。这些研究提示,caveolin-1参与了HCC的侵袭转移和血管生成,但其机制有待进一步阐明。已有研究表明,血管内皮细胞生长因子(vascular endothelial growth factor,VEGF)是HCC血管生成中最主要的刺激因子,但多数研究caveolin-1与VEGF诱导血管生成之间的关系都集中在内皮细胞上,而对肿瘤细胞上caveolin-1表达是否与VEGF诱导的血管生成有关尚不清楚。
     基于以上研究背景,本研究采用免疫组织化学和细胞化学、qRT-PCR及Western blot技术检测HCC组织标本和肝癌细胞株中caveolin-1的表达,并分析caveolin-1与HCC临床病理学因素、VEGF及肿瘤血管生成相关指标(肿瘤微血管密度(MVD)、非成对动脉(UA))之间的相关性;利用慢病毒表达系统构建caveolin-1 RNA干扰载体,并借助qRT-PCR、ELISA、侵袭实验和划痕实验分析其对人肝细胞癌株SMMC7721 VEGF表达和侵袭、运动能力的影响;利用MTT法和二维凝胶血管生成体外模型探讨下调SMMC7721细胞中caveolin-1表达的培养上清液对人脐静脉血管内皮细胞(human umbilical vein endothelial cells,HUVEC)增殖和VEGF诱导的血管生成的影响。
     主要结果和结论如下:
     第一部分:Caveolin-1在HCC中的表达及临床意义
     1、26例伴肝内转移的HCC组织标本中,癌组织内caveolin-1 mRNA表达水平高于正常肝组织、肝硬化组织和癌旁组织,差异均具有统计学意义(P=0.046、0.021、0.039)。75例HCC组织标本行免疫组织化学检测显示,量化分析caveolin-1表达强度(P=0.001)、阳性百分比(P=0.002)、计分(P=0.001)均与转移显著相关。Caveolin-1表达强弱与VEGF(r=0.293, P=0.011)、MVD(r=0.361, P=0.001)、UA(r=0.388, P=0.001)均呈显著正相关。生存分析发现,caveolin-1高表达患者预后比低表达者差(P=0.014)。单变量分析发现,肿瘤大小、门静脉癌栓、肝内转移、caveolin-1表达强弱、VEGF表达水平、MVD和UA都是HCC的重要预后因素;但多变量分析(COX回归模型)发现,只有肿瘤大小和VEGF表达水平是其独立预后因素,而caveolin-1表达水平并非其独立预后因素。
     2、在HepG2和SMMC7721肝癌细胞株中,免疫细胞化学结果显示,Caveolin-1在SMMC7721呈强阳性表达,而在HepG2中未见明显表达;Western blot检测结果与免疫细胞化学结果一致,且发现在SMMC7721中caveolin-1表达与VEGF高表达呈显著正相关(r=0.888,P<0.01);qRT-PCR检测结果显示,SMMC7721细胞中caveolin-1 mRNA表达水平明显高于HepG2,差异有统计学意义(P<0.01)。侵袭实验分析证实了SMMC7721的侵袭能力高于HepG2(P=0.003)。
     第二部分:Caveolin-1 RNAi慢病毒载体构建及其对人肝细胞癌株SMMC7721 VEGF表达和侵袭、运动能力的影响
     1、成功构建慢病毒系统介导的caveolin-1 RNAi载体,其可较长时间、稳定表达于SMMC7721,感染5天后转导效率为(96.0±1.2)%,并能显著敲除靶细胞SMMC7721中目的基因caveolin-1的mRNA(敲除率约90%)和蛋白表达。
     2、沉默Caveolin-1能显著降低SMMC7721细胞内VEGF mRNA表达水平,相对阴性感染对照组下降水平约50%(P<0.05);ELISA法检测显示分泌至胞外的VEGF蛋白水平表达约下降20%(P<0.05)。
     3、Caveolin-1下调能显著抑制SMMC7721的侵袭和运动能力,各个时相点相对对照组差异均有统计学意义(P均小于0.01);给予外源性重组人VEGF后能显著恢复其侵袭能力(P<0.05),证实caveolin-1可通过调控VEGF参与HCC的侵袭转移。
     第三部分:SMMC7721 Caveolin-1沉默培养上清液对HUVEC eNOS表达和内皮细胞增殖、成管的影响
     1、采用原代培养的HUVEC可较好的保持其纯度和降低变异程度。Caveolin-1 RNAi后SMMC7721培养上清液使HUVEC细胞活力显著下降,增殖能力受到抑制,差异有统计学意义(P<0.01)。
     2、Caveolin-1 RNAi后SMMC7721细胞上清液能显著抑制HUVEC管腔结构的形成(P<0.05),给予外源性重组人VEGF后可恢复HUVEC管腔结构的形成(P<0.05),CD34标记的免疫组化检测结果证实了该结果。
     3、SMMC7721细胞caveolin-1沉默后上清液能显著抑制HUVEC细胞上eNOS ser-1177位点的磷酸化(P<0.05),于24h抑制最为明显,而eNOS总蛋白表达没有发生变化。
     综上所述,本研究主要结论如下:
     1、人HCC组织中caveolin-1表达水平升高与肿瘤转移、预后差和肿瘤血管生成显著正相关;高侵袭潜能人肝细胞癌株SMMC7721中caveolin-1表达较高,并与VEGF表达升高呈显著正相关。Caveolin-1可能是预测HCC侵袭转移潜能和预后的指标之一。
     2、利用慢病毒系统成功构建的caveolin-1 RNAi载体可较长时间、稳定表达于SMMC7721,并能显著下调其caveolin-1的表达;沉默caveolin-1能显著降低SMMC7721细胞内VEGF mRNA表达及其分泌至胞外的VEGF蛋白表达水平;Caveolin-1下调能显著抑制SMMC7721的侵袭和运动能力,给予外源性重组人VEGF后能恢复其侵袭能力,证实caveolin-1可通过调控VEGF参与HCC的侵袭转移。
     3、人肝细胞癌株SMMC7721中caveolin-1沉默引起的分泌型VEGF表达下调能显著抑制HUVEC的增殖能力;利用基质胶构建的二维凝胶血管生成体外模型发现,caveolin-1沉默的人肝细胞癌株SMMC7721条件培养基能显著抑制HUVEC管腔结构的形成和eNOS的活化,而给予外源性重组人VEGF后则能恢复其管腔结构;这表明肝癌细胞中caveolin-1沉默引起的分泌型VEGF表达下调通过抑制肿瘤血管生成中VEGF介导的eNOS活化而阻遏了HUVEC管腔结构的形成,即肝癌细胞中caveolin-1表达可能通过诱导VEGF介导的肿瘤血管生成,进而促进HCC的侵袭转移,这可能是干预HCC侵袭转移的有效靶点。
BACKGROUNDS and OBJECTIVES
     Hepatocellular carcinoma (HCC) is one of the most common solid tumors throughout the world. Though surgical ablation and liver transplantation are the effective measures for treating HCC, the effect is dissatisfactory. Metastasis and recurrence of HCC are the maximal barrier influencing therapeutic effect. As HCC is characterized by hypervascularization, angiogenesis is involved in its invasion and migration through the interaction between tumor cells and vascular endothelial cells.
     Caveolin-1, an essential constituent of the plasma membrane invaginations named as caveolae, is known to be involved in cancer invasion and angiogenesis. Numerous studies indicated that the role of caveolin-1 expression depends on the cell types and cancer stages. Whereas in some cases caveolin-1 acts as a tumor suppressor, several more recent studies found that caveolin-1 overexpression was involved in invasion and angiogenesis. During study on HCC, it showed that down-regulation of caveolin-1 reduced lymphangiogenic factor variables, vascular endothelial growth factor (VEGF) expression and prevent lymphatic metastasis in mouse hepatocarcinoma cells. On our early research, we found that caveolin-1 is one of the upregulated genes by SuperArray microarrays on screening of HCC metastasis related genes. However, the connection between the expression of caveolin-1 and cancer invasion and angiogenesis in HCC remains a puzzle and its mechanism is still not clear. The majority of studies have revealed that VEGF was one of the key positive regulators during angiogenesis in HCC. However, the relevance of caveolin-1 to VEGF induced angiogenesis was mainly focused on endothelial cells. The connection between the expression of caveolin-1 in tumor cell and angiogenesis induced by VEGF remains uncertain. Based on these previous findings, we supposed that caveolin-1 could induce VEGF expression in HCC, enhanceing tumor angiogenesis and promoting the invasion of HCC.
     METHODS
     To confirm our hypothesis, we proposed following experiments. Firstly, the caveolin-1 protein and mRNA expression in tissue specimens of HCC and human hepatocarcinoma cell lines were determined by using immunohistochemistry, Western blot, and quantitative Real-Time PCR (qRT-PCR). The levels of caveolin-1 were correlated with the clinicopathologic variables, VEGF, microvessel density (MVD) and unpaired artery (UA). Secondly, used the lentiviral expression vector of human caveolin-1 with RNA interference approach, down-regulation of caveolin-1 was correlated with VEGF expression, invasiveness and migration in SMMC7721 by qRT-PCR, ELISA, invasion assay and wound healing scratch assay. Lastly, the effect of conditioned medium from supernatant of SMMC7721 treated with caveolin-1 RNAi on eNOS expression, proliferation and capillary-like tubule formation of human umbilical vein endothelial cells (HUVEC) was screened by Western blot, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and angiogenesis two-dimensional gel model in vitro.
     RESULTS
     Part 1: The characteristics of caveolin-1 expression in HCC and its relationship with the clinicopathologic variables and angiogenesis
     1. In 26 tissue specimens of HCC with intrahepatic metastases, caveolin-1 expression of tumor tissues was significantly higher than that of nomal (P=0.046), cirrhosis (P=0.021) or adjacent tumor tissues (P=0.039). In all 75 tissue specimens of HCC, the caveolin-1 expression intensity (P=0.001), proportion (P=0.002) or score (P=0.001) was significantly correlated with metastasis. Levels of caveolin-1 correlated positively with VEGF expression (r=0.293, P=0.011), MVD (r=0.361, P=0.001) and UA (r=0.388, P=0.001). A Kaplan-Meier survival curve showed that the survival rate of patients with higher caveolin-1 expression was considerably worse than that of patients with lower caveolin-1 expression. Univariate analyses identified tumor size, portal vein tumor thrombus, metastasis, caveolin-1 intensity, caveolin-1 score, caveolin-1 expression, VEGF expression, MVD and UA as significant prognostic factors for cancer-specific survival. Multivariate analyses indicated that only tumor size and VEGF levels were independent prognostic factors for cancer-specific survival.
     2. The caveolin-1 protein and mRNA were loss in HepG2 with low invasive ability, and then significantly increasing in SMMC7721 with high invasive ability (P<0.01). Moreover, the expression of caveolin-1 in SMMC7721 was significantly associated with VEGF (r=0.888, P<0.01).
     Part 2: Construction of recombinant lentivirol expression vector carring human caveolin-1 with RNA interference and its correlation with VEGF expression, invasiveness and migration of SMMC7721
     1. Construction of recombinant lentivirol expression vector carring human caveolin-1 with RNA interference could express in SMMC7721 presistandtly and stablely. The transduction efficiency of SMMC7721 was (96.0±1.2)%. The caveolin-1 mRNA level was knocked down as 90%. The protein expression of caveolin-1 was significantly declined.
     2. Caveolin-1 silenced in SMMC7721 resulted in the mRNA level of VEGF in SMMC7721 declining about 50% compared with negative infection (P<0.05). Meanwhile, the secreted VEGF expression were decreased about 20% by ELISA (P<0.05).
     3. After caveolin-1 was knocked down, the invasiveness and migration of SMMC7721 were prevented at every phase (P<0.01), and dramaticly restored again by supplemented with recombinant human VEGF (P<0.05). The results implied that the invasion of SMMC7721 were positively regulated by caveolin-1 expression through inducing VEGF expression.
     Part 3: The effect of conditioned medium from SMMC7721 with caveolin-1 silenced on eNOS expression, proliferation and capillary-like tubule formation of HUVEC
     1. The cell purity was maintained and variation was reduced by primary cultured HUVEC. It indicated that conditioned medium from SMMC7721 with caveolin-1 silenced could significantly hampered HUVEC proliferation (P<0.01).
     2. Capillary-like tubules developed in conditioned medium from SMMC7721 with caveolin-1 silenced were reduced (P<0.05), and dramatically reorganized by supplemented with recombinant human VEGF (P<0.05). MVD by Immunocytochemistry (CD34 labled) was performed at the twenty-fourth hour to further confirm the results.
     3. Conditioned medium from SMMC7721 with caveolin-1 silenced could significantly reduce the phosphorylation of eNOS on the serine 1177 (P<0.05). However, the total protein of eNOS was unchanged.
     CONCLUSI ON
     1. Overexpression of caveolin-1 in HCC was positively correlated with metastasis, poor prognosis and angiogenesis. The caveolin-1 expression in human hepatocarcinoma cell lines SMMC7721 with high invasiveness was increased, correlating positively with VEGF. Caveolin-1 was one of hallmarker for predicting the invasion and prognosis of HCC.
     2. Construction of recombinant lentivirol expression vector carring human caveolin-1 with RNA interference could express in SMMC7721 presistandtly and stablely. Caveolin-1 silenced in SMMC7721 reduced the mRNA level of VEGF in SMMC7721 and the secreted VEGF expression in supernatant. Following by caveolin-1 down-regulated, the invasiveness and migration of SMMC7721 were prevented, and dramaticly restored again by supplemented with recombinant human VEGF. The results implied that the invasion of SMMC7721 were positively regulated by caveolin-1 expression through inducing VEGF expression.
     3. Conditioned medium from SMMC7721 with caveolin-1 silenced could significantly hampered HUVEC proliferation. Capillary-like tubules developed in conditioned medium from SMMC7721 with caveolin-1 silenced were reduced, and dramatically reorganized by supplemented with recombinant human VEGF. The activation of eNOS was prevented too. It indicated that VEGF down-regulation induced by caveolin-1 silenced hampered capillary-like tubule formation of HUVEC through reducing the activation of eNOS induced by VEGF during angiogenesis. These data highlights the fact that overexpression of caveolin-1 in HCC promotes invasion and metastasis in HCC through up-regulating VEGF induced angiogenesis. It may open new insights about the possibility of novel therapeutic strategies able to block the tumor’s blood supply and to decrease invasion and metastasis in HCC.
引文
1. Parkin DM. Global cancer statistics in the year 2000. Lancet Oncol, 2001,2(9): 533-543.
    2.张思维,李连弟,鲁凤珠,等.中国1990~1992年原发性肝癌死亡调查分析.中华肿瘤杂志, 1999,21(4):245-249.
    3. Llovet JM, Burroughs A, Bruix J. Hepatocellular carcinoma. Lancet, 2003,362 (9399):1907-1917.
    4. Folkman J, Klagsbrun M. Angiogenic factors. Science, 1987,235(4787):442-447.
    5. Mitsuhashi N, Shimizu H, Ohtsuka M, et al. Angiopoietins and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology, 2003,37(5):1105-1113.
    6. Wikman H, Kettunen E, Seppanen JK, et al. Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene, 2002,21 (37):5804-5813.
    7. Dewever J, Frerart F, Bouzin C, et al. Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol, 2007,171(5):1619-1628.
    8. Glenney JR Jr. Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem, 1989,264(34):20163-20166.
    9. Engelman JA, Zhang XL, Lisanti MP. Genes encoding human caveolin-1 and -2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett, 1998,436(3):403-410.
    10. Terris B, Blaveri E, Crnogorac-Jurcevic T, et al. Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol, 2002,160(5):1745-1754.
    11. Wiechen K, Diatchenko L, Agoulnik A, et al. Caveolin-1 is down-regulated in human ovarian carcinoma and acts as a candidate tumor suppressor gene. Am J Pathol, 2001,159(5):1635-1643.
    12. Wiechen K, Sers C, Agoulnik A, et al. Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am J Pathol, 2001,158(3):833-839.
    13. Kato K, Hida Y, Miyamoto M, et al. Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer, 2002,94(4):929-933.
    14. Suzuoki M, Miyamoto M, Kato K, et al. Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer, 2002,87(10):1140-1144.
    15. Bailey KM, Liu J. Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J Biol Chem, 2008,283(20): 13714-13724.
    16. Joo HJ, Oh DK, Kim YS, et al. Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int, 2004,93(3):291-296.
    17. Barresi V, Cerasoli S, Tuccari G. Correlative evidence that tumor cell-derived caveolin-1 mediates angiogenesis in meningiomas. Neuropathology, 2008,28(5): 472-478.
    18. Sonveaux P, Martinive P, DeWever J, et al. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res, 2004,95(2):154-161.
    19. Gonzalez E, Nagiel A, Lin AJ, et al. Small interfering RNA-mediated down-regulation of caveolin-1 differentially modulates signaling pathways in endothelial cells. J Biol Chem, 2004,279(39):40659-40669.
    20. Pan YM, Yao YZ, Zhu ZH, et al. Caveolin-1 is important for nitric oxide-mediated angiogenesis in fibrin gels with human umbilical vein endothelial cells. Acta Pharmacol Sin, 2006,27(12):1567-1574.
    21. Liu J, Wang XB, Park DS, et al. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem, 2002,277(12):10661-10668.
    22. Zhou H, Jia L, Wang S, et al. Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability. Biochem Biophys Res Commun, 2006,345(1):486-494.
    23. Yerian LM, Anders RA, Tretiakova M, et al. Caveolin and thrombospondin expression during hepatocellular carcinogenesis. Am J Surg Pathol, 2004,28(3):357-364.
    24. Choi HN, Kim KR, Park HS, et al. Expression of caveolin in hepatocellular carcinoma:association with unpaired artery formation and radiologic findings. Korean J Hepatol, 2007,13(3):396-408.
    25. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254.
    26. Read SM, Northcote DH. Minimization of variation in the response to different proteins of the Coomassie blue G dye-binding assay for protein. Anal Biochem, 1981,116(1):53-64.
    27. Bearden JC Jr. Quantitation of submicrogram quantities of protein by an improved protein-dye binding assay. Biochim Biophys Acta, 1978,533(2):525-529.
    28.汪家政,范明主编.蛋白质技术手册.北京:科学出版社,2000. 46.
    29. Park SS, Kim JE, Kim YA, et al. Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology, 2005,47(6):625-630.
    30. Tanigawa N, Lu C, Mitsui T, et al. Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology, 1997,26(5):1216-1223.
    31. Albini A, Iwamoto Y, Kleinman HK, et al. A rapid in vitro assay for quantitating the invasive potential of tumor cells. Cancer Res, 1987,47(12):3239-3245.
    32. Rothberg KG, Heuser JE, Donzell WC, et al. Caveolin, a protein component of caveolae membrane coats. Cell, 1992,68(4):673-682.
    33. Scherer PE, Lewis RY, Volonte D, et al. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem, 1997,272(46):29337-29346.
    34. Song KS, Scherer PE, Tang Z, et al. Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem, 1996,271 (25):15160-15165.
    35. Razani B, Park DS, Miyanaga Y, et al. Molecular cloning and developmental expression of the caveolin gene family in the amphibian Xenopus laevis. Biochemistry, 2002,41(25):7914-7924.
    36. Drab M, Verkade P, Elger M, et al. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science, 2001,293(5539): 2449-2452.
    37. Hung KF, Lin SC, Liu CJ, et al. The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. J Oral Pathol Med, 2003,32(8):461-467.
    38. Yang G, Truong LD, Timme TL, et al. Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res, 1998,4(8):1873-1880.
    39. Yoo SH, Park YS, Kim HR, et al. Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer, 2003,42(2):195-202.
    40. Morinaga S, Imada T, Shimizu A, et al. Angiogenesis in hepatocellular carcinoma as evaluated by alpha smooth muscle actin immunohistochemistry. Hepatogastroenterology, 2001,48(37):224-228.
    41. Tanigawa N, Amaya H, Matsumura M, et al. Extent of tumor vascularization correlates with prognosis and hematogenous metastasis in gastric carcinomas. Cancer Res, 1996,56(11):2671-2676.
    42. Poon RT, Ng IO, Lau C, et al. Tumor microvessel density as a predictor of recurrence after resection of hepatocellular carcinoma: a prospective study. J Clin Oncol, 2002,20(7):1775-1785.
    43.王强修,任万华,林晓燕,等. CD_(34)和VEGF在肝癌组织中的表达及与肿瘤血管生成的相关性.山东医药, 2007,47(2):11-13.
    44. Himeno H, Enzan H, Saibara T, et al. Hitherto unrecognized arterioles within hepatocellular carcinoma. J Pathol, 1994,174(3):217-222.
    45. Park YN, Kim YB, Yang KM, et al. Increased expression of vascular endothelial growth factor and angiogenesis in the early stage of multistep hepatocarcinogenesis. Arch Pathol Lab Med, 2000,124(7):1061-1065.
    46. Moon WS, Rhyu KH, Kang MJ, et al. Overexpression of VEGF and angiopoietin 2: a key to high vascularity of hepatocellular carcinoma?. Mod Pathol, 2003,16(6):552-557.
    47.邓伟,梁力建.血管生成素和VEGF在人肝细胞癌血管生成作用机制的研究.2005,14(6):436-440.
    48. Chao Y, Li CP, Chau GY, et al. Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol, 2003,10(4):355-362.
    49. Kong SY, Park JW, Lee JA, et al. Association between vascular endothelial growth factor gene polymorphisms and survival in hepatocellular carcinoma patients. Hepatology, 2007,46(2):446-455.
    50. Yang G, Addai J, Wheeler TM, et al. Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Hum Pathol, 2007,38(11):1688-1695.
    51.王腾,殷咏梅,陆彬彬,等.人肝癌细胞株VEGF/VEGFR的检测及意义探讨.南京医科大学学报(自然科学版), 2006,26(5):334-336.
    52. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996,272(5259):263-267.
    53. Poeschla E, Gilbert J, Li X, et al. Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J Virol, 1998,72(8):6527-6536.
    54. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003,33(3):401-406.
    55. Gerolami R, Uch R, Faivre J, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy for hepatocellular carcinoma using HIV-1-derived lentiviral vectors. J Hepatol, 2004,40(2):291-297.
    56. Pai SI, Lin YY, Macaes B, et al. Prospects of RNA interference therapy for cancer. Gene Ther, 2006,13(6):464-477.
    57. Tiscornia G, Singer O, Ikawa M, et al. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A, 2003,100(4):1844-1848.
    58. Abbas-Terki T, Blanco-Bose W, Deglon N, et al. Lentiviral-mediated RNA interference. Hum Gene Ther, 2002,13(18):2197-2201.
    59. Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 2003,9(4):493-501.
    60. Scherr M, Battmer K, Ganser A, et al. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle, 2003,2(3):251-257.
    61. Matta H, Hozayev B, Tomar R, et al. Use of lentiviral vectors for delivery of small interfering RNA. Cancer Biol Ther, 2003,2(2):206-210.
    62. Hofmann A, Kessler B, Ewerling S, et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep, 2003,4(11):1054-1060.
    63.王鲁,汤钊猷,孙惠川,等.肝细胞癌中NOS和VEGF的表达及其与肿瘤血管形成的关系.中华肿瘤杂志, 2000,22(4):301-303.
    64. Grimstad IA. Direct evidence that cancer cell locomotion contributes importantly to invasion. Exp Cell Res, 1987,173(2):515-523.
    65. Urbich C, Reissner A, Chavakis E, et al. Dephosphorylation of endothelial nitric oxide synthase contributes to the anti-angiogenic effects of endostatin. FASEB J, 2002,16(7):706-708.
    66. He H, Venema VJ, Gu X, et al. Vascular endothelial growth factor signals endothelial cell production of nitric oxide and prostacyclin through flk-1/KDR activation of c-Src. J Biol Chem, 1999,274(35):25130-25135.
    67. Benjamin LE, Keshet E. Conditional switching of vascular endothelial growth factor (VEGF) expression in tumors: induction of endothelial cell shedding and regression of hemangioblastoma-like vessels by VEGF withdrawal. Proc Natl Acad Sci U S A, 1997,94(16):8761-8766.
    68.向邦德,吕明德,黄洁夫,等.诱导正常血管内皮细胞具备肿瘤血管特性的研究.中山大学学报:医学科学版, 2005,26(3):354-357.
    69. Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest, 1973,52(11):2745-2756.
    70. Wang X, Ge J, Wang K, et al. Evaluation of MTT assay for measurement of emodin-induced cytotoxicity. Assay Drug Dev Technol, 2006,4(2):203-207.
    71. Theiszova M, Jantova S, Dragunova J, et al. Comparison the cytotoxicity of hydroxyapatite measured by direct cell counting and MTT test in murine fibroblast NIH-3T3 cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2005,149(2):393-396.
    72. Tang S, Morgan KG, Parker C, et al. Requirement for protein kinase C theta for cell cycle progression and formation of actin stress fibers and filopodia in vascular endothelial cells. J Biol Chem, 1997,272(45):28704-28711.
    73. Piasecki JH, Moreno K, Gutowski KA. Beyond the cells: scaffold matrix character affects the in vivo performance of purified adipocyte fat grafts. Aesthet Surg J, 2008,28(3):306-312.
    74. Brouet A, Sonveaux P, Dessy C, et al. Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem, 2001,276(35):32663-32669.
    75. Rosen LS. VEGF-targeted therapy: therapeutic potential and recent advances. Oncologist, 2005,10(6):382-391.
    76. Chow NH, Hsu PI, Lin XZ, et al. Expression of vascular endothelial growth factor in normal liver and hepatocellular carcinoma: an immunohistochemical study. Hum Pathol, 1997,28(6):698-703.
    77. Li XM, Tang ZY, Zhou G, et al. Significance of vascular endothelial growth factor mRNA expression in invasion and metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res, 1998,17(1):13-17.
    78. Fukumura D, Gohongi T, Kadambi A, et al. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci U S A, 2001,98(5):2604-2609.
    79. Griffoni C, Spisni E, Santi S, et al. Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Commun, 2000,276(2):756-761.
    80. Beardsley A, Fang K, Mertz H, et al. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem, 2005,280(5):3541-3547.
    81. Woodman SE, Ashton AW, Schubert W, et al. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol, 2003,162(6):2059-2068.
    82.汤庆,何小洪,向邦德,等.人脐静脉血管内皮细胞培养、冻存、复苏与鉴定.广州医学院学报, 2006,34(2):60-63.
    83. Zhao X, Liu Y, Ma Q, et al. Caveolin-1 negatively regulates TRAIL-induced apoptosis in human hepatocarcinoma cells. Biochem Biophys Res Commun, 2009,378(1):21-26.
    84. Schnaper HW, Kleinman HK, Grant DS. Role of laminin in endothelial cell recognition and differentiation. Kidney Int, 1993,43(1):20-25.
    85. Vailhe B, Vittet D, Feige JJ. In vitro models of vasculogenesis and angiogenesis. Lab Invest, 2001,81(4):439-452.
    86. Kubota Y, Kleinman HK, Martin GR, et al. Role of laminin and basement membrane in the morphological differentiation of human endothelial cells into capillary-like structures. J Cell Biol, 1988,107(4):1589-1598.
    87. Manoussaki D, Lubkin SR, Vernon RB, et al. A mechanical model for the formation of vascular networks in vitro. Acta Biotheor, 1996,44(3-4):271-282.
    1. Parton RG, Simons K. The multiple faces of caveolae. Nat Rev Mol Cell Biol, 2007,8(3):185-194.
    2. Williams TM, Lisanti MP. Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 2005,288(3):C494-506.
    3. Cohen AW, Hnasko R, Schubert W, et al. Role of caveolae and caveolins in health and disease. Physiol Rev, 2004,84(4):1341-1379.
    4. Razani B, Woodman SE, Lisanti MP. Caveolae: from cell biology to animal physiology. Pharmacol Rev, 2002,54(3):431-467.
    5. Scherer PE, Tang Z, Chun M, et al. Caveolin isoforms differ in their N-terminal protein sequence and subcellular distribution. Identification and epitope mapping of an isoform-specific monoclonal antibody probe. J Biol Chem, 1995,270(27): 16395-16401.
    6. Schlegel A, Lisanti MP. A molecular dissection of caveolin-1 membrane attachment and oligomerization. Two separate regions of the caveolin-1 C-terminal domain mediate membrane binding and oligomer/oligomer interactions in vivo. J Biol Chem, 2000,275(28):21605-21617.
    7. Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. J Biol Chem, 2002,277(44):41295-41298.
    8. Cenedella RJ, Neely AR, Sexton P. Multiple forms of 22 kDa caveolin-1 alpha present in bovine lens cells could reflect variable palmitoylation. Exp Eye Res, 2006,82(2):229-235.
    9. Uittenbogaard A, Ying Y, Smart EJ. Characterization of a cytosolic heat-shock protein-caveolin chaperone complex. Involvement in cholesterol trafficking. J Biol Chem, 1998,273(11):6525-6532.
    10. Li WP, Liu P, Pilcher BK, et al. Cell-specific targeting of caveolin-1 to caveolae, secretory vesicles, cytoplasm or mitochondria. J Cell Sci, 2001,114(Pt 7):1397-1408.
    11. Liu P, Li WP, Machleidt T, et al. Identification of caveolin-1 in lipoprotein particles secreted by exocrine cells. Nat Cell Biol, 1999,1(6):369-375.
    12. Schlegel A, Arvan P, Lisanti MP. Caveolin-1 binding to endoplasmic reticulummembranes and entry into the regulated secretory pathway are regulated by serine phosphorylation. Protein sorting at the level of the endoplasmic reticulum. J Biol Chem, 2001,276(6):4398-4408.
    13. Li S, Seitz R, Lisanti MP. Phosphorylation of caveolin by src tyrosine kinases. The alpha-isoform of caveolin is selectively phosphorylated by v-Src in vivo. J Biol Chem, 1996,271(7):3863-3868.
    14. Aoki T, Nomura R, Fujimoto T. Tyrosine phosphorylation of caveolin-1 in the endothelium. Exp Cell Res, 1999,253(2):629-636.
    15. Lee H, Volonte D, Galbiati F, et al. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol, 2000,14(11):1750-1775.
    16. Kimura A, Mora S, Shigematsu S, et al. The insulin receptor catalyzes the tyrosine phosphorylation of caveolin-1. J Biol Chem, 2002,277(33):30153-30158.
    17. Maggi D, Biedi C, Segat D, et al. IGF-I induces caveolin 1 tyrosine phosphorylation and translocation in the lipid rafts. Biochem Biophys Res Commun, 2002,295(5): 1085-1089.
    18. Nabi IR, Le PU. Caveolae/raft-dependent endocytosis. J Cell Biol, 2003,161(4):673-7.
    19. Fielding CJ, Fielding PE. Caveolae and intracellular trafficking of cholesterol. Adv Drug Deliv Rev, 2001,49(3):251-264.
    20. Fernandez MA, Albor C, Ingelmo-Torres M, et al. Caveolin-1 is essential for liver regeneration. Science, 2006,313(5793):1628-1632.
    21. Sanna E, Miotti S, Mazzi M, et al. Binding of nuclear caveolin-1 to promoter elements of growth-associated genes in ovarian carcinoma cells. Exp Cell Res, 2007,313(7): 1307-1317.
    22. Galbiati F, Volonte D, Brown AM, et al. Caveolin-1 expression inhibits Wnt/beta-catenin/Lef-1 signaling by recruiting beta-catenin to caveolae membrane domains. J Biol Chem, 2000,275(30):23368-23377.
    23. Ju H, Zou R, Venema VJ, et al. Direct interaction of endothelial nitric-oxide synthase and caveolin-1 inhibits synthase activity. J Biol Chem, 1997,272(30):18522-18525.
    24. Sowa G, Pypaert M, Sessa WC. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci U S A, 2001,98(24):14072-14077.
    25. Engelman JA, Lee RJ, Karnezis A, et al. Reciprocal regulation of neu tyrosine kinase activity and caveolin-1 protein expression in vitro and in vivo. Implications for human breast cancer. J Biol Chem, 1998,273(32):20448-20455.
    26. Engelman JA, Chu C, Lin A, et al. Caveolin-mediated regulation of signaling along the p42/44 MAP kinase cascade in vivo. A role for the caveolin-scaffolding domain. FEBS Lett, 1998,428(3):205-211.
    27. Galbiati F, Volonte D, Engelman JA, et al. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J, 1998,17(22):6633-6648.
    28. Wary KK, Mariotti A, Zurzolo C, et al. A requirement for caveolin-1 and associated kinase Fyn in integrin signaling and anchorage-dependent cell growth. Cell, 1998,94(5):625-634.
    29. Zundel W, Swiersz LM, Giaccia A. Caveolin 1-mediated regulation of receptor tyrosine kinase-associated phosphatidylinositol 3-kinase activity by ceramide. Mol Cell Biol, 2000,20(5):1507-1514.
    30. Shack S, Wang XT, Kokkonen GC, et al. Caveolin-induced activation of the phosphatidylinositol 3-kinase/Akt pathway increases arsenite cytotoxicity. Mol Cell Biol, 2003,23(7):2407-2414.
    31. Ravid D, Maor S, Werner H, et al. Caveolin-1 inhibits cell detachment-induced p53 activation and anoikis by upregulation of insulin-like growth factor-I receptors and signaling. Oncogene, 2005,24(8):1338-1347.
    32. Li L, Ren CH, Tahir SA, et al. Caveolin-1 maintains activated Akt in prostate cancer cells through scaffolding domain binding site interactions with and inhibition of serine/threonine protein phosphatases PP1 and PP2A. Mol Cell Biol, 2003,23(24):9389-9404.
    33. Zuluaga S, Alvarez-Barrientos A, Gutierrez-Uzquiza A, et al. Negative regulation of Akt activity by p38alpha MAP kinase in cardiomyocytes involves membrane localization of PP2A through interaction with caveolin-1. Cell Signal, 2007,19(1): 62-74.
    34. Juhasz M, Chen J, Tulassay Z, et al. Expression of caveolin-1 in gastrointestinal and extraintestinal cancers. J Cancer Res Clin Oncol, 2003,129(9):493-497.
    35. Liscovitch M, Burgermeister E, Jain N, et al. Caveolin and cancer: a complex relationship. In: Mattson MP editor, Membrane microdomain signaling: lipid rafts in biology and medicine. Humana Press, Totowa, NJ,2005. 161-190.
    36. Murakami S, Miyamoto M, Hida Y, et al. Caveolin-I overexpression is a favourable prognostic factor for patients with extrahepatic bile duct carcinoma. Br J Cancer, 2003,88(8):1234-1238.
    37. Shi L, Chen XM, Wang L, et al. Expression of caveolin-1 in mucoepidermoid carcinoma of the salivary glands: correlation with vascular endothelial growth factor, microvessel density, and clinical outcome. Cancer, 2007,109(8):1523-1531.
    38. Hayashi K, Matsuda S, Machida K, et al. Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res, 2001,61(6):2361-2364.
    39. Li T, Sotgia F, Vuolo MA, et al. Caveolin-1 mutations in human breast cancer: functional association with estrogen receptor alpha-positive status. Am J Pathol, 2006,168(6):1998-2013.
    40. Lee H, Park DS, Razani B, et al. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol, 2002,161(4):1357-1369.
    41. Ando T, Ishiguro H, Kimura M, et al. The overexpression of caveolin-1 and caveolin-2 correlates with a poor prognosis and tumor progression in esophageal squamous cell carcinoma. Oncol Rep, 2007,18(3):601-609.
    42. Yoo SH, Park YS, Kim HR, et al. Expression of caveolin-1 is associated with poor prognosis of patients with squamous cell carcinoma of the lung. Lung Cancer, 2003,42(2):195-202.
    43. Lavie Y, Fiucci G, Liscovitch M. Up-regulation of caveolae and caveolar constituents in multidrug-resistant cancer cells. J Biol Chem, 1998,273(49):32380-32383.
    44. Yang CP, Galbiati F, Volonte D, et al. Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett, 1998,439(3):368-372.
    45. Belanger MM, Roussel E, Couet J. Up-regulation of caveolin expression by cytotoxic agents in drug-sensitive cancer cells. Anticancer Drugs, 2003,14(4):281-287.
    46. Kato K, Hida Y, Miyamoto M, et al. Overexpression of caveolin-1 in esophagealsquamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer, 2002,94(4):929-933.
    47. Hung KF, Lin SC, Liu CJ, et al. The biphasic differential expression of the cellular membrane protein, caveolin-1, in oral carcinogenesis. J Oral Pathol Med, 2003,32(8):461-467.
    48. Suzuoki M, Miyamoto M, Kato K, et al. Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer, 2002,87(10):1140-1144.
    49. Terris B, Blaveri E, Crnogorac-Jurcevic T, et al. Characterization of gene expression profiles in intraductal papillary-mucinous tumors of the pancreas. Am J Pathol, 2002,160(5):1745-1754.
    50. Campbell L, Gumbleton M, Griffiths DF. Caveolin-1 overexpression predicts poor disease-free survival of patients with clinically confined renal cell carcinoma. Br J Cancer, 2003,89(10):1909-1913.
    51. Joo HJ, Oh DK, Kim YS, et al. Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int, 2004,93(3):291-296.
    52. Horiguchi A, Asano T, Asakuma J, et al. Impact of caveolin-1 expression on clinicopathological parameters in renal cell carcinoma. J Urol, 2004,172(2):718-722.
    53. Yang G, Truong LD, Timme TL, et al. Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res, 1998,4(8):1873-1880.
    54. Karam JA, Lotan Y, Roehrborn CG, et al. Caveolin-1 overexpression is associated with aggressive prostate cancer recurrence. Prostate, 2007,67(6):614-622.
    55. Satoh T, Yang G, Egawa S, et al. Caveolin-1 expression is a predictor of recurrence-free survival in pT2N0 prostate carcinoma diagnosed in Japanese patients. Cancer, 2003,97(5):1225-1233.
    56. Savage K, Lambros MB, Robertson D, et al. Caveolin 1 is overexpressed and amplified in a subset of basal-like and metaplastic breast carcinomas: a morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res, 2007,13(1):90-101.
    57. Ho CC, Huang PH, Huang HY, et al. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am JPathol, 2002,161(5):1647-1656.
    58. Kato T, Miyamoto M, Kato K, et al. Difference of caveolin-1 expression pattern in human lung neoplastic tissue. Atypical adenomatous hyperplasia, adenocarcinoma and squamous cell carcinoma. Cancer Lett, 2004,214(1):121-128.
    59. Ho CC, Kuo SH, Huang PH, et al. Caveolin-1 expression is significantly associated with drug resistance and poor prognosis in advanced non-small cell lung cancer patients treated with gemcitabine-based chemotherapy. Lung Cancer, 2008,59(1): 105-110.
    60. Sallinen SL, Sallinen PK, Haapasalo HK, et al. Identification of differentially expressed genes in human gliomas by DNA microarray and tissue chip techniques. Cancer Res, 2000,60(23):6617-6622.
    61. Barresi V, Cerasoli S, Paioli G, et al. Caveolin-1 in meningiomas: expression and clinico-pathological correlations. Acta Neuropathol, 2006,112(5):617-626.
    62. Burgermeister E, Xing X, Rocken C, et al. Differential expression and function of caveolin-1 in human gastric cancer progression. Cancer Res, 2007,67(18):8519-8526.
    63. Fine SW, Lisanti MP, Galbiati F, et al. Elevated expression of caveolin-1 in adenocarcinoma of the colon. Am J Clin Pathol, 2001,115(5):719-724.
    64. Yerian LM, Anders RA, Tretiakova M, et al. Caveolin and thrombospondin expression during hepatocellular carcinogenesis. Am J Surg Pathol, 2004,28(3):357-364.
    65. Sanchez-Carbayo M, Socci ND, Charytonowicz E, et al. Molecular profiling of bladder cancer using cDNA microarrays: defining histogenesis and biological phenotypes. Cancer Res, 2002,62(23):6973-6980.
    66. Ito Y, Yoshida H, Nakano K, et al. Caveolin-1 overexpression is an early event in the progression of papillary carcinoma of the thyroid. Br J Cancer, 2002,86(6):912-916.
    67. Tirado OM, Mateo-Lozano S, Villar J, et al. Caveolin-1 (CAV1) is a target of EWS/FLI-1 and a key determinant of the oncogenic phenotype and tumorigenicity of Ewing's sarcoma cells. Cancer Res, 2006,66(20):9937-9947.
    68. van Golen KL. Is caveolin-1 a viable therapeutic target to reduce cancer metastasis?. Expert Opin Ther Targets, 2006,10(5):709-721.
    69. Navarro A, Anand-Apte B, Parat MO. A role for caveolae in cell migration. FASEB J, 2004,18(15):1801-1811.
    70. Grande-Garcia A, Echarri A, de Rooij J, et al. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol, 2007,177(4):683-694.
    71. Miotti S, Tomassetti A, Facetti I, et al. Simultaneous expression of caveolin-1 and E-cadherin in ovarian carcinoma cells stabilizes adherens junctions through inhibition of src-related kinases. Am J Pathol, 2005,167(5):1411-1427.
    72. Schwarz BT, Wang F, Shen L, et al. LIGHT signals directly to intestinal epithelia to cause barrier dysfunction via cytoskeletal and endocytic mechanisms. Gastroenterology, 2007,132(7):2383-2394.
    73. Song L, Ge S, Pachter JS. Caveolin-1 regulates expression of junction-associated proteins in brain microvascular endothelial cells. Blood, 2007,109(4):1515-1523.
    74. Nag S, Venugopalan R, Stewart DJ. Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood-brain barrier breakdown. Acta Neuropathol, 2007,114(5):459-469.
    75. Nusrat A, Parkos CA, Verkade P, et al. Tight junctions are membrane microdomains. J Cell Sci, 2000,113 ( Pt 10):1771-1781.
    76. Lu Z, Ghosh S, Wang Z, et al. Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 2003,4(6):499-515.
    77. Salanueva IJ, Cerezo A, Guadamillas MC, et al. Integrin regulation of caveolin function. J Cell Mol Med, 2007,11(5):969-980.
    78. Del Pozo MA, Schwartz MA. Rac, membrane heterogeneity, caveolin and regulation of growth by integrins. Trends Cell Biol, 2007,17(5):246-250.
    79. del Pozo MA, Balasubramanian N, Alderson NB, et al. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat Cell Biol, 2005,7(9):901-908.
    80. Glait C, Tencer L, Ravid D, et al. Caveolin-1 up-regulates IGF-I receptor gene transcription in breast cancer cells via Sp1- and p53-dependent pathways. Exp Cell Res, 2006,312(19):3899-3908.
    81. Sedding DG, Hermsen J, Seay U, et al. Caveolin-1 facilitates mechanosensitive protein kinase B (Akt) signaling in vitro and in vivo. Circ Res, 2005,96(6):635-642.
    82. Kim HA, Kim KH, Lee RA. Expression of caveolin-1 is correlated with Akt-1 in colorectal cancer tissues. Exp Mol Pathol, 2006,80(2):165-170.
    83. Birchmeier C, Birchmeier W, Gherardi E, et al. Met, metastasis, motility and more. Nat Rev Mol Cell Biol, 2003,4(12):915-925.
    84. Han SY, Druck T, Huebner K. Candidate tumor suppressor genes at FRA7G are coamplified with MET and do not suppress malignancy in a gastric cancer. Genomics, 2003,81(2):105-107.
    85. Hu YC, Lam KY, Law S, et al. Profiling of differentially expressed cancer-related genes in esophageal squamous cell carcinoma (ESCC) using human cancer cDNA arrays: overexpression of oncogene MET correlates with tumor differentiation in ESCC. Clin Cancer Res, 2001,7(11):3519-3525.
    86. Zhang X, Ling MT, Wang Q, et al. Identification of a novel inhibitor of differentiation-1 (ID-1) binding partner, caveolin-1, and its role in epithelial-mesenchymal transition and resistance to apoptosis in prostate cancer cells. J Biol Chem, 2007,282(46):33284-33294.
    87. Bailey KM, Liu J. Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J Biol Chem, 2008,283(20): 13714-13724.
    88. Cavallo-Medved D, Mai J, Dosescu J, et al. Caveolin-1 mediates the expression and localization of cathepsin B, pro-urokinase plasminogen activator and their cell-surface receptors in human colorectal carcinoma cells. J Cell Sci, 2005,118(Pt 7):1493-1503.
    89. Stahl A, Mueller BM. The urokinase-type plasminogen activator receptor, a GPI-linked protein, is localized in caveolae. J Cell Biol, 1995,129(2):335-344.
    90. Lopez-Rivera E, Lizarbe TR, Martinez-Moreno M, et al. Matrix metalloproteinase 13 mediates nitric oxide activation of endothelial cell migration. Proc Natl Acad Sci U S A, 2005,102(10):3685-3690.
    91. Labrecque L, Nyalendo C, Langlois S, et al. Src-mediated tyrosine phosphorylation of caveolin-1 induces its association with membrane type 1 matrix metalloproteinase. J Biol Chem, 2004,279(50):52132-52140.
    92. Tang W, Hemler ME. Caveolin-1 regulates matrix metalloproteinases-1 induction and CD147/EMMPRIN cell surface clustering. J Biol Chem, 2004,279(12):11112-11118.
    93. Jia L, Wang S, Zhou H, et al. Caveolin-1 up-regulates CD147 glycosylation and the invasive capability of murine hepatocarcinoma cell lines. Int J Biochem Cell Biol, 2006,38(9):1584-1593.
    94. Galvez BG, Matias-Roman S, Yanez-Mo M, et al. Caveolae are a novel pathway for membrane-type 1 matrix metalloproteinase traffic in human endothelial cells. Mol Biol Cell, 2004,15(2):678-687.
    95. Liu J, Wang XB, Park DS, et al. Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem, 2002,277(12):10661-10668.
    96. Massimino ML, Griffoni C, Spisni E, et al. Involvement of caveolae and caveolae-like domains in signalling, cell survival and angiogenesis. Cell Signal, 2002,14(2):93-98.
    97. Griffoni C, Spisni E, Santi S, et al. Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Commun, 2000,276(2):756-761.
    98. Beardsley A, Fang K, Mertz H, et al. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem, 2005,280(5):3541-3547.
    99. Woodman SE, Ashton AW, Schubert W, et al. Caveolin-1 knockout mice show an impaired angiogenic response to exogenous stimuli. Am J Pathol, 2003,162(6): 2059-2068.
    100. Sonveaux P, Martinive P, DeWever J, et al. Caveolin-1 expression is critical for vascular endothelial growth factor-induced ischemic hindlimb collateralization and nitric oxide-mediated angiogenesis. Circ Res, 2004,95(2):154-161.
    101. Sbaa E, Dewever J, Martinive P, et al. Caveolin plays a central role in endothelial progenitor cell mobilization and homing in SDF-1-driven postischemic vasculogenesis. Circ Res, 2006,98(9):1219-1227.
    102. Dewever J, Frerart F, Bouzin C, et al. Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol, 2007,171(5):1619-1628.
    103. Jasmin JF, Malhotra S, Singh Dhallu M, et al. Caveolin-1 deficiency increases cerebral ischemic injury. Circ Res, 2007,100(5):721-729.
    104. Murata T, Lin MI, Huang Y, et al. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. JExp Med, 2007,204(10):2373-2382.
    105. Yang G, Addai J, Wheeler TM, et al. Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Hum Pathol, 2007,38(11):1688-1695.
    106. Choi HN, Kim KR, Park HS, et al. Expression of caveolin in hepatocellular carcinoma: association with unpaired artery formation and radiologic findings. Korean J Hepatol, 2007,13(3):396-408.
    107. Lin MI, Yu J, Murata T, et al. Caveolin-1-deficient mice have increased tumor microvascular permeability, angiogenesis, and growth. Cancer Res, 2007,67(6): 2849-2856.
    108. Garrean S, Gao XP, Brovkovych V, et al. Caveolin-1 regulates NF-kappaB activation and lung inflammatory response to sepsis induced by lipopolysaccharide. J Immunol, 2006,177(7):4853-4860.
    109. Medina FA, de Almeida CJ, Dew E, et al. Caveolin-1-deficient mice show defects in innate immunity and inflammatory immune response during Salmonella enterica serovar Typhimurium infection. Infect Immun, 2006,74(12):6665-6674.
    110. Medina FA, Cohen AW, de Almeida CJ, et al. Immune dysfunction in caveolin-1 null mice following infection with Trypanosoma cruzi (Tulahuen strain). Microbes Infect, 2007,9(3):325-333.
    111. Hu G, Ye RD, Dinauer MC, et al. Neutrophil caveolin-1 expression contributes to mechanism of lung inflammation and injury. Am J Physiol Lung Cell Mol Physiol, 2008,294(2):L178-186.
    112. Bouzin C, Brouet A, De Vriese J, et al. Effects of vascular endothelial growth factor on the lymphocyte-endothelium interactions: identification of caveolin-1 and nitric oxide as control points of endothelial cell anergy. J Immunol, 2007,178(3):1505-1511.
    113. Millan J, Hewlett L, Glyn M, et al. Lymphocyte transcellular migration occurs through recruitment of endothelial ICAM-1 to caveola- and F-actin-rich domains. Nat Cell Biol, 2006,8(2):113-123.
    114. Fais S. Cannibalism: a way to feed on metastatic tumors. Cancer Lett, 2007,258(2): 155-164.
    115. Ravid D, Maor S, Werner H, et al. Caveolin-1 inhibits anoikis and promotes survival signaling in cancer cells. Adv Enzyme Regul, 2006,46:163-175.
    116. Schlegel A, Wang C, Katzenellenbogen BS, et al. Caveolin-1 potentiates estrogen receptor alpha (ERalpha) signaling. caveolin-1 drives ligand-independent nuclear translocation and activation of ERalpha. J Biol Chem, 1999,274(47):33551-33556.
    117. Lu ML, Schneider MC, Zheng Y, et al. Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem, 2001,276(16):13442-13451.
    118. van den Heuvel AP, Schulze A, Burgering BM. Direct control of caveolin-1 expression by FOXO transcription factors. Biochem J, 2005,385(Pt 3):795-802.
    119. Szakacs G, Paterson JK, Ludwig JA, et al. Targeting multidrug resistance in cancer. Nat Rev Drug Discov, 2006,5(3):219-234.
    120. Lavie Y, Liscovitch M. Changes in lipid and protein constituents of rafts and caveolae in multidrug resistant cancer cells and their functional consequences. Glycoconj J, 2000,17(3 -4):253-259.
    121. Jodoin J, Demeule M, Fenart L, et al. P-glycoprotein in blood-brain barrier endothelial cells: interaction and oligomerization with caveolins. J Neurochem, 2003,87(4):1010-1023.
    122. Ronaldson PT, Bendayan M, Gingras D, et al. Cellular localization and functional expression of P-glycoprotein in rat astrocyte cultures. J Neurochem, 2004,89(3):788-800.
    123. Roussel E, Belanger MM, Couet J. G2/M blockade by paclitaxel induces caveolin-1 expression in A549 lung cancer cells: caveolin-1 as a marker of cytotoxicity. Anticancer Drugs, 2004,15(10):961-967.
    124. Ahn M, Kim H, Kim JT, et al. Gamma-ray irradiation stimulates the expression of caveolin-1 and GFAP in rat spinal cord: a study of immunoblot and immunohistochemistry. J Vet Sci, 2006,7(4):309-314.
    125. Regina A, Jodoin J, Khoueir P, et al. Down-regulation of caveolin-1 in glioma vasculature: modulation by radiotherapy. J Neurosci Res, 2004,75(2):291-299.
    126. McLaughlin N, Annabi B, Bouzeghrane M, et al. The Survivin-mediated radioresistant phenotype of glioblastomas is regulated by RhoA and inhibited by the green tea polyphenol (-)-epigallocatechin-3-gallate. Brain Res, 2006,1071(1):1-9.
    127. Annabi B, Lee YT, Martel C, et al. Radiation induced-tubulogenesis in endothelialcells is antagonized by the antiangiogenic properties of green tea polyphenol (-) epigallocatechin-3-gallate. Cancer Biol Ther, 2003,2(6):642-649.
    128. Cordes N, Frick S, Brunner TB, et al. Human pancreatic tumor cells are sensitized to ionizing radiation by knockdown of caveolin-1. Oncogene, 2007,26(48):6851-6862.
    129. Li J, Hassan GS, Williams TM, et al. Loss of caveolin-1 causes the hyper-proliferation of intestinal crypt stem cells, with increased sensitivity to whole body gamma-radiation. Cell Cycle, 2005,4(12):1817-1825.
    1. Gerolami R, Uch R, Faivre J, et al. Herpes simplex virus thymidine kinase-mediated suicide gene therapy for hepatocellular carcinoma using HIV-1-derived lentiviral vectors. J Hepatol, 2004,40(2):291-297.
    2. Wiznerowicz M, Szulc J, Trono D. Tuning silence: conditional systems for RNA interference. Nat Methods, 2006,3(9):682-688.
    3. Naldini L, Blomer U, Gallay P, et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science, 1996,272(5259):263-267.
    4. Poeschla E, Gilbert J, Li X, et al. Identification of a human immunodeficiency virus type 2 (HIV-2) encapsidation determinant and transduction of nondividing human cells by HIV-2-based lentivirus vectors. J Virol, 1998,72(8):6527-6536.
    5. Mangeot PE, Negre D, Dubois B, et al. Development of minimal lentivirus vectors derived from simian immunodeficiency virus (SIVmac251) and their use for gene transfer into human dendritic cells. J Virol, 2000,74(18):8307-8315.
    6. Olsen JC. Gene transfer vectors derived from equine infectious anemia virus. Gene Ther, 1998,5(11):1481-1487.
    7. Poeschla EM, Wong-Staal F, Looney DJ. Efficient transduction of nondividing human cells by feline immunodeficiency virus lentiviral vectors. Nat Med, 1998,4(3): 354-357.
    8. Mselli-Lakhal L, Favier C, Da Silva Teixeira MF, et al. Defective RNA packaging is responsible for low transduction efficiency of CAEV-based vectors. Arch Virol, 1998,143(4):681-695.
    9. Berkowitz R, Ilves H, Lin WY, et al. Construction and molecular analysis of gene transfer systems derived from bovine immunodeficiency virus. J Virol, 2001,75(7): 3371-3382.
    10. Ginn SL, Fleming J, Rowe PB, et al. Promoter interference mediated by the U3 region in early-generation HIV-1-derived lentivirus vectors can influence detection of transgene expression in a cell-type and species-specific manner. Hum Gene Ther,2003,14(12):1127-1137.
    11. Mitta B, Rimann M, Ehrengruber MU, et al. Advanced modular self-inactivating lentiviral expression vectors for multigene interventions in mammalian cells and in vivo transduction. Nucleic Acids Res, 2002,30(21):e113.
    12. Naldini L, Blomer U, Gage FH, et al. Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci U S A, 1996,93(21):11382-11388.
    13. Srinivasakumar N, Schuening FG. A lentivirus packaging system based on alternative RNA transport mechanisms to express helper and gene transfer vector RNAs and its use to study the requirement of accessory proteins for particle formation and gene delivery. J Virol, 1999,73(11):9589-9598.
    14. Federico M. Lentiviruses as gene delivery vectors. Curr Opin Biotechnol, 1999,10(5): 448-453.
    15. Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998,72(11):8463-8471.
    16. Pai SI, Lin YY, Macaes B, et al. Prospects of RNA interference therapy for cancer. Gene Ther, 2006,13(6):464-477.
    17. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell, 2000,101(1):25-33.
    18. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000,404(6775): 293-296.
    19. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet, 2003,33(3):401-406.
    20. Tiscornia G, Singer O, Ikawa M, et al. A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci U S A, 2003,100(4):1844-1848. 118
    21. Abbas-Terki T, Blanco-Bose W, Deglon N, et al. Lentiviral-mediated RNA interference. Hum Gene Ther, 2002,13(18):2197-2201.
    22. Stewart SA, Dykxhoorn DM, Palliser D, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 2003,9(4):493-501.
    23. McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature, 2002,418(6893):38-39.
    24. Gitlin L, Karelsky S, Andino R. Short interfering RNA confers intracellular antiviral immunity in human cells. Nature, 2002,418(6896):430-434.
    25. Jacque JM, Triques K, Stevenson M. Modulation of HIV-1 replication by RNA interference. Nature, 2002,418(6896):435-438.
    26. Miyagishi M, Sumimoto H, Miyoshi H, et al. Optimization of an siRNA-expression system with an improved hairpin and its significant suppressive effects in mammalian cells. J Gene Med, 2004,6(7):715-723.
    27. Davidson BL, Harper SQ. Viral delivery of recombinant short hairpin RNAs. Methods Enzymol, 2005,392:145-173.
    28. Scherr M, Battmer K, Ganser A, et al. Modulation of gene expression by lentiviral-mediated delivery of small interfering RNA. Cell Cycle, 2003,2(3):251-257.
    29. Matta H, Hozayev B, Tomar R, et al. Use of lentiviral vectors for delivery of small interfering RNA. Cancer Biol Ther, 2003,2(2):206-210.
    30. Hofmann A, Kessler B, Ewerling S, et al. Efficient transgenesis in farm animals by lentiviral vectors. EMBO Rep, 2003,4(11):1054-1060.
    31. Lois C, Hong EJ, Pease S, et al. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science, 2002,295(5556):868-872.
    32. Yu D, Jia WW, Gleave ME, et al. Prostate-tumor targeting of gene expression by lentiviral vectors containing elements of the probasin promoter. Prostate, 2004,59(4): 370-382.
    33. Sun Y, Liu M, Yang B, et al. Inhibition of laryngeal cancer cell invasion and growth with lentiviral-vector delivered short hairpin RNA targeting human MMP-9 gene. Cancer Invest, 2008,26(10):984-989. 119
    34. Wiederschain D, Wee S, Chen L, et al. Single-vector inducible lentiviral RNAi system for oncology target validation. Cell Cycle, 2009,8(3):498-504.
    35. Song E, Zhu P, Lee SK, et al. Antibody mediated in vivo delivery of small interfering RNAs via cell-surface receptors. Nat Biotechnol, 2005,23(6):709-717.
    36. Medarova Z, Pham W, Farrar C, et al. In vivo imaging of siRNA delivery and silencing in tumors. Nat Med, 2007,13(3):372-377.
    37. Kumar P, Wu H, McBride JL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature, 2007,448(7149):39-43.
    1. Okamoto T, Schlegel A, Scherer PE, Lisanti MP (1998) Caveolins, a family of scaffolding proteins for organizing“preassembled signaling complexes”at the plasma membrane. J Biol Chem 273: 5419–5422
    2. Wikman H, Kettunen E, Sepp?nen JK, Karjalainen A, Hollmén J, Anttila S, Knuutila S (2002) Identification of differentially expressed genes in pulmonary adenocarcinoma by using cDNA array. Oncogene 21: 5804–5813
    3. Wiechen K, Sers C, Agoulnik A, Arlt K, Dietel M, Schlag PM, Schneider U (2001) Down-regulation of caveolin-1, a candidate tumor suppressor gene, in sarcomas. Am J Pathol 158: 833–839
    4. Kato K, Hida Y, Miyamoto M, Hashida H, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H (2002) Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 94: 929–933
    5. Suzuoki M, Miyamoto M, Kato K, Hiraoka K, Oshikiri T, Nakakubo Y, Fukunaga A, Shichinohe T, Shinohara T, Itoh T, Kondo S, Katoh H (2002) Impact of caveolin-1 expression on prognosis of pancreatic ductal adenocarcinoma. Br J Cancer 87: 1140–1144
    6. Rajjayabun PH, Garg S, Durkan GC, Charlton R, Robinson MC, Mellon JK (2001) Caveolin-1 expression is associated with high-grade bladder cancer. Urology 58: 811–814
    7. Dewever J, Frérart F, Bouzin C, Baudelet C, Ansiaux R, Sonveaux P, Gallez B, Dessy C, Feron O (2007) Caveolin-1 is critical for the maturation of tumor blood vessels through the regulation of both endothelial tube formation and mural cell recruitment. Am J Pathol 171: 1619–1628
    8. Joo HJ, Oh DK, Kim YS, Lee KB, Kim SJ (2004) Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 93: 291–296
    9. Anders RA, Yerian LM, Tretiakova M, Davison JM, Quigg RJ, Domer PH, Hoberg J, Hart J (2003) cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis. Am J Pathol 162: 991–1000
    
    10. Hirasawa Y, Arai M, Imazeki F, Tada M, Mikata R, Fukai K, Miyazaki M, Ochiai T, Saisho H, Yokosuka O (2006) Methylation status of genes upregulated by demethylating agent 5-aza-2’-deoxycytidine in hepatocellular carcinoma. Oncology 71: 77-85
    11. Zhou H, Jia L, Wang S, Wang H, Chu H, Hu Y, Cao J, Zhang J (2006) Divergent expression and roles for caveolin-1 in mouse hepatocarcinoma cell lines with varying invasive ability. Biochem Biophys Res Commun 345: 486-494
    12. Choi HN, Kim KR, Park HS, Jang KY, Kang MJ, Lee DG, Kim YK, Cho BH, Cha EJ, Moon WS (2007) Expression of caveolin in hepatocellular carcinoma: association with unpaired artery formation and radiologic findings. Korean J Hepatol 13: 396-408
    13. Park SS, Kim JE, Kim YA, Kim YC, Kim SW (2005) Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology 47: 625–630
    14. Tanigawa N, Lu C, Mitsui T, Miura S (1997) Quantitation of sinusoid-like vessels in hepatocellular carcinoma: its clinical and prognostic significance. Hepatology 26: 1216-1223
    15. Glenney JR Jr (1989) Tyrosine phosphorylation of a 22-kDa protein is correlated with transformation by Rous sarcoma virus. J Biol Chem 264: 20163–20166
    16. Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP (2004) Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. J Biol Chem 279: 51630-51646
    17. Yang G, Addai J, Wheeler TM, Frolov A, Miles BJ, Kadmon D, Thompson TC (2007) Correlative evidence that prostate cancer cell-derived caveolin-1 mediates angiogenesis. Hum Pathol 38: 1688–1695
    18. Barresi V, Cerasoli S, Paioli G, Vitarelli E, GiuffrèG, Guiducci G, Tuccari G, Barresi G (2006) Caveolin-1 in meningiomas: expression and clinico-pathological correlations. Acta Neuropathol 112: 617–626
    19. Bailey KM, Liu J (2008) Caveolin-1 up-regulation during epithelial to mesenchymal transition is mediated by focal adhesion kinase. J Biol Chem 283: 13914-13724
    20. Barresi V, Cerasoli S, Tuccari G (2008) Correlative evidence that tumor cell-derived
    21. Yerian LM, Anders RA, Tretiakova M, Hart J (2004) Caveolin and thrombospondin expression during hepatocellular carcinogenesis. Am J Surg Pathol 28: 357-364
    22. Mitsuhashi N, Shimizu H, Ohtsuka M, Wakabayashi Y, Ito H, Kimura F, Yoshidome H, Kato A, Nukui Y, Miyazaki M (2003) Angiopoietines and Tie-2 expression in angiogenesis and proliferation of human hepatocellular carcinoma. Hepatology 37: 1105-1113
    23. Morinaga S, Imada T, Shimizu A, Akaike M, Sugimasa Y, Takemiya S, Takanashi Y (2001) Angiogenesis in hepatocellular carcinoma as evaluated by alpha smooth muscle actin immunohistochemistry. Hepatogastroenterology 48: 224-228
    24. Liu J, Wang XB, Park DS, Lisanti MP (2002) Caveolin-1 expression enhances endothelial capillary tubule formation. J Biol Chem 277: 10661–10668
    25. Griffoni C, Spisni E, Santi S, Riccio M, Guarnieri T, Tomasi V (2000) Knockdown of caveolin-1 by antisense oligonucleotides impairs angiogenesis in vitro and in vivo. Biochem Biophys Res Commun 276: 756–761
    26. Podar K, Shringarpure R, Tai YT, Simoncini M, Sattler M, Ishitsuka K, Richardson PG, Hideshima T, Chauhan D, Anderson KC (2004) Caveolin-1 is required for vascular endothelial growth factor-triggered multiple myeloma cell migration and is targeted by bortezomib. Cancer Res 64: 7500–7506