丝素蛋白/磷酸钙骨水泥的制备及其强化骨缺损椎体的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分丝素蛋白/磷酸钙骨水泥的制备及其理化性能研究
     【目的】制备丝素蛋白/磷酸钙骨水泥(silk fibroin/calcium phosphate cement,SF/CPC)复合人工骨材料,观察丝素蛋白含量对复合材料抗压强度、凝固时间及注射性能的影响,找出含合适比例SF的SF/CPC,满足临床实验研究要求。
     【方法】将家蚕丝纤维脱胶,溶于CaCl_2·CH_3CH_2OH·H_2O(摩尔比1:2:8)三元溶液,透析后喷雾干燥,制得丝素蛋白粉末。通过液相沉淀法制备磷酸四钙,将其和无水磷酸氢钙等摩尔比混合,加入4 wt%羟基磷灰石晶种。设定6个组别,分别在磷酸钙固相粉末中加入0.5 wt%、1.0 wt%、1.5 wt%、2.0 wt%、2.5 wt%、3.0 wt%质量比例的丝素蛋白,按液固比0.4ml/g与固化液混合,制备6种SF/CPC。以单纯磷酸钙为实验对照组,测定6种复合材料的抗压强度、凝固时间及注射性能。扫描电镜观察材料断面形貌,X-射线衍射仪分析材料成分。
     【结果】随着SF量的增加,SF/CPC的抗压强度呈现上升的趋势,凝固时间逐步缩短,注射系数也随之下降。扫描电镜发现,SF呈网状,贯穿于CPC晶体间,并将CPC晶体紧密连接。X-射线衍射分析表明,24h后SF/CPC的水化反应基本结束,复合材料最终的成分为羟基磷灰石。
     【结论】固相中含2.5 wt%SF的SF/CPC拥有良好的抗压强度和凝固时间,并保留了良好的注射性能。SF的加入并不影响CPC的水化产物。因此我们选择这种材料进行后续的体外细胞相容性研究。
     第二部分丝素蛋白/磷酸钙骨水泥的生物相容性研究
     【目的】体外分离培养兔骨髓基质干细胞(bone marrow stromal cells,BMSCs),扩增后与丝素蛋白/磷酸钙骨水泥(SF/CPC)进行体外复合培养,检测SF/CPC的细胞相容性。
     【方法】抽取新西兰白兔的骨髓5ml,通过密度梯度离心法获取BMSCs,体外贴壁培养、扩增、传代,倒置显微镜下观察原代及传代细胞形态、数量生长情况,描绘生长曲线。将第3代BMSCs,接种到预湿的CPC及SF/CPC材料上复合培养,以单纯BMSCs相同条件下培养作为对照。通过相差显微镜、扫描电镜等方法观察细胞在材料中的生长情况。以MTT法检测材料对细胞增殖活性的影响,以材料浸提液的细胞毒性试验评估材料是否有细胞毒性。
     【结果】BMSCs在培养皿中贴壁生长、增殖,形态良好,生长旺盛。扫描电镜及光镜观察发现,细胞材料复合后,BMSCs在CPC及SF/CPC上能够良好地粘附和增殖。MTT法测定OD值证实,BMSCs细胞活性不受材料影响,与对照组相比,差异无统计学意义(P>0.05)。材料浸提液细胞毒性试验显示,细胞毒性分级均为0~Ⅰ级,两种材料浸提液对细胞生长基本无毒性作用。
     【结论】可以通过体外分离纯化兔BMSCs,扩增后细胞能保持较高的活性,适于作为材料相容性的检测细胞。CPC与SF/CPC对BMSCs的生长和活性无影响,具有良好的细胞相容性,具有体内植入的可行性。
     第三部分丝素蛋白/磷酸钙骨水泥强化绵羊骨缺损椎体的体外实验研究
     【目的】制备一种椎体骨缺损模型,评价骨水泥增强后的力学性能,并为体内植入修复椎体骨缺损打下基础。
     【方法】48个新鲜成年绵羊腰椎单椎体标本,随机分为8组,每组6椎,分别测定骨密度。取4组标本,利用直径分别为φ2.0mm,φ4.0mm,φ6.0mm,φ8.0mm的钻头垂直于椎体矢状面中点钻入椎体侧方,深度为10.0mm。对制备的骨缺损椎体模型进行生物力学测试,测量单椎体的抗压强度和刚度,并与第5组的正常椎体进行比较。根据以上生物力学测试结果,选择一固定直径,将剩下的6、7、8组制成骨缺损模型,然后三组分别注入CPC、SF/CPC及PMMA骨水泥,模拟体液环境固化24小时后进行生物力学测试,以第5组作为对照组进行比较。
     【结果】不同直径的椎体骨缺损模型中,随着缺损直径增大,其抗压强度与刚度呈逐渐下降趋势。φ6.0mm时差异有统计学意义。填充24小时后,SF/CPC组及PMMA组的抗压强度和刚度与正常椎体组相比没有区别(P>0.05),而CPC组的抗压强度及刚度均明显低于正常椎体组(P<0.05)
     【结论】缺损直径为φ6mm,深度为10mm绵羊椎体骨缺损是一种合适的椎体骨缺损模型,可用来判断椎体强化剂的体外性能。SF/CPC能有效即时强化骨缺损椎体。由于该模型保持了椎体外形的完整,可以用于进一步的体内实验。
     第四部分丝素蛋白/磷酸钙骨水泥强化绵羊骨缺损椎体的体内实验研究
     【目的】探索SF/CPC作为可注射性支撑人工骨的可行性,期望为临床治疗椎体骨缺损提供新的强化剂。
     【方法】12只成年绵羊,侧方腹膜后入路,在L3、L4、L5椎体建立骨缺损模型,随机顺序植入CPC、SF/CPC、PMMA三种材料。于术后第1、6月分别处死6只绵羊,随机选择其中的2只,将其标本行不脱钙切片,苦味酸-品红染色后对材料-骨界面进行组织学观察,并对CPC、SF/CPC两组的新骨形成和水泥残留进行定量分析。另外4只以L6椎体作为对照组,进行生物力学检测,测量单椎体的抗压强度和刚度。
     【结果】组织学观察显示:1月时,CPC及SF/CPC组材料和骨形成直接结合,吸收成骨较为表浅;6月时,CPC组的吸收成骨仍仅限于材料表面,而SF/CPC组骨长入明显、材料吸收加快。PMMA和骨之间的结合疏松,部分界面之间存在膜性结构,材料表面无新骨形成,6月和1月相比变化不明显。组织学定量分析显示:6月时,SF/CPC组的新骨生成和水泥残留和CPC组相比差异有统计学差异(P<0.05)。生物力学测试表明:6月时,CPC组和SF/CPC组椎体的抗压强度和刚度均较1月时有提升,而PMMA组则下降。SF/CPC、PMMA组椎体在两个时间点的抗压强度和刚度均和正常椎体无明显区别(P>0.05)。
     【结论】SF/CPC具有良好的生物活性和骨传导性以及相对较快的降解-成骨速度,并在此过程中很好的维持了椎体的力学性能,有望取代PMMA成为一种新的活性椎体强化剂。
PartⅠ:Preparation of Silk Fibroin/Calcium Phosphate Cement(SF/CPC) Composite and Study on the Physicochemical Properties
     【Objective】To prepare a novel bone substitute of silk fibroin/calcium phosphate cement(SF/CPC) composite for bone substitute,and to explore the influences of silk fibroin on the compressive strength,setting time and injectability and select a cement composite with a proper ratio of silk fibroin for further clinical experiments.
     【Methods】The loosened refined silk fiber were dissolved in the CaCl_2·CH_3CH_2OH·H_2O ternary solution at a mole ratio of 1:2:8 to get a pure SF solution then prepared into SF powder using spray dryer.Tetracalcium phosphate(TTCP) was prepared with liquid phase precipitation method,then mixed with dicalcium phosphate anhydrous(DCPA) at a mole ratio of 1:1,hydroxyapatite(HA) was also added with 4 wt%. Six groups were set according to the concentrations of SF powder in the solid phase of CPC:0.5 wt%,1.0 wt%,1.5 wt%,2.0 wt%,2.5 wt%,3.0 wt%respectively.Then the solid phase blended with the liquid phase with a ratio of 0.4ml/g to prepare the cement composite.Compressive strength,setting time and injectability were measured among the six groups of cement composite as well as CPC group.The structural characteristics of all groups were observed under scanning electron microscope(SEM),final products were analyzed using x-ray diffraction analyzer(XRD).
     【Results】The compressive strength increased along with the mass fraction of SF powder in the solid phase,while the trend of setting time was opposite.Injectability was also impaired by SF powder;however,it was still higher than 85%with a 2.5 wt%SF/CPC. SEM observation showed SF penetrated throughout CPC crystals,which were tightly connected.The XRD displayed that hydration reaction of SF/CPC almost ended after 24 hours and the final product of SF/CPC was poor crystalline hydroxyapatite.
     【Conclusions】SF/CPC with a SF mass fraction of 2.5 wt%in its solid phase have a high compressive strength and low setting time,together with an acceptable injectability of more than 85%.The final products of the cement composite were unchanged.It could be suitable for bone substitute application.Thus,we will choose this kind of SF/CPC for the next cytocompatibility study.
     PartⅡ:Studies on Cellular Compatibility of the SF/CPC
     【Objective】To evaluate SF/CPC cellular compatibility by using co-culturing of bone marrow stromal cells(BMSCs) from rabbit's marrow and SF/CPC.
     【Methods】Primarily cultured BMSCs were isolate from a rabbit's bone marrow by density gradient centrifugation.The third passage BMSCs were seeded into CPC and SF/CPC for 3 to 5 days.BMSCs alone were cultured at the same condition to act as controls.The cellular morphology and function(attachment,proliferation and differentiation) were assessed separately by means of phase contrast microscope,SEM and MTT assay.The material leaching liquor was used to test cell toxicity.
     【Results】BMSCs could adhere to CPC and SF/CPC,and proliferate and grow on the surface of the composites normally.The cellular activity and function were not affected by the materials,and no statistical difference was found between the two groups and the control group(P>0.05).Cell toxicity test discovered these materials had no toxic effect on BMSCs.
     【Conclusions】BMSCs could be isolated,cultured and proliferated with active function in vitro.CPC and SF/CPC have a good cellular biocompatibility and can be used as a bone substitute.
     PartⅢ:Study on sheep vertebral body defect model augmentation with SF/CPC in vitro
     【Objective】To develop a sheep vertebral body defect model for screening vertebral augmentation filler materials and to evaluate the augmentation effect of SF/CPC in this model in vitro.
     【Methods】Forty-eight lumbar vertebrae harvested from ten fresh skeletally mature female sheep cadavers were evenly assigned to eight groups,6 vertebrae each.Bone mineral density(BMD) was examined each group.Four groups of vertebrae were drilled in the perpendicular direction to center of the sagittal plane of the vertebra,with the different drills,φ2.0mm,φ4.0mm,φ6.0mm,φ8.0mm to form a cylindrical bone defect.The depth was 10.0mm,keeping the contralateral cortex intact.The fifth group served as control.All vertebrae were compressed in a material testing system to determine the strength and stiffness.Based on the above test,a certain defect was selected as the vertebral body defect model.The three left groups were prepared into this model,and then augmented by CPC,SF/CPC,PMMA.The strength and stiffness of the three groups were evaluated after setting for 24h in simulated body fluid.
     【Results】There was no difference in BMD among the eight groups of vertebrae.It was found that the strength and stiffness of the vertebrae with bone defect decreased as the diameter of the bone defect increasing.The compressive strength and stiffness of the vertebrae withφ6.0mm defect was significantly lower in comparison with the control group(P<0.05).After augmentation,there was no difference among SF/CPC,PMMA and intact groups(P>0.05),while CPC group had a lower value compared with intact group in compressive strength and stiffness(P<0.05).
     【Conclusion】The sheep vertebrae with aφ6.0mm and 10.0mm in depth defect is a suitable model to screen vertebral augmentation filler materials.SF/CPC has a prompt augmentation effect in this model.This model keeps the vertebral figuration intact,so it can be used in further studies in vivo.
     PartⅣ:Studies on sheep vertebral defect model augmentation with SF/CPC in vivo
     【Objective】To determine the feasibility of SF/CPC composites as an injectable bone subsitute and investigate the possibility on clinical use as a new vertebral augmentation filler material.
     【Methods】Twelve adult sheep were operated on left retroperitoneum approach and cavities were made on L3,L4 or L5.CPC,SF/CPC,and PMMA was transplanted to the cavities at random order.Six sheep were killed at 1- and 6-month-time point postoperation, respectively.Two specimens were subjected to un-decalcified sections and stained with
引文
1.Takagi S,Chow LC.Formation of macropores in calcium phosphate cement implants.J Mater Sci Mater Med,2001;12:135-139.
    2.del Real RP,Wolke JG,Vallet-Regi M,et al.A new method to produce macropores in calcium phosphate cements.Biomaterials,2002;23:3673-3680.
    3.Xu HH,Quinn JB,Takagi S,et al.Strong and macroporous calcium phosphate cement:Effects of porosity and fiber reinforcement on mechanical properties.J Biomed Mater Res,2001;57:457-466.
    4.Bigi A,Bracci B,Panzavolta S.Effect of added gelatin on the properties of calcium phosphate cement.Biomatedals,2004;25:2893-2899.
    5.Hockin HK.Fast setting calcium phosphate-chitosan scaffold:mechanical properties and biocompatibility.Biomaterials,2005;26:1337-1348.
    6.Li MZ,Wu ZY,Zhang CS,et al.Study on porous silk fibroin materials.Ⅱ.Preparation and characteristics of spongy porous silk fibroin materials. J Appl Polym Sci, 2001; 79: 2192-2199.
    7. Driessens FCM, Boltong MCP, Bermudez O, et al. Effective formulations for the preparation of calcium phosphate bone cements. J Mater Sci Mater Med, 1994; 5: 164-170.
    8. Panzavolta S, Fini M, Nicoletti A, et al. Porous composite scaffolds based on gelatin and partially hydrolyzed alpha-tricalcium phosphate. Acta Biomater, 2009; 5: 636-643.
    9. Brown WE, Chow LC. A new calcium phosphate water-setting cement. In: Brown PW Ed, Cement Research Progress, Wasterville, Ohio, 1986; 352-379.
    10. Fukase Y, Eanes ED, Takagi S, et al. Setting reactions and compressive strength of calcium phosphate cement. J Dent Res, 1990; 69:1852-1856.
    11. Dickens B, Schroeder LW. Investigation of epitaxy relationships between Ca5(PO4)3(OH) and other calcium ortho-phosphates. Res Nat Bw Stan, 1980; 85: 347-362.
    12. Mirtchi AA, Lemaitre J, Munting E. Calcium phosphate cements: study of the beta-tricalcium phosphate-dicalcium phosphate-calcite cement. Biomaterials, 1990; 11: 83-88.
    13. Khairoun I, Boltong MG, Driessens FC, et al. Some factors controlling the injectability of calcium phosphate bone cements. J Mater Sci Mater Med, 1998; 9: 425-428.
    14. Li B, Li YB, Zhang XD, et al. Preparation and properties of self-setting calcium phosphate cement, The third far eastern symposium on biomedical materials, 1997; 224-225.
    15. Fernandez E, Gil FJ, Best SM, et al. Improvement of the mechanical properties of new calcium phosphate bone cements in the CaHPO4-α-Ca3PO4 system: compressive strength and microstructural development. J Biomed Mater Res, 1998; 41: 560-567.
    16. Driessens FCM, Demaeyer EAP, Fernandez E, et al. Amorphous calcium phosphate cements and their transformation into calcium deficient hydroxyapatite. Biocermics, 1996; 9:231-234.
    17. Bohner M, Vanlanduyt P, Merkle HP, et al. Composition effects on the pH of a hydraulic calcium phosphate cement. J Mater Sci Mater Med, 1997; 8: 675-681.
    18. Nakano M, Hirano N, Ishihara H, et al. Calcium phosphate cement leakage after percutaneous vertebroplasty for osteoporotic vertebral fractures: risk factor analysis for cement leakage. Key Engineering Materials, 2001; Vol. 192-195: 813-816.
    19. Brown PW, Fulmer M. Kinetics of hydroxyapatite formation at low temperature. J Am Ceram Soc, 1991; 74: 934-940.
    20.Brown PW.Phase-Relationships in the Ternary-System CaO2-P2O5-H2O at 25℃.J Am Ceram Soc,1992;75:17-22.
    21.刘昌胜,刘子胜,潘颂华.磷酸钙骨水泥的水化放热行为.硅酸盐学报,2000;28:501-506.
    22.Liu CS,Shen W.Effect of crystal seeding on the hydration of calcium phosphate cement.J Mater Sci Mater Meal,1997;8:803-807.
    23.Altman GH,Diaz F,Jakuba C,et al.Silk-based biomaterials.Biomaterials,2003;24:401-416.
    24.Minoura N,Tsukada M,Nagura M.Physico-chemical properties of silk fibroin membrane as a biomaterial.Biomaterials,1990,11:430-434.
    25.张世明,刘向阳,李明忠,等.丝素膜代人工硬脑膜的相容性研究.中华神经外科杂志,2004;20:303-306.
    26.Li M,Ogiso M,Minoura N.Enzymatic degradation behavior of porous silk fibroin sheets.Biomaterials,2003;24:357-365.
    27.Panilaitis B,Altman GH,Chen J,et al.Macrophage responses to silk.Biomaterials,2003;24:3079-3085.
    28.Altman GH,Horan RL,Lu HH,et al.Silk matrix for tissue engineered anterior cruciate ligaments.Biomaterials,2002;23:4131-4141.
    29.Minoura N.Biomaterial application of polymeric materials.CRC Press Boca Raton,1993;21:128.
    30.Lin J,Zhang S,Chen T,et al.Calcium phosphate cement reinforced by polypeptide copolymers.J Biomed Mater Res B Appl Biomater,2006;76B:432-439.
    31.Solheim E,Sudmann B,Bang G,et al.Biocompatibility and effect on osteogenesis of poly(ortho ester) compared to poly(DL-lactic acid).J Biomed Mater Res,2000;49:257-263.
    32.Kong XD,Cui FZ,Wang XM,et al.Silk fibroin regulated mineralization of hydroxyapatite nanocrystals.J Cryst Growth,2004;270:197-202.
    33.Wang L,Ning GL,Senna M.Microstructure and gelation behavior of hydroxyapatite-based nanocomposite sol containing chemically modified silk fibroin.Colloids and Surfaces A:Physicochen.Eng Aspects,2005;254:159-164.
    34.潘朝辉,范清宇,蔡和平,等.壳聚糖对自制磷酸钙骨水泥性能的影响.第四军医大学学报,2005:26:1981-1984.
    35.卢神州,李明忠,白伦.羟基磷灰石/丝素蛋白纳米复合颗粒的制备.丝绸,2006;50:17-19.
    36.Li C,Jin HJ,Botsaris GD,et al.Silk apatite composites from electrospun fibers.J Mater Res,2005;12:3374-3384.
    37.卢神州,李明忠,黄玲萍,等.磷酸钙盐在蚕丝纤维上的沉积矿化.纺织学报,2006;27:55-58.
    38.Ginebra MP,Fernandez E,De Maeyer EA,et al.Setting reaction and hardening of an apatitic calcium phosphate cement.J Dent Res,1997;76:905-912.
    39.Miyamoto Y,Ishikawa K,Takechi M,et al.Tissue response to fast-setting calcium phosphate cement in bone.J Biomed Mater Res,1997;37:457-464.
    40.Driessens FC,Boltong MG,De Maeyer EA,et al.Effect of temperature and immersion on the setting of some calcium phosphate cements.J Mater Sci Mater Med,2000;11:453-457.
    41.Bohner M.New hydraulic cements based on alpha-tricalcium phosphate-calcium sulfate dihydrate mixtures.Biomaterials,2004;25:741-749.
    42.Kurashina K,Kurita H,Hirano M,et al.Calcium phosphate cement:in vitro and in vivo studies of the α-tricalcium phosphate-dicalcium phosphate dibasic-tetracalcium phosphate monoxide system.J Mater Sci Mater Med,1995;6:340-347.
    43.沈卫,刘昌胜,顾燕芳.磷酸钙骨水泥的水化反应、凝结时间及抗压强度.硅酸盐学报,1998;26:129-135.
    44.Leroux L,Hatim Z,Freche M,et al.Effects of various adjuvants(Lactic Acid,Glycerol and Chitosan) on the injectability of a calcium phosphate cement.Bone,1999;25:31S-34S.
    45.Goncalves S,Broucher A,Freche M,et al.Formulation of an injectable calcium phosphate cement.Bioceramics,2001,13:789-792.
    46.Wang X,Ye J,Wang Y,et al.Self-setting properties ofa beta-dicalcium silicate reinforced calcium phosphate cement.J Biomed Mater Res B Appl Biomater,2007;82:93-99.
    47.Keaveny TM,Hayes WC.A 20-year perspective on the mechanical properties of trabecular bone.J Biomech Eng 1993;115:534-542.
    48.McCalden RW,McGeough JA,Court-Brown CM.Age-related changes in the compressive strength of cancellous bone.The relative importance of changes in density and trabecular architecture.J Bone Joint Surg Am 1997;79:421-427.
    1.Van Damme A,Vanden-Driessche T,Collen D,et al.Bone marrow stromal cells as targets for gene therapy.Curr Gene Ther,2002;2:195-209.
    2.Pittenger MF,Mackay AM,Beck SC,et al.Multlineage potential of adult human mesenchymal stem cells.Science,1999;284:143-147.
    3.ISO10993:Biological evaluation of medical devices.Part 5:Tests for cytotoxicity:in vitro methods.Geneva:ISO.1992.
    4.Zhang CX.A new method of measuring the cytotoxicity by spectrophotometer for amalgam of different cupric quantity.Zhonghua Kou Qiang Yi Xue Za Zhi,1990;25:216-218.
    5.Kamalia N,McCulloeh CA,Tenebaum HC,et al.Dexamethasone recruitment of self-renewing osteoprogenitor cells in chick bone marrow stromal cell cultures.Blood,1992;79:320-326.
    6.Falla N,Van Vlasselaer,Bierkens J,et al.Characterization of a 5-fluorouracil-enriched osteoprogenitor population of the murine bone marrow.Blood,1993;82:3580-3591.
    7.Maniatopoulos C,Sodek J,Melcher AH,et al.Bone formation in vitro by stromal cells obtained from bone marrow of young adult rats.Tissue Res,1998;254:317-325.
    8.Nuttall ME,Patton A J,Olivera DL,et al.Human trabecular bone cells are able to express both osteoblastic and adipocytic phenotype:implications for osteogenic disorders.J Bone Miner Res,1998;13:371-379.
    9.Jerry H,Steven B,Zhu Min,et al.Rat etramedullary adipose tissue as a source of osteochondrogenic progenitor cells.Plast Reconstr Surg,2002;109:1033-1041.
    10.邓廉夫,汤雪明,柴本甫,等.肿瘤坏死因子仅和骨形态发生蛋白-2诱导成纤维细胞成骨表型表达的体外研究.中国修复重建外科杂志,1998;12:236-240.
    11.Devine SM.Mesenchymal stem cells:will have a role in the clinic? J Cell Biochem Suppl,2002;38:73-79.
    12.Johnstone B,Yoo JU.Autologous mesenchymal progenitor cells in articular cartilage repair.Clin Orthop Relat Res,1999;(367 suppl):S156-162.
    13.Kemp KC,Hows J,Donaldson C.Bone marrow derived mesenchymal stem cells.Leuk Lymphoma,2005;46:1531-1544.
    14.Lisignoli G,Remiddi G,Gattini L,et al.An elevate number of differentiated osteoblast colonies can be obtained from rat bone marrow stromal cells using a gradient isolation procedure.Connect Tissue Res,2001;42:49-58.
    15.Friedenstein AJ,Chailakhjan RK,Lalykina KS.The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells.Cell Tissue Kinet,1970;3:393-403.
    16.Lennon DE Edmison JM,Caplan AI.Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxgen osteochondrogenosis.J Cell Physiol,2001,187:345-355.
    17.Jaiswal RK,Jaiswal N,Bruder SP,et al.Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated proteinkinase.J Bio Chem,2000;275:9645-9652.
    18.Ghilzon R,McCulloch CA,Zohar R.Stromal mesenchymal progenitor cells.Leuk Lymphoma,1999;32:211-221.
    19.Dost P,Tencate WJ,Wiemann I.Osteoblast like cell cultures from human stapes.Acta Otolaryngol,2002;122:836-840.
    20.Short B,Brouard N,Occhiodoro-Scott T,et al.Mesenchymal stem cells.Arch Med Res,2003;34: 565-571.
    21.Gronthos S,Graves SE,Ohta S,et al.The Stro-1 fraction of adult human bone marrow contains the osteogenic precursors.Blood,1994;84:4164-4173.
    22.Simmons PJ,Gronths S,Annetino A,et al.Isolation characterization and functional activity of human marrow stromal progenitors in hemopoiesis.Pro Clin Biol Res,1994;389:271-277.
    23.李秀森,郭子宽,杨靖清,等.骨髓间充质干细胞的生物学特性.解放军医学杂志,2000;25:346-348.
    24.Martin T J,Sims NA.Osteoclast-derived activity in the coupling of bone formation to resorption.Trends Mol Med,2005;11:76-81.
    25.Heng BC,Cao T,Stanton LW,et al.Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro.J Bone Miner Res,2004;19:1379-1394.
    26.Kurtz A,Aigner A,Cabal-Manzano RH,et al.Differential regulation of a fibroblast growth factor-binding protein during skin carcinogenesis and wound healing.Neoplasia,2004;6:595-609.
    27.Harris CT,Cooper LF.Comparison of bone graft matrices for human mesenchymal stem cell-directed osteogenesis.J Biomed Mater Res A,2004;68:747-755.
    28.Labrie JE,Borghesi L,Gerstein RM.Bone marrow microenvironmental changes in aged mice compromise V(D) J recombinase activity and B cell generation.Sere in Immunol,2005;17:347-355.
    29.Conget PA,Minguell JJ.Phonotypical and functional properties of human bone marrow mesenchyrnal progenitor cells.J Cell Physiol,1999;181:67-73.
    30.张德强,王晓东.人骨髓间充质干细胞生长特性及碱性成纤维细胞生长因子对其增殖的影响.中国组织工程研究与临床康复,2007,11:3976-3979.
    31.Harmand MF.In vitro study of biodegradation of a Co-Cr alloy using a human cell culture model.J Biomater Sci Polym Ed,1995;6:809-814.
    32.Kim BS,Mooney DJ.Development of biocompatible synthetic extracellular matrices for tissue engineering.Trends in Biotechnol,1998;16:224-230.
    33.张真,卢晓风.生物材料有效性和安全性评价的现状与趋势.生物医学工程学杂志,2002;19:117-112.
    34.康非吾,唐休发,温玉明,等.骨生物衍生支架材料组织相容性实验研究.口腔颌面外科杂志,2005;15:223-226.
    35.Johnson HJ,Northup SJ,Seagraves PA,et al.Biocompatibility test procedures for materials evaluation in vitro Ⅱ.Objective methods of toxicity assessment.J Biomed Mater Res,1985;19:489-508.
    36.Bucholz RW.Nonallograft osteoconductive bone graft substitutes.Clin Orthop,2002;(395):44-52.
    37.Li M,Ogiso M,Minoura N.Enzymatic degradation behavior of porous silk fibroin sheets.Biomaterials,2003;24:357-365.
    38.汪群力,裴国献,曾宪利,等.成年恒河猴骨髓基质干细胞的体外培养.中华创伤骨科杂志,2004;6:728-730.
    39.Choong CS,Hutmacher DW,Triffitt JT.Co-culture of bone marrow fibroblasts and endothetial cells on modified potycaprotact one substrates for enhanced potentials in bone tissue engineering.Tissue Eng,2006;12:2521-2531.
    40.吕晓迎,KappertHF.牙科材料细胞毒性评定的新方法(MTT试验).中华口腔医学杂志,1995;30:377-379.
    1.Lieberman IH,Dudeney S,Reinhardt MK,et al.Initial outcome and efficacy of "kyphoplasty" in the treatment of painful osteoporotic vertebral compression fractures.Spine,2001;26:1631-1638.
    2.Jensen ME,Evans AJ,Mathis JM,et al.Percutaneous polymethymethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures:Technical aspects.AJNR,1997;18:1897-1904.
    3.Kaufmann T J,Jensen ME,Schweichert PA,et al.Age of fracture and clinical outcomes of percutaneous vertebroplsty.AJNR,2001;22:1807-1812.
    4.Deramond H,epriester C,Galibert P,et al.Percutaneous vertebroplasty with polymethymethacrylate.Radiol Clin North Am,1998;36:533-546.
    5.杨惠林,Yuan HA,陈亮,等.椎体后凸成形术治疗老年骨质疏松性椎体压缩骨折.中华骨科杂志,2003;23:262-265.
    6.Cho DY,Lee WY,Sheu PC.Treatment of thoracolumbar burst fractures with polymethyl methacrylate vertebroplasty and short-segment pedicle screw fixation.Neurosurgery,2003;53:1354-1361.
    7.Verlaan JJ,Dhert WJ,Verbout AJ,el al.Balloon vertebroplasty in combination with pedicle screw instrumentation:a novel technique to treat thoracic and lumbar burst fractures.Spine,2005;30:E73-E79.
    8. Korovessis P, Repantis T, Petsinis G, et al. Direct reduction of thoracolumbar burst fractures by means of balloon kyphoplasty with calcium phosphate and stabilization with pedicle-screw instrumentation and fusion. Spine, 2008; 4: E100-E108.
    9. Lewis G. Percutaneous vertebroplasty and kyphoplasty for the stand-alone augmentation of osteoporosis-induced vertebral compression fractures: Present status and future directions. J Biomed Mater Res Part B: Appl Biomater, 2007; 81: 371-386.
    10. Lewis G. Injectable bone cements for use in vertebroplasty and kyphoplasty: State-of-the-art review. J Biomed Mater Res Part B: Appl Biomater, 2006; 76: 456-468.
    11. Kobayashi H, Fujishiro T, Belkoff SM, et al. Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model. J Biomed Mater Res A, 2009; 88: 880-888.
    12. Liebschner MA. Biomechanical considerations of animal models used in tissue engineering of bone. Biomaterials, 2004; 25: 1697-1714.
    13. Weiss S, Zimmerman MC, Harten RD, et al. The acoustic and structural properties of the human femur. J Biomech Eng, 1998; 120: 71-76.
    14. Cotterill PC, Kostuik JP, D'Angelo G, et al. An anatomical comparison of the human and bovine thoracolumbar spine. J Orthop Res, 1986; 4: 298-303.
    15. Wilke HJ, Kettler A, Wenger KH, et al. Anatomy of the sheep spine and its comparison to the human spine. Anat Rec, 1997; 247: 542-555.
    16. Wilke HJ, Krischak S, Claes L. Biomechanical comparison of calf and human spines. J Orthop Res, 1996; 14: 500-503.
    17. Wilke HJ, Kettler A, Cleas L. Are sheep spines a valid model for human spines? Spine, 1997; 22: 2365-2374.
    18. Smit TH. The use of a quadruped as an in vivo model for the study of the spine biomechanical considerations. Eur Spine J, 2002; 11: 137-144.
    19. Hauerstock D, Reindl R, Steffen T. Telemetric measurement of compressive loads in the sheep lumbar spine. Transactions (vol 26) of the 47~(th) Annual Meeting of the Orthopaedic Research Society, 2001; article 391.
    20.Whyne CM,Hu SS,Lotz JC.Burst fracture in the metastatically involved spine:development,validation,and parametric analysis of a three-dimensional poroelastic finite-element model.Spine,2003;28:652-660.
    21.McGowan DP,Hipp JA,Takeuchi T,et al.Strength reduction from trabecular destruction within thoracic vertebrae.J Spinal Disord,1993;6:130-136.
    22.Ebihara H,Ito M,Abumi K,et al.A biomechanical analysis of metastatic vertebral collapse of the thoracic spine:a sheep model study.Spine,2004;29:994-999.
    23.Michael C,Jon M,Gladius L,et al.Evaluation of a synthetic bone defect test model to aid in the selection of materials for use in vertebral body compression fracture repair.Orthopedics,2004;27:119s-112s.
    24.Bohner M,Gasser B,Baroud G,et al.Theoretical and experimental model to describe the injection of a polymethylmethaerylate cement into a porous structure.Biomaterials,2003;24:2721-2730.
    25.Key J.The effect of local calcium depot on osteogenesis and healing of fractures.J Bone Joint Surg Am,1934;16A:176-184.
    26.Toombs JP,Wallace LJ,Bjorling DE,et al.Evaluation of Key's hypothesis in the feline tibia:An experimental model for augmented bone healing studies.Am J Vet Res,1985;46:513-518.
    27.Kobayashi N,Togawa D,Fujishiro T,et al.Histological and radiographic evaluation of polymethylmethacrylate with two different concentrations of barium sulfate in a sheep vertebroplasty model.J Biomed Mater Res A,2005;75:123-127.
    28.Tomita S,Molloy S,Jasper LE,et al.Biomechanical comparison of kyphoplasty with different bone cements.Spine,2004;29:1203-1207.
    29.Harrop JS,Prpa B,Reinhardt MK,et al.Primary and secondary osteoporosis' incidence of subsequent vertebral compression fractures after kyphoplasty.Spine,2004;29:2120-2125.
    30.朱雪松,杨惠林,张志明,等.椎体成形术骨缺损动物模型的制备和评价.苏州大学学报:医学版,2005;25:599-601.
    31.Fujishiro T,Bauer TW,Kobayashi N,et al.Histological evaluation of an impacted bone graft substitute composed of a combination of mineralized and demineralized allograft in a sheep vertebral bone defect.J Biomed Mater Res A,2007;82:538-544.
    32. Martini L, Fini M, Giavaresi G, et al. Sheep model in orthopedic research: a literature review. Comp Med, 2001; 51: 292-299.
    33. Liebschner MA, Rosenberg WS, Keaveny TM. Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine, 2001; 26: 1547-1554.
    34. Molloy S, Mathis JM, Belkoff SM. The effect of vertebral body percentage fill on mechanical behavior during percutaneous vertebroplasty. Spine, 2003; 28: 1549-1554.
    35. Verlaan JJ, Diekerhof CH, Buskens E, et al. Surgical treatment of traumatic fractures of the thoracic and lumbar spine: a systematic review of the literature on techniques, complications, and outcome. Spine, 2004; 29: 803-814.
    36. Knop C, Fabian HF, Bastian L, et al. Late results of thoracolumbar fractures after posterior instrumentation and transpedicular bone grafting. Spine, 2001; 26: 88-99.
    37. Alanay A, Acaroglu E, Yazici M, et al. Short-segment pedicle instrumentation of thoracolumbar burst fractures: does transpedicular intracorporeal grafting prevent early failure? Spine, 2001; 26: 213-217.
    38. Seiji T, Akihiro K, Masaya Y, et al. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci, 2003; 192-197.
    1. Lieberman I, Reinhardt MK. Vertebroplasty and kyphoplasty for osteolytic vertebral collapse. Clin Orthop Relat Res, 2003; (415 Suppl): S176-S186.
    2. Cotten A, Dewatre F, Cortet B, et al. Percutaneous vertebroplasty for osteolytic metastases and myeloma: Effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinical follow-up. Radiology, 1996; 200: 525-530.
    3. Mathis JM, Barr JD, Belkoff SM, et al. Percutaneous vertebroplasty: A developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol, 2001; 22: 373-381.
    4. Heini PF, Berlemann U. Bone substitutes in vertebroplasty. Eur Spine J, 2001; 10: S205-S213.
    5. Togawa D, Kovacic JJ, Bauer TW, et al. Radiographic and histologic findings of vertebral augmentation using polymethylmethacrylate in the primate spine: Percutaneous vertebroplasty versus kyphoplasty. Spine, 2006; 31: E4-E10.
    6. Belkoff SM, Molloy S. Temperature measurement during polymerization of polymethylmethacrylate cement used for vertebroplasty. Spine, 2003; 28: 1555-1559.
    7. Deramond H, Wright NT, Belkoff SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone, 1999; 25:17S-21S.
    8. Deramond H, Depriester C, Galibert P, et al. Percutaneous vertebroplasty with polymethylmethacrylate. Technique, indications, and results. Radiol Clin North Am, 1998; 36: 533-546.
    9. Belkoff SM, Mathis JM, Erbe EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine, 2000; 25: 1061-1064.
    10. Lim TH, Brebach GT, Renner SM, et al. Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty. Spine, 2002; 27: 1297-1302.
    11. Wilke HJ, Mehnert U, Claes LE, et al. Biomechanical evaluation of vertebroplasty and kyphoplasty with polymethyl methacrylate or calcium phosphate cement under cyclic loading. Spine, 2006; 31: 2934-2941.
    12. Kobayashi H, Fujishiro T, Belkoff SM, et al. Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model. J Biomed Mater Res A, 2009; 88: 880-888.
    13. Jensen ME, Evans AJ, Mathis JM, et al. Percutaneous polymethylmethacrylate vertebroplasty in the treatment of osteoporotic vertebral body compression fractures: technical aspects. AJNR Am J Neuroradiol, 1997; 18: 1897-1904.
    14. Kaufmann TJ, Jensen ME, Schweickert PA, et al. Age of fracture and clinical outcomes of percutaneous vertebroplasty. AJNR Am J Neuroradiol, 2001; 22: 1860-1863.
    15. Garfin SR, Yuan HA, Reiley MA, et al. New technologies in spine: kyphoplasty and vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine, 2001; 26: 1511-1555.
    16. Bai B, Laith M, Frederick JK, et al. The use of an injectable, biodegradable calcium phosphate bone substitute for the prophylactic augmentation of osteoporotic vertebrae and the management of vertebral compression fracture. Spine, 1999; 24: 1521-1526.
    17. Charnley J. Acrylic Cement in Orthopaedic Surgery, Edinburgh-London: E and S Livingstone; 1970.
    18. Schoenefeld CM, Conard GJ. Monomer release from methacrylate bone cements during simulated in vivo polymerization. J Biomed Mater Res, 1979; 13: 135-147.
    19. Espigares I, Elvira C, Mano JF, et al. New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers. Biomaterials, 2002; 23:1883-1895.
    20. Tomita S, Kin A, Yazu M, et al. Biomechanical evaluation of kyphoplasty and vertebroplasty with calcium phosphate cement in a simulated osteoporotic compression fracture. J Orthop Sci, 2003; 8: 192-197.
    21. Grafe IA, Baier M, Noldge G, et al. Calcium-phosphate and polymethylmethacrylate cement in long-term outcome after kyphoplasty of painful osteoporotic vertebral fractures. Spine, 2008; 33: 1284-1290.
    22. Blattert TR, Jestaedt L, Weckbach A. Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine, 2009; 34: 108-114.
    23. Liu CS, Shen W. Effect of crystal seeding on the hydration of calcium phosphate cement. J Mater Sci Mater Med, 1997; 8: 803-807.
    24. Heini PF, Kaufmann M, Angst M. Effect of bone cement augmentation on the mechanical properties of human cadaveric vertebrae. Abstract presented at the Eurospine '98, Second Combined Meeting of the Leading European Spine Societies, Innsbruck, 24-27 June 1998.
    25. Takagi S, Chow LC, Hirayama S, et al. Properties of elastomeric calcium phosphate cement-chitosan composites. Dent Mater, 2003; 19: 797-804.
    26. Ishikawa K, Miyamoto Y, Takechi M, et al. Non-decay type fast-setting calcium phosphate cement: hydroxyapatite putry containing an increased amount of sodium alginate. J Biomed Mater Res, 1997; 36: 393-399.
    27. Ooms EM, Wolke JG, van der Waerden JP, et al. Trabecular bone response to injectable calcium phosphate (Ca-P) cement. J Biomed Mater Res, 2002; 61: 9-18.
    28. Theiss F, Apelt D, Brand B, et al. Biocompatibility and resorption of a brushite calcium phosphate cement. Biomaterials, 2005; 26: 4383-4394.
    29. Sarkar MR, Wachter N, Patka P, et al. First histological observation on the incorporation of a novel calcium phosphate bone substitute material in human cancellous bone. J Biomed Mater Res, 2001; 58: 329-334.
    30. Kuemmerle JM, Oberle A, Oechslin C, et al. Assessment of the suitability of a new brushite calcium phosphate cement for cranioplasty - an experimental study in sheep. J Craniomaxillofac Surg, 2005; 33: 37-44.
    31. Xu HH, Simon CG Self-hardening calcium phosphate cement-mesh composite: reinforcement macropores, and cell response. J Biomed Mater Res A, 2004; 69: 267-278.
    32. Constantz BR, Barr BM, Ison IC, et al. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res, 1998; 43: 451-461.
    33. Panilaitis B, Airman GH, Chen J, et al. Macrophage responses to silk. Biomaterials, 2003; 24: 3079-3085.
    34. Ruoslahti E, Pierschbacher MD. New perspectives in cell adhesion: RGD and integrins. Science, 1987; 238: 491-497.
    35. Chiarini A, Petrini P, Bozzini S, et al. Silk fibroin/poly (carbonate)-urethane as a substrate for cell growth: in vitro interactions with human cells. Biomaterials, 2003; 24: 789-799.
    36. Damien CJ, Ricci JL, Christel P, et al. Formation of a calcium phosphate-rich layer on absorbable calcium carbonate bone graft substitutes. Calcif Tissue Int, 1994; 55: 151-158.
    37. Hong SJ, Park YK, Kim JH, et al. The biomechanical evaluation of calcium phosphate cements for use in vertebroplasty. J Neurosurg Spine, 2006; 4: 154-159.
    38. Tomita S, Molloy S, Jasper LE, et al. Biomechanical comparison of kyphoplasty with different bone cements. Spine, 2004; 29: 1203-1207.
    39. McAfee PC, Bohlman HH, Ducker T, et al. Failure of stabilization of the spine with methylmethacrylate: A retrospective analysis of twenty-four cases. J Bone Joint Surg, 1986; 68A: 1145-1157.
    40. San MR, Burkhardt K, Jean B, et al. Pathology findings with acrylic implants. Bone, 1999; 25: 85s-90s.
    1.Charnley J.Anchorage of the femoral head prosthesis to the shaft of the femur.J Bone Joint Surg,1960;42B:28-30.
    2.Sadao Morita,Kohtaro Furuya.Performance of adhesive bone cement containing hydroxyapatite particles.Biomaterials,1998;19:1601-1606.
    3.Pascual B,Gurruchaga M,Goni I,et al.Mechanical properties of a modified acrylic bone cement with ethoxyethylenglycol monomethacrylate.Mater Sci:Mater Med,1995;6:793-798.
    4.Madigan S,Towler MR,Lewis G.Optimisation of the composition of an acrylic bone cement:Application to relative amounts of the initiator and the activator/co-initiator in Surgical Simplex~(?)P.J Mater Sci Mater Med,2006;17:307-311.
    5.Madigan S,Towler MR,Lewis G.Influence of two changes in the composition of an acrylic bone cement on some of its properties:The case of Surgical SimplexlE J Mater Sci,2006;41:5758-5759.
    6.Lewis G,Xu J,Madigan S,et al.Influence of two changes in the composition of an acrylic bone cement on its handling,thermal,physical,and mechanical properties.J Mater Sci:Mater Med,2007;18:1649-1658.
    7.Morejon L,Delgado JA,Davidenko N,et al.Kinetic effect of hydroxyapatite types on the polymerization of acrylic bone cements.Int J Polym Mater,2003;52:637-654.
    8.Hasenwinkel JM,Lautenschlager EP,Wixson RL,et al.A novel high viscosity,two-solution acrylic bone cement:Effect of chemical composition on properties.J Biomed Mater Res,1999;47:36-45.
    9.Hasenwinkel JM,Lautenschlarger EP,Wixson RL,et al.Effect of initiation chemistry on the fracture toughness,fatigue strength,and residual monomer content of a novel high-viscosity, two-solution acrylic bone cement. J Biomed Mater Res, 2002; 59: 411-421.
    10. Allen MJ, Leone KA, Hasenwinkel JM, et al. Tissue response to in situ polymerization of a new two-solution bone cement: Evaluation in a sheep model. J Biomed Mater Res B Appl Biomater, 2006; 79: 441-452.
    11. Me'ndez JA, Aguilar MR, Abraham GA, et al. New acrylic bone cements conjugated to vitamin E: Curing parameters, properties, and biocompatibility. J Biomed Mater Res A, 2002; 62: 299-307.
    12. Yetkinler DN, Litsky AS. Viscoelastic behaviour of acrylic bone cements. Biomaterials, 1998; 19: 1551-1559.
    13. Deb S, Lewis G, Janna SW, et al. Fatigue and fracture toughness of acrylic bone cements modified with long-chain amine activators. J Biomed Mater Res A, 2003; 67: 571-577.
    14. Lewis G, Xu J, Deb S, et al. Influence of the activator in an acrylic bone cement on an array of cement properties. J Biomed Mater Res A, 2007; 81A: 544-553.
    15. Sabokbar A, Fujikawa Y, Murray DW, et al. Radio-opaque agents in bone cement increase bone resorption. J Bone Joint Surg, 1997; 79-B: 129-134.
    16. Horowitz SM, Doty SB, Lane JM, et al. Studies of the mechanism by which the mechanical failure of polymethylmethacrylate leads to bone resorption. J Bone Joint Surg Am, 1993; 75: 802-813.
    17. Lazarus MD, Cuckler JM, Schumacher HR, et al. Comparison of the inflammatory response to paniculate polymethylmethacryalte debris with and without barium sulphate. J Orthop Res, 1994; 12:532-541.
    18. Baleani M, Cristofilini L, Minari C, et al. Fatigue strength of PMMA bone cement mixed with gentamicin and barium sulphate vs pure PMMA. Proc Instn Mech Eng, 2003; 217: 9-12.
    19. Bhambri SK, Gilbertson LN. Micromechanisms of fatigue crack initiation and propagation in bone cements. J Biomed Mater Res, 1995; 29:233-237.
    20. Deb S, Abdulghani S, Behiri JC. Radiopacity in bone cements using an organo-bismuth compound. Biomaterials, 2002; 23: 3387-3393.
    21. Bellare A, Turell M, Ganesan P, et al. Mechanisms of crack propagation in a conventional and nanocomposite bone cement. Transactions of the 48th Annual Meeting of the Orthopaedic Research Society, February 10-13, 2002, Dallas, TX, USA. p 1067.
    22.Lee YL,Bellare A,Thornhill TS.Effect of radiopacifier nanoparticles on compressive and tensile properties of bone cement.Transactions of the 7th World Biomaterials Congress,May 17-21,2004,Sydney,Australia.p 1470.
    23.Rusu MC,Rusu M,Popa M,et al.The synthesis of bromine containing methacrylates for new radioopaque bone cements.Transactions of the 20th European Conference on Biomaterials,September 27-October 1,2006,Nantes,France.p 40.
    24.Zhao F,Lu WW,Luk KDK,et al.Surface treatment of injectable strontium-containing bioactive bone cement for vertebroplasty.J Biomed Mater Res Part B:Appl Biomater,2004;69B:79-86.
    25.Heikkila JT,Aho AJ,Kangasniemi I,et al.Polymethylmethacrylate composites:disturbed bone formation at the surface of bioactive glass and hydroxyapatite.Biomaterials,1996;17:1755-1760.
    26.Weam FM,Masahiko Kobayashi.Biological and mechanical properties of PMMA-based bioactive bone cements.Biomaterials,2000;21:2137-2146.
    27.Yamamuro T,Nakamura T,Iida H,et al.Development of bioactive bone cement and its clinical applications.Biomaterials,1998;19:1479-1482.
    28.郑昌琼,王士斌,冉均国,等.HA/网孔PMMA复合骨水泥的研制及其种植的动物实验.96中国材料研讨会96C-MRS论文集.
    29.Harper EJ.Bioactive bone cements.Proc Inst Mech Eng,1998;212:113-120.
    30.Kim SB,Kim YJ,Yoon TL,et al.The characteristics of a hydroxyapatite-chitosan-PMMA bone cement.Biomaterials,2004;25:5715-5723.
    31.Lin LC,Chang SJ,Kuo SM,et al.Evaluation of chitosan/beta-tricalcium phosphate microspheres as a constituent to PMMA cement.J Mater Sci Mater Med,2005;16:567-574.
    32.Espigares I,Elvira C,Mano JF,et al.New partially degradable and bioactive acrylic bone cements based on starch blends and ceramic fillers.Biomaterials,2002;23:1883-1895.
    33.王善沅,陈剑宏.影响MTX骨水泥药物释放速度因素的研究.生物医学工程通报,1992;4:124-127.
    34.王善沅,金璇,张光健,等.PMMA庆大霉素珠粒药物释放浓度的测定.上海生物医学工程,1992;3:41-44.
    35.刘成安,王善沅.链霉素骨水泥在人工髋关节置换中的应用,人工关节的基础与临床研究.人 民卫生出版社, 1993; 7.
    36. Bahn S. Plaster: A bone substitute. Oral Surg Oral Med & Oral Path, 1966; 21: 572-681.
    37. Eamshaw R. The tensile and compressive strength of plaster and stone. Austr Dent J, 1966; 11: 415-422.
    38. McKee MD, Wild LM, Schemitseh EH, et al. The use of an antibiotic-impregnated, osteoconducive, bio-absorbable bone substitute in the treatment of infected long bone defects: early results of a prospective trial. J orthop Trauma, 2002; 16: 622-627.
    39. Song HR, Oh CW, Kyung HS, et al. Injected Calcium sulfate for consolidation of distraction osteogenesis in rabbit tibia. J Pediatr orthop B, 2004; 13: 170-175.
    40. Walsh WR, Morberg P, Yu Y, et al. Response of a calcium sulphate bone graft substitute in a confined cancellous defect. Clin orthop Relat Res, 2003; 406: 228-236.
    41. Peltier LF. The use of plaster of paris to fill defects in bone. Clin orthop Relat Res, 1961; 21: 1 -31.
    42. Hogset O, Bredberg G. Plaster of pans: Thermal properties and biocompatibility. Acta otolaryngol, 1986; 101:445-452.
    43. Coetzee AS. Regeneration of bone in the presence of calcium sulfate. Arch Otolaryngol, 1980; 106: 405-409.
    44. Peltier LF. The use of plaster of Paris to fill large defects in bone. Am j surg, 1959; 97: 311-315.
    45. Kelly CM, Wilkins RM. Treatment of benign bone lesions with an injectable calcium sulfate-based bone graft substitute. Orthopedics, 2004; 27: S123-S125.
    46. Bell WH. Resorption of characteristics of bone and plaster. Oral surg, 1961; 39: 727.
    47. Saul LB. Plaster: a bone substitute. Oral Surg oral med & oral path, 1966; 21: 672-681.
    48. Peltier LF. The use of plaster of pans to fill defects in bone. Clin orthop, 1961; 21: 1-29.
    49. Oh CW, Kim PT, Ihn JC. The use of calcium sulfate as a bone substitute. J Ortho Surg, 1998; 6: 1-10.
    50. Nilsson M, Wang JS, Wielanek L, et al. Biodegradation and biocompatibility of a calcium sulphate-hydroxyapatite bone substitute. J Bone Joint Surg Br, 2004; 86: 120-125.
    51. Walsh WR, Morberg P, Yu Y. Response of a calcium sulfate bone graft substitute in a confined cancellous defect. Clin Orthop, 2003; 406: 228-236.
    52.Hing KA,Wilson LF,Buckland T.Comparative performance of three ceramic bone graft substitutes.Spine J,2007;7:475-490.
    53.Palmieri A,Pezzetti F,Brunelli G,et al.Calcium sulfate acts on the miRNA of MG63E osteoblast-like cells.J Biomed Mater Res B Appl Biomater,2007;84:369-374.
    54.Turner TM,Urban RM,Gitelis S,et al.Resorption evaluation of a large bolus of calcium sulfate in a canine medullary defect.Orthopedics,2003;26:s577-s579.
    55.Nilsson M,Wielanek L,Wang JS,et al.Factors influencing the compressive strength of an injectable calcium sulfate-hydroxyapatite cement.J Mater Sci:Mater Med,2003;14:399-404.
    56.Kanatani M,Sugimoto T,Kanzawa M,et al.High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells.Biochem Biophys Res Commun,1999;261:144-148.
    57.Walsh WR,Morberg P,Yu Y,et al.Response of a calcium sulfate bone graft substitute in a confined cancellous defect.Clin Orthop Relat Res,2003;40:228-236.
    58.Maeno S,Niki Y,Matsumoto H,et al.The effect of calcium ion concentration on osteoblast viability,proliferation and differentiation in monolayer and 3D culture.Biomaterials,2005;26:4847-4855.
    59.Carinci F,PiattelliA,Stabellini G,et al.Calcium sulfate:analysis of MG63 osteoblast-like cell response by means of a microarray technology.J Biomed Res B App 1 Biomater,2004;71:260-267.
    60.Ricci JL,Alexander H,Nadkarni P,et al.Biological mechanisms of calcium sulfate replacement by bone.In Davis J,2001;332-345.
    61.Orsini G,Ricci J,Scarano A,et al.Bone-defect healing with calcium-sulfate particles and cement:an experimental study in rabbit.J Biomed Mater Res Part B:Appl Biomater,2004;68b:199-208.
    62.Liljensten E,Adolfsson E,Strid KG,et al.Resorbable and nonresorbable hydroxyapatite granules as bone graft substitutes in rabbit cortical defects.Clin Implant Dent Relat Res,2003;5:95-101.
    63.Wang JS,Goodman S,Aspenberg P.Bone formation in the presence of phagocytosable hydroxyapatite.Clin Orthop,1994;304:272-279.
    64.张民,王建生,卫小春,等.不同配方可注射性羟基磷灰石/硫酸钙骨替代材料的性能分析.中国临床康复,2006;10:69-72.
    65.Bohner M.New hydraulic cements based on α-tricalcium phosphate-calcium sulfate dihydrate mixtures.Biomaterials,2004;25:741-749.
    66.G Kim CK,Chai JK,Cho KS,et al.Effect of calcium sulphate on the healing of periodontal intrabony defects.Int Dent J,1998;48:330-337.
    67.张永莉,霍书娟,高建平,等.明胶/硫酸钙复合生物材料.高分子材料科学与工程,2006,1:215-217.
    68.LeGeros RZ1.Properties of osteoconductive biomaterials:calcium phosphate.Clin Orthop,2002,(395):812-815.
    69.Gruniger SE,Siew C,Chow L,et al.Evaluation of the biocompatibility of a new calcium phosphate setting cement.J Dent Res,1984;63:200-206.
    70.戴红莲,闰玉华,王友发,等.α-TCP/TTCP骨水泥的降解性能研究.硅酸盐通报,2001;4:9-13.
    71.王文波,陈中伟,陈统一,等.自固化磷酸钙人工骨的生物学安全性实验研究.中国生物医学工程学报,2001;20:193-199.
    72.Costantino PD,Friedman CD,Jones K,et al.Experimental hydroxyapatite cement cranioplasty.Plast Reconstr Surg,1992;90:174-185.
    73.Fujikawa K,Sugawara A,Murai S,et al.Histopathological reaction of calcium phosphate cement in periodontal bone defect.Dent Mater J,1995;14:45-57.
    74.Gerhart TN,Renshaw AA,Miller RL,et al.In vivo histologic and biomechanical characterization of a biodegradable particulate composite bone cement.J Biomed Mater Res,1989;23:1-16.
    75.Huiping Yuan YL.Tissue responses of calcium phosphate cement:a study in dogs.Biomaterials,2000;21:1283-1290.
    76.Kuboki Y,Takita H,Kobayashi D,et al.BMP2 induced osteogenesis on the surface hydroxyapatite with geometrically feasible and nonfeasible structures:topology of osteogenesis.J Biomed Mater Res,1998;39:1902-1991.
    77.Liu CS,Shao HF,Chen FY,et al.Effects of the granularity of raw materials on the hydration and hardening process of calcium phosphate cement.Biomaterials,2003;24:4103-4113.
    78.Otsuka M,Matsuda Y,Suwa YL.Effect of particle size of metastable calcium phosphate on mechanical strength of a novel self-setting bioactive calcium phosphate cement.J Biomed Mater Res,1995;29:25-32.
    79.马立新,杨南如,陈建华.磷酸钙骨水泥的制备条件对物性的影响.陶瓷学报,2003;24:98-102.
    80.Ginebra MP,Driessens FCM,Planell JA.Effect of the particle size on the micro and nanostructural features of a calcium phosphate cement:a kinetic analysis.Biomaterials,2004;25:3453-3462.
    81.Gburecka U,Grolmsa O,Barraletb JE,et al.Mechanical activation and cement formation of β-tricalcium phosphate.Biomaterials,2003,24:4123-4131.
    82.Liu CS,Gai W,Pan SH,et al.The exothermal behavior in the hydration process of calcium phosphate cement.Biomaterials,2003;24:2995-3003.
    83.Yang Q,Troczynski T,Liu DM.Influence of apatite seeds on the synthesis of calcium phosphate cement.Biomaterials,2002;23:2751-2760.
    84.蔡舒,姚康德,关勇辉.羟基磷灰石晶种对α-磷酸钙骨水泥水化的影响.硅酸盐学报,2003;31:108-112.
    85.Oreffo RO,Driessens FC,Planell JA,et al.Growth and differentiation of human bone marrow osteoprogenitors on novel calcium phosphate cements.Biomaterials,1998;19:1845-1854.
    86.Khairoun I,Boltong MG,Driessens F,et al.Effect of calcium carbonate on the compliance of an apatitic calcium phosphate bone cement.Biomaterials,1997;18:1535-1539.
    87.邝志清,潘春跃,黄可龙,等.新型骨水泥CMCS的研制功能材料,2000;31:325-327.
    88.Christoffersen J,Christoffersen MR,Kolthoff N,et al.Effects of strontium ions on growth and dissolution of hydroxyapatite and on bone mineral detection.Bone,1997;200:47-54.
    89.Gilles IA,Carries DL,Windeler AS.Development of an vitro culture system for the study of osteoclast solidity and function.J Endod,1994;20:327-231.
    90.Xu HH,Quinn JB.Whisker-reinforced bioactive composites containing calcium phosphate cement fillers:effects of filler ratio and surface treatments on mechanical properties.J Biomed Mater Res,2001;57:165-174.
    91.Miyamoto Y,Ishikaway K,Takechi M,et al.Basic properties of calcium phosphate cement containing atelocllagen in this liquid or powder phases.Biomaterials,1998;19:707-715.
    92. LU JX, Flautre B, Anselme K, et al. Study of porous terconnections of bioceramic on cellular rehabilitation in vitro and in vivo. Bioceramics, 1997; 10: 583-586.
    93. Miyazaki K, Horibe T, Antonucci JM, et al. Polymeric calcium phosphate cements: analysis of reaction products and properties. Dent Mater, 1993; 9: 41-45.
    94. Ignjatovic N, Tomic S, Dakic M, et al. Synthesis and properties of hydroxyapatite/poly-L-Lactide composite biomaterials. Biomaterials, 1999; 20: 809-816.
    95. Lew and rowsi K, Gresser JD, Wise DL, et al. Osteoconductivity of an injectable and bioresorbable poly(propylene glycol-co-fumaric acid) bone cement. Biomaterials, 2000; 21: 293-298.
    96. Otsuka M, Matsuda Y, Fox JL, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 9. Effects of the mixing solution volume on anticancer drug release from homogeneous drug-loaded cement. J Pharm Sci, 1995; 84: 733-736.
    97. Otsuka M, Nakahigashi Y, Matsuda Y, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 7. Effect of biological factors on indomethacin release from the cement loaded on bovine bone. J Pharm Sci, 1994; 83: 1569-1573.
    98. Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug delivery system using a self-setting calcium phosphate cement. 5. Drug release behavior from a heterogeneous drug-loaded cement containing an anticancer drug. J Pharm Sci, 1994; 83: 1565-1568.
    99. Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug delivery system using self-setting calcium phosphate cement. 2. Physicochemical properties and drug release rate of the cement-containing indomethacin. J Pharm Sci, 1994; 83: 611-615.
    100. Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 4. Effects of the mixing solution volume on the drug-release rate of heterogeneous aspirin-loaded cement. J Pharm Sci, 1994; 83: 259-263.
    101. Otsuka M, Matsuda Y, Suwa Y, et al. A novel skeletal drug-delivery system using self-setting calcium phosphate cement. 3. Physicochemical properties and drug-release rate of bovine insulin and bovine albumin. J Pharm Sci, 1994; 83: 255-258.
    102. Otsuka M, Nakahigashi Y, Matsuda Y, et al. Effect of geometrical cement size on in vitro and in vivo indomethacin release from self-setting apatite cement. J Controlled Release, 1998; 52: 281-289.
    103. Otsuka M, Matsuda Y, Kokubo T, et al. Drug release from a novel self-setting bioactive glass bone cement containing cephalexin and its physicochemical properties. J Biomed Mater Res, 1995; 29: 33-38.
    104. Kamegai A, Shimamura N, Naitou K, et al. Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as a delivery system. Biomed Mater Eng, 1994; 4: 291-307.