用户名: 密码: 验证码:
外场对铝熔体异相粒子运动及其凝固行为影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铝是用量仅次于钢铁的第二大金属材料,其具有密度小、比强度高、耐腐蚀、易于回收等优异的性能,在汽车、建筑、食品及包装、电力、交通基础设施、航空航天、机械、电子信息等部门的传统或新型产品的制造中,具有广泛的应用。但是,铝合金生产中主要存在着易于吸气、细小夹杂物不易去除的问题,严重阻碍了铝工业的发展,同时,铸坯的表面质量粗糙、合金元素偏析、凝固组织粗大等缺陷也使其不能满足现代工业对优质材料的需求。目前外场如电磁场、超声场在冶金及材料加工领域得到了一定的研究及应用,为制备洁净、高性能铝合金提供了良好的基础和契机。
     本文以去除金属熔体中的气体和夹杂物粒子及细化金属液凝固组织、改善铸坯性能为目的。首先分别进行了电磁场、超声场作用下铝熔体中夹杂物和气体运动行为的研究,利用研究结果制备了组织和性能梯度分布的铝硅梯度材料,进而将超声场与旋转电磁场结合起来组成复合场对铝合金凝固行为进行研究,考察其对铸坯凝固过程、凝固组织、合金元素分布及力学性能的影响,并结合试验结果对复合场作用下金属凝固过程中形核及长大过程进行分析,对复合场下熔体形核和长大的机理提出了较为科学的理论解释。最后,开发了一种新型的复合场水平连铸工艺,并制备了表面和内部质量好、力学性能高的Al-1%Si合金线材。上述研究为电磁场和超声场技术应用到铝合金的实际生产中奠定了一定的试验和理论基础,相信随着复合场技术的推广和应用,生产洁净、高性能的铝合金材料将成为现实。
     论文的研究结果表明:
     1.利用高频磁场对铝合金中的氧化铝夹杂物进行分离,对于30-200μm的氧化铝颗粒施加表面磁感应强度为0.04T的磁场1s时,在熔体的边部就有明显的氧化铝颗粒偏聚层,分离时间大于3s时,在铝熔体内部已经很少有直径在30μm以上的氧化铝颗粒;当金属熔体表面磁感应强度为0.06T时,仅施加电磁场1 s即可对氧化铝颗粒实现有效的分离。
     2.利用功率超声场对铝合金中的异相粒子进行了分离研究,超声场对液态金属中的夹杂物和气体粒子有较好的去除效果,600W超声作用120s后,A356合金中的气体基本上被去除;利用酒精水溶液中的聚乙烯颗粒作为夹杂物的模拟物进行超声除杂模拟试验,结果表明,超声对粒径为96-109μm的聚乙烯颗粒的去除率可达90%以上;利用Al-18%Si中的初生硅作为铝合金中夹杂物的模拟物进行试验,结果表明超声场可对初生硅的运动行为进行有效控制;通过采取内部施加超声场配以外部强制冷却的方法制备了组织和性能梯度分布的梯度组织铝合金材料。
     3.将旋转磁场和超声场组成复合场,考察其对Sn-3.5%Pb合金及A356合金凝固过程的影响,结果表明;复合场可以提高合金初始凝固温度、抑制元素偏析、细化合金凝固组织并改善共晶相形貌,初生铝平均晶粒度由原始的250μm降低到复合场作用时的30μm,相应的抗拉强度也由163MPa提高到了268MPa。一方面,功率超声空化作用使合金在其液相线温度以上就可以爆发生核,这些初生核被超声的声流效应和电磁搅拌共同产生的强制对流传递到整个熔体而使合金凝固组织大大细化:另一方面,超声场和电磁场引起的熔体的温度场和浓度场的起伏也有利于少数残存枝晶生长过程中在枝晶臂发生熔断,复合场产生的上述两方面共同作用使得最终铸坯具有细小的凝固组织和优良的力学性能。
     4.将行波磁场与超声场组成复合场应用到Al-1%Si合金键合线材的水平连铸过程中,开发出了一种利用复合场水平连铸制备铝硅键合线材的新技术。复合场可以均衡保温炉内温度场、抑制硅元素偏析、提高连铸坯表面质量,同时还可以改善铸坯内部组织、提高铸坯力学性能,铸坯的抗拉强度和延伸率明显提高,分别由110MPa和13%提高到160MPa和40%。
Aluminium is the second largest metal material in the world and has been widly used in mobile, vehicle, food, electricity, transportation, aerospace, mechanical and other new styles of production owing to its virtues of small density, high specific strength, corrosion resistance and easy recovery. Well, in the production of aluminium alloys, the problems such as gas porosity, fine impurities hinder its improvement a lot. In addition, the poor surface condition, segregation of alloy elements and coarse microstructures also can't meet the demand of modern industry. Owing to the development of electromagnetic field and ultrasonic field on the metallurgy and materials processing, it's a good opportunity to find a new clean and high efficiency method to produce higher quality aluminum alloy.
     The aim of this thesis is to find a new method to produce aluminum casting billets with higher property through removing gas and impurity from the liquid metal and refining the solidification microstructures. Researches of high frequency magnetic field and power ultrasonic field on the movement behavior of gas and impurity heterogeneous particles are carried out. Based on the results, Al-Si graded material is successfully fabricated. In addition, the study of compound field (combination of electromagnetic field and power ultrasonic field) on the solidification process and the effects of compound field on the solidification microstructure, mechanical property are also studied. The mechanism of the solidification under compound field is also discussed theoretically according to the experimental results. At last, a new technique of continuous casting of Al-1%Si bonding wire under compound field is developed which is favorable for the improvement of surface quality, casting microstructure, element segregation and mechanical property. All the researches above lay a good foundation of both experiments and theory to the future use of electromagnetic field and ultrasonic field to the fabrication of high purity and high quality aluminum alloys.
     The results of the study are showed below:
     1. High frequency magnetic field is used to separate alumina particles and the results show that: to the alumina particles of 30-200μm with 0.04T magnetic field 1s, there are no particles gathering in the inner, when the separation time prolongs to 3s, there is nearly no particles more than 30μm in the inner; when the magnetic density increases to 0.06T, 1s is enough for the particle in the inner to migrate out.
     2. Power ultrasonic filed is used to separate heterogeneous particles in liquid, which shows that it is very efficient for purification of gas and impurity particles. After using 600W ultrasonic 120s, the gas porosity in vacuum reduced pressure A356 alloy samples is nearly eliminated. To alcohol water system, the polyethylene particle can be eliminated and the removal rate can reach to more than 90%. Taking primary Si in Al18%Si alloy as the mimics of alumina particles, ultrasonic field can cause the upwards migration of them, based on the results of this, Al-Si graded materials are fabricated.
     3. The study of compound field (combination of stirring magnetic field and power ultrasnic field) on the solidification of Sn-3.5%Pb and A356 are carried out and the results show that compound field can increase the beginning temperature of solidification, suppress element segregation, refine solidification microstructure and modify the morphology of eutectic silicon. The size of primary Al changes from 250μm to 30μm with the application of compound field and the tensile strength changes from 163MPa to 268MPa. On the one hand, ultrasonic field can generate numerous nuclei even when the temperature is above the liquidus, after that the nuclei are dispersed to the whole melt by the forced convention caused by acoustic streaming and electromagnetic stirring; on the other hand, the concentration and temperature fluctuation caused by ultrasonic and electromagnetic field is facilitated to the remelting of dendrities on the root, which can also refine the solidification microstructure.
     4. Compound field (combination of traveling magnetic field and power ultrasonic field) is applied on the continuous casting of Al-1%Si bonding wire and a new technique is obtained. The compound field can even the temperature field in the tundish, suppress Si element segregation, improve surface quality and refine microstructure thus improve the mechanical property of the casting billets. With the application of compound field, the tensile strength and elongation rate changes from 110MPa and 13% to 160MPa and 40%, respectively.
引文
[1]陈宇.集成电路封装用新型A1-1%Si键合线的研制[D].兰州:兰州大学,2004.
    [2]罗启全.铝合金熔炼与铸造[M].广州:广东科技出版社,2002.
    [3]曾华祥.氢在铝中的一些行为和有关的冶金缺陷[J].轻金属,1981,(9):49-53.
    [4]杨长贺,高钦.有色金属净化[M].大连:大连理工大学出版社,1989.
    [5]彭学仕,许桂清,刘丽君.影响铝及铝合金熔体氢含量的因素[J].轻金属,1986,(7):44-47.
    [6]曹兴言,杨长贺.多孔吹头净化铝合金液新工艺的研究与应用[J].轻金属,1983,(11):40-54.
    [7]杨长贺,金元龙,高钦.MINT法铝液除氢效率剖析与研讨[J].轻合金加工技术,1990,(7):18-22.
    [8]杨长贺,孙军,马红军等.旋转喷头法净化铝液影响因素的研究[J].轻金属,1991,(9):52-54.
    [9]杨长贺,孙军,高钦等.DUT-89铝熔体净化新技术[J].轻金属加工技术,1991,19(10):11-13.
    [10]Zheng X F,Hayes P,Lee H G.Particle Removal from Liquid Phase Using Fine Gas Bubbles[J].ISIJ International,1997,37(11):1091-1097.
    [11]Wang L H,Lee H G,Hayes P.Prediction of the Optimum Bubble Size for Inclusion Removal from Molten Steel by Flotation[J].ISLI International,1996,36(1):7-16.
    [12]Zhang L F,Taniguchi S,Matsumoto K.Water Model Study on Inclusion Removal from Liquid Steel by Bubble Flotation under Turbulent Conditions[J].Ironmaking and Steelmaking,2002,29(5):326-336.
    [13]Simensen C.J.Berg G.A survey of inclusions in aluminium[J].Alurninium,1980,56(5):335-338.
    [14]Eckert C E.Inclusions in aluminum foundry alloys[J].Modern casting,1991:28-30.
    [15]Peterson R D.Common impurities in aluminium alloys[C].Proceedings of the 3rd International Conferences on Aiuminium Processing.Paris:1994:75-89.
    [16]疏达.电磁分离铝熔体中非金属夹杂物的理论研究[D].上海:上海交通大学,2001.
    [17]陈芝会,王恩刚,赫冀成.板坯连铸结晶器电磁制动技术及其应用[J].钢铁,2004,20(3):48-52.
    [18]Koshima S.Steel flow in a high speed continuous slab using an electromagnetic brake[J].Iron and Steel Engineer,1984,11(5):41-47.
    [19]李保宽,赫冀成,贾光霖等.薄板坯连铸结晶器内流场电磁制动的模拟研究[J].金属学报,1997,33(11):1207-1214.
    [20]战东平,张慧书,姜周华等.连铸结晶器电磁制动对铸坯中非金属夹杂物影响的研究[J].铸造技术.2007,1:110-113.
    [21]贾光霖,庞维成.电磁冶金原理与工艺[M].沈阳:东北大学出版社,2003.
    [22]徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的影响[J].上海金属,1997,(3):28-33.
    [23]Yan Z M,Li X T,Cao Z Q et al.Grain refinement of horizontal continuous casting of the CuNi10FelMn alloy hollow billets by rotating magnetic field(RMF)[J].Materials Letters,2008,62(28):4389-4392.
    [24]张作贵,刘相法,高振等.电磁搅拌铝钛硼中间合金的洁净化[J].铸造,2000,49(2):70-73.
    [25]Vives C.Electromagnetic refining of aluminum alloys by the CREM process:Part Ⅰ.Working principle and metallurgical results[J].Metallurgical and Materials Transactions B,1989,20(5):623-629.
    [26]Vives C.Electromagnetic refining of aluminum alloys by the CREM process:Part Ⅱ.Specific practical problems and their solutions[J].Metallurgical and Materials Transactions B,1989,20(5):631-643.
    [27]Takeuchi E,Toh T,Harada H.Advances of applied MHD technology for continuous casting process [R].Nippon steel technical report.1994.
    [28]Etinne A.Proceedings of the First European Conference on Continuous Casting[C].Florence:1991:1577-1587.
    [29]于光伟.高频磁场方坯软接触电磁连铸工艺研究[D].沈阳:东北大学,2001.
    [30]Li T J,Nagaa S,Sassa K et al.Study of meniscus behavior and surface properties during casting in a high-frequency magnetic field[J].Metall.Trans.B,1995,26(4):353.
    [31]高学鹏.外场作用下水平连铸制备A1-1%Si合金线材的研究[D].大连:大连理工大学,2006.
    [32]郄喜望.超声场及电磁场作用下水平连铸制备金属线材的研究[D].大连:大连理工大学,2007.
    [33]贾非.电磁连续铸造过程工艺优化及组织性能研究[D].大连:大连理工大学,2002.
    [34]刘超,李丘林,张志清等.软接触电磁连铸铝硅共晶合金凝固组织研究[J].稀有金属材料与工程,2007,(S3):448-450.
    [35]Leenov D,Kolin A.Theory of Electromagnetophoresis.I.Magnetohydrodynamic Forces Experienced by Spherical and Symmetrically Oriented Cylindrical Particles[J].Journal of Chemistry Physics,1954,22(4):683-688.
    [36]Kolin A.An Electromagnetokinetics Phenomenom Involving Migration of Neutral Particals[J].Sciences,1953,117(6):134-137.
    [37]Marty P,Alemany A.,Theoretical and Experimentatl Aspects of Electro-magnetic Seperation[C].Proceedings Symposium of IUTAM,London:The Metal Society Pre.1984:245-259.
    [38]钟云波,任忠鸣,邓康等.金属净化技术的一种革命性方法—电磁净化法[J].包头钢铁学院学报,1999.18:363-368.
    [39]Park J P,Morihira A,Sassa K et al.Elimination of Non-metallic Inclusions Using Electromagnetic Force[J].Tetsu-to-Hagane,1994,80(5):389-394.
    [40]LI T X,Xu Z M,Sun B D et al.Electromagnetic Separation of Nonmetallic Inclusions from Aluminum Alloy Melt[C].The Fifth IUMRS International Conference on Advanced Materials,Beijing:1999.
    [41]Taniguchi S,Brimacombe J K.Application of Pinch Force to the Separation of Inclusion Particles from Liquid Steel[J].ISIJ International,1994,34(9):722-731.
    [42]Yamao F,Sassa K,lwai K et al.Separation of Inclusions in Liquid Metal Using Fixed Alternating Magnetic Field[J].Tetsu-to-Hagane,1997,83(1):30-35.
    [43]张磊,姚广春,焦万丽.交变磁场分离铝熔体中Fe、Si的金属间化合物[J].轻合金及其加工,2006,(1):53-56.
    [44]钟云波,任忠鸣,邓康等.行波磁场连续净化铝合金液试验[J].中国有色金属学报,2001,11(2):167-171.
    [45]Tanaka Y,Sassa K,Iwai K et a l.Separation of Nonmetallic Inclusions from Molten Metal Using Traveling Magnetic Field[J].Tetsu-to-Hagane,1995,81(12):1120-1125.
    [46]翟秀静,符岩,李鸿斌等.旋转磁场用于原铝净化的研究[J].东北大学学报,2002,23(11):1083-1085.
    [47]李克,孙宝德,李天晓等.利用高频磁场分离A1熔体中的非金属夹杂[J].金属学报,2001,37(4):405-410.
    [48]Takahashi K,Taniguehi S.Electromagnetic Separation of Nonmetallic Inclusion from Liquid Metal by High Frequency Magnetic Field[J].ISIJ International,2003,43(6):820-827.
    [49]Waki N,Sassa K,Asai S.Magnetic Separation of Inclusions in Molten Metal Using High Magnetic Field[J].Tetsu-to-Hagane,2000,86(6):363-369.
    [50]高守雷.功率超声对金属凝固组织的影响[D].上海:上海大学,2003.
    [51]应崇福.超声学[M].北京:科学出版社,1990.
    [52]何祚镛,赵玉芳.声学理论基础[M].北京:国防工业出版社,1982.
    [53]冯伟骏.功率超声对Pb-Sn合金凝固行为的影响[D].大连:大连理工大学,2004.
    [54]Eskin G I.Broad prospects for commercial application of the ultrasonic(cavitation) melt treatment of light alloys[J].Ultrasonics Sonochemistry,2001,8(3):319-325.
    [55]Campell J.Effect of vibration during solidification[J].International Metals Reviews,1981,26(2):71-108.
    [56]Frenkel V,Gurka R,Liberzon Aet al.Preliminary investigations of ultrasound induced acoustic streaming using particle image velocimetry[J].Ultrasonics,2001,39(3):153-156.
    [57]Boyle R W.Cavitation in the propagation of sound[J].Transactions of royal society of canada,1922,3(16):157.
    [58]Taylor G B,Sproule,D O.Some observations on cavitation[J].Transactions of royal society of canada,1929,3(23):91.
    [59]Sokolov S.[J].Ya.:Zh.Tekh.Fiz,1936,3:176.
    [60]Danilov V I,Chedzhenov G.Problems in Metal Science and Physics of Metals[J].Collected Papers of Central Research Institute of Pure Materials World,1955,(4):152.
    [61]Teumin I I.Tekhn.[J].Inform.Bull.OKB-UVU,1962,1(19):9.
    [62]Abramov O V.The growth and imperfections of metallic crystals[M].Metallurgiya,Moscow:1966
    [63]Abramov O V.Crystallization of metals in ultrasonic field.[J]Metallurgiya,1972,256.
    [64]Abramov O V.Crystallization of metals in ultrasonic field[M].Moscow:Metallurgiya,1972.
    [65]Abramov O V,Teumina.I.I.The physical principles of ultrasonic manufacturing[M].Moscow:Nauka.1970.
    [66]Polotskii I.Primenenie ultrazuvkovykh kolebanii dlya issledovaniya svoistv.Kontrolya kachestva I obrabotki metallov I splavov,Kiev:Izd.AN USSR,1960.
    [67]Eskin G I,Flynn H G.Rectified Diffusion during Nonlinear Pulsations of Cavitation Bubbles[J]Journal of the Acoustic Society of America,1965,37(3):493.
    [68]Eskin G I.Ultrasonic treatment of light alloy melts[M].CRC Press,1998.
    [69]Eskin G I.Ultrasonic treatment of molten Al[M].Moscow:Metallurgiya,1988.
    [70]Eskin G I et al.Effect of ultrasonic processing of molten metal on structure formation and improvement of properties of high-strength Al-Zn-Mg-Cu-Zr alloys[J].Advanced performance materials,1995,2:43.
    [71]Abramov O V.High-intensity ultrasonic:theory and industrial applications[M].Amsterdam:Gordon and Breach Science Publishers,1998.
    [72]Abramov O V.Ultrasound in liquid and solid metals[M].Moscow:Russian Academy of Sciences,1993
    [73]Lane D H,Cunningham J W,Tiller W A I.Application of ultrasonic energy to ingot solidification[C].Transactions of the American Institute of Mining.
    [74]Rai G,Lavemia E,Grant N J.Powder Size Distribution in Ultrasonic Gas Atomization[J].Journal of Metals,1985,8:22.
    [75]Xu H,Jian X,Meek T T et al.Degassing of molten aluminum A356 alloy using ultrasonic vibration[J].Materials Letters,2004,58(29):3669-3673.
    [76]Jian X,Xu H,Meek T T et al.Effect of power ultrasound on solidification of aluminum A356 alloy[J].Materials Letters,2005,59(2-3):190-193.
    [77]Xu H,Xu L D,Zhang S J et al.Effect of the alloy composition on the grain refinement of aluminum alloys[J].Scripta Materialia,2006,54(12):2191-2196.
    [78]Han Q,Viswanathan S.Hydrogen evolution during directional solidification and its effect on porosity formation in aluminum alloys[J].Metallurgical and Materials Transactions A,2002,33(7):2067-2072.
    [79]Jian X,Meek T T,Han Q.Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration[J].Scripta Materialia,2006,54(5):893-896.
    [80]Furukawa M,Yasuhiro M,Minoru N.Effects of aging on the acoustic emission and ductility of aluminum-lithium alloys[J].Nippon Kinzoku Gakkaishi,198.7,51(11):994-1002.
    [81]Nakanishi H,Tsunekawa Y,Mohri N.Ultrasound-assisted pressureless infiltration of molten aluminium into alumina capillaries[J].Materials Science Letters,1993,12(16):1313-1315.
    [82]Bergmann L.Uitraschall und seine Anwendung in Wissenschaft und Technik[M].Stuttgart.S.Hirzel,1954.
    [83]Matauschek J.Einfuhrung in die Ultraschalltechnik[M].Berlin:Verlag Technik.1959.
    [84]Herrmann E,Hoffmann,D.Handbook on Continuous Casting[M].Dusseldorf:Aluminum Verlag.1980.
    [85]Pohlman R,Heisler,K.,Cichos,M.Powerding aluminium and aluminum alloys by ultasound[J].Ultrasonics.1974,12(1):11-15.
    [86]Seemann H J,Buxmann,K.[J]Metallwiss Techn,1972,1(1).
    [87]Seemann H J,Dorr,W.[J].Met.Techn,1976,1:1029.
    [88]Crawford A E.Ultrasonic Engineering with references to High Power Applications[M].London:Butterworths,1955.
    [89]Mason T J,Ahmad,J.,Bacon,Met al.Improving Light Alloy Castings with Power Ultrasound[J].Metallurgia.1994,61:224.
    [90]Mason T J,Bacon M.Improved Castings and Enhanced Energy Efficiency with Power Ultrasound[J].Future Practice R&D Profile,1995,(5).
    [91]Mason T J,Lorimer J P,Paniwnyk L et al.Ultrasound starts quiet revolution in materials science[J].Materials World,1999,7:69-71.
    [92]Angelov G.Vissho Mash[J].Elektrotekn.Inst,1970,24(1):143.
    [93]何德坪,陈锋,舒光冀等.振动凝固细化晶粒新进展[J].兵器材料科学与工程,1989,6:4-11.
    [94]马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究[J].材料科学与工程,1995,13(4):2-7.
    [95]赵忠兴,穆光华,黄金日等.超声波对铸造合金组织和性能的影响[J].铸造,1996,3(21-25).
    [96]赵忠兴,毕鉴智,郑一等.铝合金超声铸造技术[J].特种铸造及有色合金,1999,1:13-14.
    [97]李英龙,李宝锦,刘永涛等.功率超声对Al-Si合金组织和性能的影响[J].中国有色金属学报,1999,9(4):719-722.
    [98]陈康华,黄兰萍,胡化文等.熔体超声波处理对超强铝合金组织和性能的作用[J].中南大学学报(自然科学版),2005,36(3):354-357.
    [99]王俊,陈锋,张力宁等.高能超声制备A12O3/ZA22复合材料与性能研究[J].铸造,1997,5:1-3.
    [100]李克,周新,饶磊等.高能超声处理对Al-Ti-B中间合金组织和细化效果的影响[J].铸造技术,2006,27(7):732-736.
    [101]李军文,王晓艳.机械搅拌对Al-Si合金凝固组织的影响及其模拟试验[J].铸造,2006,(7):742-745.
    [102]Li J,Momono T,Tayu Y et al.Application of ultrasonic treating to degassing of metal ingots[J].Materials Letters,2008,62(25):4152-4154.
    [103]宁韶斌,郄喜望,李喜孟等.高能超声处理A1-1Si合金凝固组织分析[J].特种铸造及有色合金,2007,27(4):320-321.
    [104]李新涛 高学鹏,李廷举等.连铸过程中超声细晶技术研究[J].稀有金属材料与工程,2007,36(3):377-380.
    [105]Zhang H B,Zhai Q J,Qi F P.Microstructure refinement of Sn-Sb Peritectic alloy by power ultrasonic[J].China Foundry,2004,1:58-61.
    [106]Zhang H B,Zhai Q J,Qi F P.et al.Effect of side transmission of power ultrasonic on structure of AZ81 magnesium alloy[J].Trans.Nonferrous Met.Soc.China,2004,14(2):303-305.
    [107]Li X T,Li T J,Li X M et al.Study of ultrasonic melt treatment on the quality of horizontal continuously cast A1-1%Si alloy[J].Ultrasonics Sonochemistry,2006,13(2):121-125.
    [108]高学鹏,李新涛,李廷举等.超声场对A1-1%Si合金水平连铸坯显微组织及力学性能的影响[J].金属学报,2007,43(1):17-22.
    [109]郄喜望,李捷,李廷举等.超声场作用下Al-Si合金的除气效果及晶粒细化[J].金属学报,2008,44(4):414-418.
    [110]李新涛.管线坯水平连铸工艺及外场改性研究[D].大连:大连理工大学,2006.
    [111]Abramov O V.High-intensity Ultrasonics[M].Amesterdam:Gordon and breach Science Publishers,1998.
    [112]Teumin I.Industrial application of ultrasound[M].Moscow:Mshigiz,1959.
    [113]Eskin G I.Advances in sonochemistry[M],JAL Press,1996:101-160.
    [114]Eskin G I.Cavitation mechanism of ultrasonic melt degassing[J].Ultrasonics Sonochemistry,1995,2(2):S137-S141.
    [115]Eskin O I,Makarov G S.Effect of cavitation melt treatment on the structure refinement and property improvement in cast and deformed hypereutectic Al-Si alloys[J].Materials Science Forum,1997,242:65-70.
    [116]Xu H,Meek T T,Han Q.Effects of ultrasonic field and vacuum on degassing of molten aluminum alloy[J].Materials Letters,2007,61(4-5):1246-1250.
    [117]Xu H,Han Q,Meek T T.Effects of ultrasonic vibration on degassing of aluminum alloys[J].Materials Science and Engineering A,2008,473(1-2):96-104.
    [118]Naji Meidani A R,Hasan M.A study of hydrogen bubble growth during ultrasonic degassing of Al-Cu alloy melts[J].Journal of Materials Processing Technology,2004,147(3):311-320.
    [119]Moraru L,Macuta S.Acoustical Degassing of Molten Aluminium[C].SISOM 2006,Bucharest:2006
    [120]郄喜望,李捷,马晓东等.超声场作用下Al-Si合金的除气效果及晶粒细化[J].金属学报,2008,(4):414-418.
    [121]Hill.M.Microfluidic Technologies for Miniaturized Analysis Systems[M].Springer,2007.
    [122]Kobayashi M,Kamata C,ITO K.Cold Model Experiments of Gas Removal from Molten Metal by an Irradiation of Ultrasonic Waves[J].ISIJ Int,1997,37(1):9-15.
    [123]Rozenberg I D.High-intensity ultrasonic fields[M].Moscow:Nauka,1968.
    [124]Makarov S,Apelian D,Ludwing R.[J].AFS Transactions,2000:727.
    [125]Okumura K,Hatanaka S,Kuwabara M et al.Enhancement of inclusion removal with gas injection and incidence of ultrasound[J].CAMP-ISIJ,1999,12(4):668-671.
    [126]Okumura K,Kuwabara M,Sano M.Effect of density difference and bath surface on separation of suspended particles in liquid with incidence of horizontal plane-wave of ultrasound[J].CAMP-ISIJ,2000,13(1):78.
    [127]Hatanaka S,Kuwabara M,Asai S.Design of ultrasonic field in liquid metal processing[J].Tetsu-to-Hagane,2000,86(9):625-632.
    [128]Yasuda K Umemura S,Takeda K.Concentration and Fractionation of Small Particles in Liquid by Ultrasound[J].Jap J Appl Phy,1995,34(5):2715.
    [129]白晓清,赫冀成.超声波作用下金属液中微小夹杂物的凝聚过程[J].钢铁研究学报,2001,(6):1-4.
    [130]白晓清,赫冀成,何北星.超声波作用下声学参数对悬浮液中微粒凝聚的影响[J].应用声学,2001,(6):28-32.
    [131]刘金刚,刘浏,颜慧成等.超声搅拌和气体搅拌去除夹杂物[J].钢铁研究学报.2006,18(10):11-15.
    [132]钟云波.电磁力场作用下液态金属中非金属颗粒迁移规律及其应用研究[D].上海:上海大学.2000.
    [133]张守魁,王丹虹,高洪吾.铝液与SiO2反应原位形成Al/Al2O3(P)复合材料的研究[J].铸造,1996,7:4-7.
    [134]张守魁,王丹虹,赵红.石英玻璃与铝液的反应[J].机械工程材料,2001,25(1):28-31.
    [135]Benes E,Groschl M,Nowotny H et al.Ultrasonic separation of suspended particles[C].IEEE ultrasonics symposium,2001:649-659
    [136]Apfel E R.Acoustically induced square law forces some speculations about gravitation[J].American Journal of Physics,1988.
    [137]Eskin G I.Principles of Ultrasonic Treatment Application for Light Alloys Melts[J].Advanced Performance Materials,1997,4(2):223-232.
    [138]Uhimann D R,Chaimers B,Jackson K A.Interaction Between Particles and a Solid-Liquid Interface [J].Journal of Applied Physics,1964,35(10):2986-2993.
    [139]Korber C,Rau G,Cosman M D et al.Interaction of particles and a moving ice-liquid interface[J].Journal of Crystal Growth,1985,72(3):649-662.
    [140]Cisse J,Bolling G F.A study of the trapping and rejection of insoluble particles during the freezing of water[J].Journal of Crystal Growth,1971,10(1):67-76.
    [141]Hegde S,Prabhu K N.Modification of eutectic silicon in Al-Si alloys[J].Journal of Materials Science,2008,43(9):3009-3027.
    [142]Xu C L,Jiang Q C,Yang Y F et al.Effect of Nd on primary silicon and eutectic silicon in hypereutectic Al-Si alloy[J].Journal of Alloys and Compounds,2006,422(1-2):L1-L4.
    [143]Bendijk A,Delhez R,Katgerman L et al.Characterization of Al-Si-alloys rapidly quenched from the melt[J].Journal of Materials Science,1980,15(11):2803-2810.
    [144]Chen Z W,Jie W Q,Zhang R J.Superheat treatment of Al-7Si-0.55Mg alloy melt[J].Materials Letters,2005,59(17):2183-2185.
    [145]Zhang X L,Li T J,Teng H T et al.Semisolid processing AZ91 magnesium alloy by electromagnetic stirring after near-liquidus isothermal heat treatment[J].Materials Science and Engineering A,2008,475(1-2):194-201.
    [146]McDonald S D,Nogita K,Dahle A K.Eutectic nucleation in Al-Si alloys[J].Acta Materialia,2004,52(14):4273-4280.
    [147]王晓东.电磁力对金属熔体驱动及运动形态控制的研究[D].大连:大连理工大学,2002.
    [148]Tzimas E,Zavaliangos A.A comparative characterization of near-equiaxed microstructures as produced by spray casting,magnetohydrodynamic casting and the stress induced,melt activated process[J].Materials Science and Engineering A,2000,289(1-2):217-227.
    [149]Liu C,Pan Y,Aoyama S et al,Proceedings of the 5th International Conference on Semi-Solid Processing of Alloys and Composites[C],Colorado School of Mines:Golden,CO.1998,439.
    [150]Jian X.The Effect Of Ultrasonic Vibration On The Solidification Of Light Alloys[D].Tennessee:The University of Tennessee,2005.
    [151]Nafisi S,Ghomashchi R,Vali H.Eutectic nucleation in hypoeutectic Al-Si alloys[J].Materials Characterization,2008,59(10):1466-1473.
    [152]冯若.超声手册[M].南京:南京大学出版社,1999.
    [153]Rayleigh.On the Pressure Developed in a Liquid During the Collapse of a Spherieal Cavity[J].Phil.Mag.,1917,34(6).
    [154]刘清梅.超声场对金属凝固特性及组织影响的研究[D].上海:上海大学,2007.
    [155]齐丕骧.挤压铸造[M].北京:国防工业出版社,1984.
    [156]Vives C.Effects of forced electromagnetic vibrations during the solidification of aluminum alloys:Part Ⅰ.solidification in the presence of crossed alternating electric fields and stationary magnetic fields[J].Metallurgical and Materials Transactions B,1996,27(3):445-455.
    [157]Flemings C M.Solidification Processing[M].McGraw-Hill,1974.
    [158]Hunt.J D.Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic[J].Materials Science and Engineering A,1984,(65):75.
    [159]Tsunekawa Y,Suzuki H,Genma Y.Application of ultrasonic vibration to in situ MMC process by electromagnetic melt stirring[J].Materials & Design,2001,22(6):467-472.
    [160]汤蕴缪.电机内的电磁场[M].北京:科学出版社,1998.
    [161]Dubke M,Sprizer K H,Schwerdtfeger K.Spatial distribution of magnetic field of linear inductors used for electromagnetic stirring in continuous casting.Ironmaking and Steelmaking[J],1991,18(5):347-353.
    [162]张琦.复合电磁场对连铸空心管坯质量的影响[D].大连:大连理工大学,2007.
    [163]金文中.K417高温合金真空熔铸凝固过程的电磁控制[D].大连:大连理工大学,2008.
    [164]张宏丽.线性电磁搅拌在钢液凝固过程中的作用规律[D].沈阳:东北大学,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700