用户名: 密码: 验证码:
云南省马厂箐斑岩型铜钼金矿床岩浆作用及矿床成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马厂箐铜钼金矿床是“三江”成矿带上与喜马拉雅期富碱斑岩有关的典型矿床之一,产于大陆碰撞造环境。通过研究,查明了矿区岩浆演化序列、蚀变矿化分带规律、流体演化以及控矿因素,揭示了其成矿机理,提出了成矿模型,探讨了矿床的成矿潜力。
     建立了马厂箐矿区岩浆演化序列,初步将其分为三大岩浆组合,即斑状花岗岩+煌斑岩组合、正长斑岩+二长斑岩+花岗斑岩组合和碱性花岗斑岩+煌斑岩组合。初步查明,斑状花岗岩+煌斑岩组合形成于50Ma左右,构成含矿围岩;正长斑岩+二长斑岩+花岗斑岩组合形成于36Ma左右,成为主要含矿岩系;碱性花岗斑岩+煌斑岩组合侵入最晚,侵入时代32Ma左右。研究发现36Ma的岩浆组合中发育闪长质暗色微粒包体,并出现浸染状黄铁矿化和磁铁矿化,反映这套岩浆组合与铜钼金成矿有关,经历强烈的壳幔岩浆混合作用。
     通过构造控矿特征研究,确定岩体侵入过程中垂直应力作用形成的岩浆侵入接触构造样式是主要控岩控矿构造,岩体内构造裂隙控制内斑岩型Mo、Cu矿化,接触带构造控制接触交代型Cu、Mo、Au、Fe矿化,近接触带层间滑脱带控制破碎蚀变岩型和石英脉复合型Au、Ag、PbZn矿化,远接触带围岩地层中的引张裂隙带控制浅成低温热液型Au、Ag、PbZn、Sb矿化,反映出岩浆侵入接触构造体系控矿的特征。成矿元素存在以岩体为核心的水平分带;
     基于矿床地质特征、蚀变矿化类型、成矿元素组合、流体演化、同位素地球化学以及控矿构造等方面研究,提出马厂箐铜钼金矿床和金厂箐金矿属于同一个岩浆-构造-成矿系统产物,成矿作用在时空上紧密共生,蚀变矿化类型空间展布特征清晰地展示出含矿流体从岩浆体结晶分异出来并在向外运移过程中堆积相应金属元素图景,表明马厂箐矿集区成岩成矿作用受控于同一动力学系统。表现出随着热液成矿作用进行和矿化由斑岩体→接触带→近接触带→远接触带推进,从宝兴厂矿段→乱硐山矿段→人头箐-金厂箐矿段成矿温度、盐度和压力逐渐降低,成矿深度逐渐变浅的趋势;
     富碱岩体起源于壳幔过渡带或加厚下地壳,是一种大陆内部碰撞造山环境下形成的钾质埃达克岩。与成矿有关的正长斑岩+二长斑岩+花岗斑岩组合以脉状为主,其所能够提供成矿的物质、流体和动力条件有限,暗色微粒包体指示其快速的岩浆结晶过程,不利于形成大量有效的成矿流体。A脉、B脉和D脉在空间上相互重叠、分带性不明显以及矿化不强的特征,反映并不存在大规模流体出溶,北接触带存在铜钼金与铅锌矿化空间上重叠的现象也说明并没有大规模的成矿流体存在,这些因素可能制约矿床规模。
The Machangqing porphyry-type Cu-Mo-(Au) deposit (or deposit cluster) forms in a continental orogeny and it is one of the typical deposits related to alkaline-rich porphyry of Himalaya epoch in the Sanjiang metallogenic belt. This paper reveals that magmatic evolutionary series, the regulation of alteration-mineralizing zonation, fluid evolution and ore-controlling factors, bringing forward some thoughts of ore -exploring further, and achieving anticipated purpose.
     Magmatic series mainly include following assemblages: porphyritic granite+ lamprophyre, (quartz) orthophyre (syenite)+(quartz)monzonite (ivernite)+granite porphyry and alkaline granite porphyry + lamprophyre. Among them, the assemblage of porphyritic granite+ lamprophyre intrusive age is 50 Ma±, which is the wall-rock of orebody; whereas the assemblage of (quartz) orthophyre (syenite)+ (quartz) monzonite (ivernite)+granite porphyry, its intrusive age is 36Ma±and some dark particulate enclaves of dioritoid with disseminated pyritization and magnetitization have been found in this assemblage, showing that the assemblage is the product of mixture of two kinds magma: crustal magma and mantle magma. Mantle magma provides the magmatic system with mineralizing elements such as Cu,Au,S, fluid and power. The combination of alkaline granite-porphyry+lamprophyre intrusive is at the latest, aged 32Ma.
     Studying the characteristics of ore-controlling structures, it is confirmed that intrusive-contact structures ascribing to vertical stress due to the force of magma intrusive during the magma intrusive is main rock- and ore-control structures.
     Porphyry-type Cu-Mo mineralization is controlled by the fissures intra-porphyry rockbody. The contact-metasomatism-type mineralization of Cu-Mo-Au-Fe is controlled by the contact structures. Interlayer decollement near the contact belt controls the compound mineralization of quartz-vein-type, fractured-alteration-type of Au,Ag, and Pb-Zn. Epithermal Au-Pb-Zn-Ag mineralization is controlled by tensile structures of the surrounding rock far from the contact belt, showing the characteristics of intrusion-contact structures. Mineralizing elements is zoned horizontally at the centre of rockbody.
     In terms of geological characteristics of the deposit, alteration-mineralization types and mineralizing element combination, fluid evolution, isotope geochemical and ore-controlling features, Machangqing Cu-Mo-(Au) deposit and Jinchangqing Au deposit are thought to be the products of the same magmatic-structural-mineralizing system, which is intimated with the mineralization spatially and temporally. By the spatial distribution of alteration-mineralization types, it is clear to image that the mineralizing fluid exsoluted from the crystalling magma and accumulated mineralizing elements in the course of move outward.
     It demonstrates that diagenetic-mineralization is controlled by the identical dynamic system in Machangqing deposit cluster. With the outwardness of mineralizing fluid exsolution from the crystalling magma and the physicochemical change of mineralizing conditions, it forms different mineralizing types in different boundary conditions. With the processes of ore-forming, mineralization took place from the intra-intrusive→near the contact→far away the contact, mineralizing temperatures, pressures and salinity are from high to low, the tendency of mineralizing depths is from deep to shallow.
     Alkaline-rich intrusion derives from the transition belt of crust-mantle or thickened lower crustal layer, and it is a kind of potassic adakite belonging to C-type adakite formed in intra-continental collisional belts. The rock combination of (quartz) orthophyre (syenite)+ (quartz) monzonite (ivernite)+granite porphyry is in the form of veins, which is limit to provide mineralizing materials, fluid and dynamic conditions. The superposition of A-,B- and D-veins spatially, unclear zonation, weak mineralization and overlapped Cu-Mo-Au and Pb-Zn mineralizations in north contact are combined to show no large-scale fluid exsolution. These factors may decide the size of deposit.
引文
Ballard J R,et al.2001.Two age of porphyry intrusion resolved for the super-giant Chuquieamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP Geology,29(5):383
    Baptiste P J,Fouquet Y. 1996.Abundance and isotopic composition of helium in hydrothermal sulfides from the East Pacific Rise at 13N. Geochim Acta, 60:87~93
    Barra F,Ruiz J,Mathur R,Titley S. 2003. A Re-Os study of sulfide and minerals from the Bagdad porphyry Cu-Mo deposit,northern Arizona,USA. Mineralium Deposita,38:585~596.
    Beane R E and Titley S R.1981.Porphyry copper deposits:PartⅡ.Hydrothermal alteration and mineralization.Econmic Geology 75th Anniversary Volume,235~263.
    Bellon H,Yumul Jr G P. 2001. Miocene to Quaternary adakites and related rocks in western Philippine arc sequences. Earth and Planetary Sciences. 333: 343~350.
    Blevln P L,et al. 1992.The role of magma sourees,oxldation states and fraetzonation in determining the granlte metallogeny of eastern Australla.Transaetions of the Royal Soeiety of Edinburgh,Earth scicnces,83:305
    Bornhorst T J. 1986. Partitioning of gold in young calc-alkaline volcanic rocks from Guatemala[J]. J Geol,94:412~418.
    Burnard P G,Hu Ruizhong,Turner G,et al. 1999. Mantle,crustal and atmospheric noble gases in Ailaoshan gold deposits,Yunnan province,china.Geochimical et Cosmochimica Acta,63:1595~1604.
    Burnham C W. 1979. Magma and hydrothermal fluidsA . In:Barnes HL ed. Geochemistry of hydrothermal ore deposits C. 2nd ed.New York :Wiley. 71~136.
    Candela P A. 1992.Controls on ore metal ratios in grante-related oresystems:An experirnental and computatlonal approaeh.Transaetions of the Royal Soeiety of Edinburgh,Earth Seienees,83:317.
    Candela P A and Holland H D.1984.The partitioning of copper and molybdenum between silicate melts and squeous fluids.Geochimica et Cosmochimica Acta,48:373~380.
    Cherniak D J,et al. 1997. Rare-earth diffusion in zircon.Chemical Geology,134:289.
    Clack A H.1993.A reoutside porphyry copper deposits either anatomically or environmentally distinctive?.Soci Econ Geol,Spe Pub 2:213~283.
    Cline J and Bodnar R J.1991.Can economic porphyry copper mineralization be generated by a typical cale-alkaline melt?.Journal of Geophysical Research,96:8113~8126.
    Cline J S.1995.Genesis of porphyry copper deposits:the behavior of water,chloride,and copper in crystallizing melts,in Pierce,F W and Bolm,J G,eds.,Porphyry copper deposits of the American Cordillera.Arizona Geological Society Digest,20:69~82.
    Cooke D R,Hollings P,and Walshe J L.2005.Giant Porphyry Deposits: Characteristics,distribution, and tectonic controls.Econ.Geol.,100:801~818.
    Davidson J P.1996.Deciphering mantle and crustal signatures in subduction zone magmatism. Geophysical Monograph,96:252~262.
    Defant M J and Drummond M S. 1990. Derivation of some modern arc magmas by meltingof young subducted lithosphere[J]. Nature,347:662~665.
    Defant M J,Xu J F,Kepezhinskas P,et al. 2002. Adakites:some variations on a theme[J].Acta Petrologica Sinica,18:129~142.
    Depaolo D J.1988.Neodymium Isotopes in Geology.Springer-verlag,187.
    Dilles J H.1987.Petrology of the yerington Batholith,Nevada:Evidence for evolution of porphyry copper ore fluids. Economic Geology,82:1750~1780.
    Faure G.1977.Principles of Isotope Geology.John Wiley and Sons,464.
    Fuex A N,Baker D R.1973.Stable carbon isotopes in selected granitic,mafic,and ultramafic igneous rocks.Geochim.et Cosmochim.Acta,37:2509~2521.
    Gao YF , Hou ZQ , Wei RH. 2003. Post-collisional adakitic porphyriesin Tibet:Geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction[J]. Acta Geologica Sinica,77:123~135.
    Gao YF,Hou ZQ,Kamber B S,Wei RH,Meng XJ and Zhao RS. 2007.Adakite-like porphyries from the southern Tibetan continental collision zones:evidence for slab melt metasomatism.Contribution to Mineral Petrology,153:105~120.
    Gustafson L B and Hunt J P.1975.The porphyry copper deposits at El Salvador,Chile[J]. Econ.Geol,70:857~912.
    Hacker B R. 1993. Evolution of the northern Sierra Nevada metamorphic belt:Petrological. structural and Ar/Ar constraints:Geology Society of America Bulletin. Vol.105,pp.637~656.
    Hamlyn P K,Keays R R,Cameron W E,et al. 1985. Preciousmetals in magnesian low-Ti lavas: Implications for metallogenesis and sulfur saturation in primarymagmas[J]. Geochim et Cosmochim Acta,49:1797~1811.
    Harris A C,Kamenetsky V S,White N C,and Steele D A.2004.Volatile Phase separation in silicic magmas at Bajo de la Alumbrera porphyry Cu-Au deposits , NW Argentina.Resource Geology,54:341~356.
    Harris A C and Golding S D.2002.New evidence of magmatic-fluid-related phyllic alteration: Implications for the genesis of porphy ry Cu deposits.Geology,30:335~338.
    Harris A C,Golding S D,and White N C.2005.Bajo de la Alumbrera copper-gold deposit:Stable isotope evidence for a porphyry-related hydrothermal system dominated by magmatic aqueous fluids.Econ.Geol.,100:863~886.
    Hattori K H and Keith J D. 2001. Contribution of mafic melt to porphyry copper mineralization: evidence from Mount Pinatubo , Philippines,andBingham Canyon,Utah,USAJ. Mineralium Deposita,36: 799~806.
    Hedenquist J W,and Lowenst J B.1994.The role of magmas in formation of hydrothermal ore deposits. Nature,370:519~527.
    Heinrich C A.2005.The physical and chemical evolution of low-Salinity magmatic fluids at the porphyry to epithermal transition:a thermodynamic study.Mineralium Deposita,39:864~889.
    Heinrich C A,Gunther D, Audetat A,Ulrich T and Frischknecht R.1999.Metal fractionation between magmatic brine and vapor,determined by microanalysis of fluid inclusions. Geology,27:755~758.
    Holliday J R,Wilson A J, Blevin P L,et al. 2002.Porphyry gold-copper mineralization in the Cadia district,eastern Lachlan Fold Belt,New South Wales,and its relationship to shoshonitic magmatism[J].Mineralium Deposita,37: 100~116.
    Hollister V F,Potter R R,and Barker A L.1974.Porphyry-tyoe deposits of the Appalachian orogen.Econ.Geol.,69:618-630.
    Hou ZQ,Qu XM,Wang SX,et al. 2003. Re-Os age for molybdenites from the Gangdese porphyry copper belt in the Xizang (Tibetan) plateau: implication tomineralization duration and geodynamic settings. Science in China,33: 509~518.
    Hou ZQ,MO XX,QU XM,et al. 2004.Origin of adakitic rocks generated during the mid2Miocene east-west extension in south Tibet[J]. Earth Planet Sci Lett,220: 139~150.
    Hou ZQ,Qu XM,Rui ZY et al. 2004.The Gangdese Miocene porphyry copper belt generated during post-collisional extension in the Himalayan-Tibetan Orogen[J]. Economic Geology.
    Hou ZQ,Ma HW,Zaw K,et al. 2003.The Yulong porphyry copper belt:product of large-scale strike-slip faulting in eastern Tibet[J].Economic Geology, 98:125~145.
    Hou ZQ,White N C,Qu XM,Rui ZY,Yang ZM,Mo XX,Pan XF.2008.Post-collisional porphyry Cu deposits:A New class unrelated to subduction?
    Hunt J P. 1991. Porphyry copper depositsJ. Econ. Geol.,8:192~206.
    Imai A,Listanco E L and Fujii T. 1993. Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mount Pinatubo,PhilippinesJ. Geology,21:699~702.
    Jugo P J , Luth R W and Richards J P. 2003.Generation of sulfur-rich,sulfur-undersaturated basaltic melts in oxidized arc sources.2003 AGU Fall Meeting.
    Kay R W. 1978. Aleutian magnesium andesites:melts from subducted Pacific oceanic crust[J]. J.Volcanol. Geotherm.Res.,4:117~132.
    Kay S M,Mpodozis C. 2001. Central Andean ore deposits linked to evolved shallow seduction systems and thickening crust [J]. GSA Today,11: 4~9.
    Kendrick M A,Burgess R,Pattrick R A D,et al. 2001.Halogen and Ar-Ar age determinations of inclusions within quartz veins from porphyry copper deposits using complementary noble gas extraction techniques,Chemical Geology,Vol.177,pp:351~370.
    Kerrich R,Goldfarb R,Groves D,et al. 2000. The characteristics,origins,and geodynamic settings of supergiant gold metallogenic provinces[J]. Science in China(Serials D),43:1~68.
    Kilinc I A and Burnham C W.1972.Partioning of chloride between a silicate melt and coexisting aqueous phase from 2 to 8 kilobars.Econ.Geol.,67:231~235.
    Lowell J D,Guibert J M.1970.Lateral and vertical alteration-mineralization zoning in porphyry ore deposits[J].Econ Geal,65:373~408.
    Luck J M,Allegre C J.1982.The studies of molybdenites through 187Re-187Os the chronometer. Earth Planet Sci Lett,61:291~296.
    Marsh T M,Einaudi M T,Mewilliams M. 1997. 40Ar/39Ar geoehronoogy of Cu-Au and Au-Ag mineralization in the Potrerillos district,Chile.Econ Geol,92:784~806.
    Martin H. 1999. Adakitic magmas:Modern analoguesof Archean granitoidsJ . Lithos,46: 411~429.
    Maughan D T,et al. 2002. Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit,Utah,USA[J].Mineralium Deposita,37:14~37.
    Mitchell A H G. 1973. Metallogenic belts and angle of dip of Benioff zones[J]. Nature,245:49~52.
    Minster J F,Richard L P,Allegre C J,1979. 87Rb-87Sr chronology of enstatite meteorites.Earth Planet Sci lett,44:420~440.
    Misra K C.2000.Understanding mineral deposits.Kluwer Academic Publishers,353~413.
    Muller D,et al. 2002. The transition from porphyry to epithermal-style gold mineralization at Ladolam,Lihir Island,Papua NewGuinea:a reconnaissancestudy[J].Mineralium Deposita,37:61~74.
    Mungall J E. 2002. Roasting the mantle:Slab melting and the genesis of major Au and Au-rich Cu deposits[J].Geology,30:915~918.
    Nagaseki H and Hayashi K.2008.Experimental study of the behavior of copper and zinc in a boiling hydrothermal system.Geology,36:27~30.
    Ohmoto H. 1972. Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ Geol, 67:551~579
    Ohmoto H,Rye R O.1979. Isotope of Sulfur and Carbon.In:Geochemistry of Hydrothermal Ore Deposits,2nd Edeition,John Wiley and Sons,New York. 509~567.
    Ohmoto H and Goldhaber M B. 1997. Sulfur and carbon isotopesA . In:Barnes H L ed. Geochemistry of hydrothermal ore depositsC. 2nd ed. New York:Wiley. 517~611.
    Oyarzun R,Marquez A,Lillo J,et al.2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism[J]. Mineralium Deposita,36:794~798.
    Qu XM,Hou ZQ,Khin Zaw,Li YG.2007.Characteristics and genesis of Gangdese porphyry copper deposits in the southern Tibetan Plateau:Preliminary geochemical and geochronological results.Ore Geology Review,31:205~223.
    Rapp P R,Shimizu N and Norman M D. 1999. Applegate,reaction between slab-derived melt and peridotite in the mantle wedge:Experimental constrains at 3.8 GPaJ . Chem. Geol.,160:335~356.
    Redmond P B,Einaudi M T,Inan E E,Landtwing M R,and Heinrich C A.2004.Copper deposition by fluid cooling in intrusion-centered systems:New insights from the Bingham porphyry ore deposit,Utah.Geology,217~230.
    Reich M,Parada M A,Palacios C,et al. 2003. Adakite-like signature of Late Miocene intrusions at the Los Pelambers giant porphyry copper deposit in theAndes of central Chile: metallogenic implications[J]. Mineralium Deposita,38:876~885.
    Reynolds,Peter,Ravenhurst,et al. 1998. High-precision 40Ar/39Ar dating of two consecutive hydrothermal events in the Chuquicamata porphyry copper system. Chile: Chemical Geology, Vol.148,45~60.
    Reynoids T J,Beane R E. 1985. Evolution of hydrothermal fluid characteristics at the Santa Rita,New Mexico,porphyry copper deposit[J]. Econ Geol,80:1328~1347.
    Richards J P,Boyce A J and Pringle M S. 2001. Geologic evolution of the Escondida area,northern Chile: a model for spatial and temporal location of porphyry Cu mineralization[J]. Econ. Geol.,96:271~306.
    Richards,J P.2005.Cumulative factors in the generation of giant cale-alkaline porphyry Cu deposits: In Porter T.M.(ed).Super-Porphyry Copper and Gold Deposits:A Global Perspective,PGC Publishng,Adelaide,pp.7~25.
    Richards J P. 2003. Tectono-magmatic precursors forporphyryCu-(Mo-Au) deposit formation[J]. Economic Geology,98:1515~1533.
    Richards J P,McCulloch,M T,Chappell,B W,et al. 1991. Sourcesof metals in the Porgera gold deposit,PapuaNew Guinea: evidence from alteration, isotope,and noble metal geochemistry[J].Geochim et Cosmochim Acta,55:565~580.
    Richards J P.1995. Alkalic-type epithermal gold deposits-a review[J]. Mineralogical Association of Canada Short Course Series,23:367~400.
    Richards J P ang Kerrich R.2007.Adakike-like rocks:Their diverse origins and questionable role in metallogenesis.Economic Geology,102:537~576.
    Roddick J C. 1978. The application of isochron iagrams in 40Ar-34Ar dating:a discussion:Earth and planetary science letters,Vol.41,233~244.
    Roedder E. 1971. Fluid inclusion studies on the porphyry-type oredeposits atBingham,Utah,Butte,Montana,and Climax,Colorado[J]. Econ Geol,66:98~120.
    Rusk B G,Reed M H,Dilles J H,Klemm L M and Heinrich C A.2004.Compositions of magmatic hydrothermal fluids determined by La-ICP-MS of fluid inclusion from the porphyry copper-molybdenum deposit at Butte,MT.Chemical Geology,210:173~199.
    Sajona F G and Maury R C. 1998. Association of adakites with gold and copper mineralization in the Philippines[J]. CR. Acad. Sci. Paris,326(1): 27~34.
    Selby D,GreaserR A. 2001. Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit,British Columbia,Canada. Econ Geol,96:197~204.
    Sillitoe R H. 1972. A plate tectonic model for the origin of porphyry copper deposits[J]. Econ. Geol.,67:184~197.
    Sillitoe R H. 1973.Geology of the Los Pelambres porphyry copper deposits ,Chile.Econ.Geol.67:1~10.
    Sillitoe R H.1988. Epochs of intrusion_related copper mineralization in the Andes[J].J. S.Am. Earth Sci.,1: 89~108.
    Sillitoe R H. 1997. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J].Austr Jour Earth Sci,44:373~388.
    Singer D A , Berger V I , Menzie W D , et al.2005.Porphyry copper deposit density.Econ.Geol.,100:491~514.
    Simmons S F,Sawkins F J,Schlutter D J. 1987. Mantle-derived helium in two Peruvian hydrothermal ore deposits.Nature,329:429~432
    Stein H J,Markey R J,Morgan J W,Du A D,Sun Y L.1997.Highly precise and accurate Re-Os ages formolybdenite from the East Qin ling molybdenite belt,Shanxi Province,China Econ Geol,92:827~835.
    Stein H J,Sundblad K,Markey R J,et al. 1998.Re-Os ages for Archean molybdenite and pyrite,Kuittila-Kiviso,Finland and Proterozoic molybdenite,Kabeliai,Lithuania: testing the chronometer in ametamorphic and metasomatic setting. Mineralium Deposita,33:329~345.
    Stern C R and Kilian R. 1996. Roleof the subducted slab, mantle wedge and continental crust in the generation of adakites from the AndeanAustral Volcanic ZoneJ . Contril. Mineral. Petrol.,123: 263~281
    Thieblemont D,Stein G and Lescuyer J L. 1997. Epithermal and por-phyry deposits: the adakite connection[J]. Earth and Planet. Sci.,325:103~109.
    Turner G , Burnnard P B , Ford J L , et al. 1993. Tracing fluid sources and interaction.Phil Trans R Soc Lond A,344:127~140.
    Uyeda S,Kanamori H. 1979. Back-arc opening and the model of subduction[J].Jour Geophys Res, 84:1040~1061.
    Watanabe Y,Stein H,Morgan J W,et al.1999.Re-Os geochronobgy brackets tining and duration of mineralization for the EI Salvador porphyry Cu-Mo deposit ,Chile(abstract).Geol Soci Am.Abs with Prog,31:A30.
    Wallace P and Carmicheal I S E. 1992. Sulfur in basaltic magmasJ . Geochim. Cosmochim. Acta, 56:1863~1874.
    Wybon D. 1994. Sulphur-undersaturatedmagmatism-a key factor for generatingmagma-related copper-gold deposits[J].AGSO ResearchNewsletter,21:7~8.
    Zhao Z F,Zheng Y F,Wei C S et al. 2001. Carbon concentration and isotope composition of granites from southeast China.Phys.Chem.of the Earth,Part A:Solid Earth and Geodesy,26:821~833.
    毕献武,胡瑞忠,叶造军,等. 1999.A型花岗岩类与铜成矿关系研究--以马厂箐铜矿为例[J].中国科学(D辑),2(6):489~495.
    毕献武,胡瑞忠,彭建堂,等. 2005.姚安和马厂箐富碱侵入岩体的地球化学特征[J].岩石学报,21(1):113~124.
    毕献武,胡瑞忠,J. E. Mungall,等.2006.与铜、金矿化有关的富碱侵入岩矿物化学研究[J].矿物学报,26(4):377~385.
    陈骏,王鹤年. 2004.地球化学[M].北京:科学出版社,125.
    陈岳龙,杨忠芳,赵志丹.2005.同位素地质年代学与地球化学[M].北京:地质出版社,252~253.
    陈毓川,裴荣富,宋天锐,等. 1998.中国矿床成矿系列初论[M].北京:地质出版社,104.
    陈毓川,裴荣富,王登红. 2006.三论矿床的成矿系列问题[J].地质学报. 80(10):1501~1508.
    崔银亮. 2003.云南省与富碱斑岩有关的金矿床围岩蚀变特征和找矿前景[J].矿产与地质,17(增刊):369~372.
    杜安道,何红廖,殷万宁,等.1994.辉钼矿的铼-锇同位素地质年龄测定方法研究[J].地质学报,68:339~346.
    傅德明.1996.扬子地台西南缘陆内造山带有色、稀贵金属矿床成矿系列及成矿规律[A].见:骆耀南,主编.扬子地台西南缘陆内造山带地质与矿产论文集[M].成都四川科学技术出版社,120~128.
    高永丰,侯增谦,魏瑞华,等. 2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义[J].岩石学报,19:418~428.
    葛良胜,邹依林,李振华,等. 2002.云南马厂箐(铜、钼)金矿床地质特征及成因研究[J].地质与勘探,38(5):11~17.
    葛良胜,王文成,李汉光,等.2005.滇西北富碱岩体与金矿成矿.北京:地震出版社.
    葛良胜.2007.滇西北富碱岩浆活动与金多金属成矿系统(博士论文).
    郭晓东,陈晓强,王治华,等. 2009. EH4连续电导率测量在宝兴厂矿区的应用[J].地质与勘探,45(1):52~58.
    郭晓东,侯增谦,陈祥,等.2009.云南马厂箐富碱斑岩埃达克岩性质的厘定及其成矿意义[J].岩石矿物学杂志,28(4):375~386.
    何明勤,杨世瑜,刘家军,等.2004.云南祥云金厂箐金(铜)矿床的成矿流体特征及流体来源[J].矿物岩石,24(2):35~40.
    何明勤,杨世瑜,陈昌勇,等.2004.滇西小龙潭-马厂箐地区铜金多金属矿床地质地球化学及成因研究[M].北京:地质出版社.
    何明勤,杨世瑜,刘家军. 2003.云南祥云金厂箐金-铜矿床中的有机质及与金成矿的关系[J].昆明理工大学学报,28(1):4~7.
    胡云中,唐尚鹑,杨岳清. 1995.哀牢山金矿地质.北京:地质出版,1~278.
    胡瑞忠,毕献武,Turner G,等.1997.马厂箐铜矿床黄铁矿流体包裹体He-Ar同位素体系[J].中国科学(D辑),27(6):503~508.
    胡瑞忠,毕献武,邵树勋,等. 1997.云南马厂箐铜矿床氦同位素组成研究[J].科学通报,42(14):1542~1545.
    胡祥昭,黄震. 1997.扬子地台西缘富碱花岗斑岩特征及成因探讨[J].大地构造与成矿学,21(2): 173~180.
    侯增谦,侯立玮,叶庆同,等.1995.“三江”地区义敦岛弧构造-岩浆演化与火山成因块状硫化物矿床[M].北京:地震出版社.
    侯增谦,曲晓明,黄卫,等. 2001.冈底斯斑岩铜矿成矿带有望成为西藏第二条“玉龙”铜矿带[J].中国地质,28(10):27~29.
    侯增谦,曲晓明,王淑贤,等. 2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用[J].中国科学,33(7):609~618.
    侯增谦,莫宣学,高永丰,等. 2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩-以西藏和智利斑岩铜矿为例[J].矿床地质,22(1):1~12.
    侯增谦. 2004.斑岩Cu-Mo-Au矿床:新认识与新进展[J].地学前缘,11(1):131~144.
    侯增谦,钟大赉,邓万明. 2004.青藏高原东缘斑岩铜钼金成矿带的构造模式[J].中国地质,31(1):1~14.
    侯增谦,杨岳清,曲晓明,等.2004.三江地区义敦岛弧造山带演化与成矿系统[J].地质学报,78:109~120.
    侯增谦,孟祥金,曲晓明,等. 2005.西藏冈底斯斑岩铜矿带埃达克质斑岩含矿性:源岩相变及深部过程约束[J].矿床地质,24(2):108~121.
    侯增谦,潘小菲,杨志明,等. 2007.初论大陆环境斑岩铜矿[J].现代地质,21(2):332~351.
    侯增谦,杨竹森,徐文艺,莫宣学,丁林,高永丰,董方浏,李光明,曲晓明,赵志丹,江思宏,孟祥金,李振清,秦克章,杨志明. 2006.青藏高原碰撞造山带:Ⅰ.主碰撞造山成矿作用.矿床地质,25(4):337~358.
    蒋少涌,杨竟红.2000.金属矿床Re-Os同位素示踪与定年研究[J].南京大学学报(自科版).
    梁华英,谢应雯,张玉泉. 2004.富钾碱性岩体形成演化对铜矿成矿制约-以马厂箐铜矿为例[J].自然科学进展, 14(1):116~120.
    梁华英. 2002.玉龙斑岩铜矿带的锆石SHRMP年龄[C].中国基础研究项目报告.
    刘显凡,刘家铎,张成江,等.2004.滇西富碱斑岩型矿床岩体和矿脉同位素地球化学研究[J].矿物岩石地球化学通报,23(1):32~39
    刘红涛,张旗,刘建明,等. 2004.埃达克岩与Cu-Au成矿作用有待深入研究的岩浆成矿关系[J].岩石学报,20(2): 205~218.
    刘增乾,李兴振,叶庆同,等. 1993.“三江”地区构造岩浆带的划分与矿产分布规律[M].北京:地质出版社.
    李献华,周汉文,韦刚健,等. 2002.滇西新生代超钾质煌斑岩的元素和Sr-Nd同位素特征及其对岩石圈地幔组成的制约[J].地球化学,31(1):26~34.
    李兴振,刘文均,王义昭,等. 1999.西南三江地区特提斯构造演化与成矿[M].北京:地质出版社,127~129.
    罗照华,卢欣祥,郭少丰,等.2008.透岩浆流体成矿体系[J].岩石学报,24(12):2669~2678.
    罗照华,莫宣学,卢欣祥,等.2007.透岩浆流体成矿作用--理论分析与野外证据[J].地学前缘,14(3):165~183.
    罗照华,卢欣祥,陈必河,等.2009.透岩浆流体成矿作用导论[M].北京:地质出版社.
    罗君烈,李志伟. 2001.云南中西部喜马拉雅期岩浆及成矿研究新进展[J].云南地质,20(3):229~242.
    骆耀南,俞如龙. 2003。西南三江地区造山演化过程及成矿时空分布.地球学报,23(5):417~422
    卢焕章,李秉伦,沈昆,等. 1990.包裹体地球化学[M].北京:地质出版社,1~242.
    卢焕章,徐仲伦译. 1985.地球化学表[M].北京:科学出版社.
    吕伯西,王增,张能德,等. 1993.三江地区花岗岩类及其成矿专属性[M].北京:地质出版社.
    马鸿文.1990.藏东玉龙斑岩铜矿带花岗岩类与成矿[M].北京:中国地质大学出版社.
    马鸿文. 1989.论西藏玉龙斑岩铜矿带岩浆侵入时代[J].地球化学,(3):210~216.
    莫宣学,路凤香,沈上越,等. 1993.三江特提斯火山作用与成矿[M].北京:地质出版社.
    潘桂棠,徐强,侯增谦,等.2003.西南“三江”多岛弧造山过程成矿系统与资源评价[M].北京:地质出版社.
    彭建堂,毕献武,胡瑞忠,等. 2005.滇西马厂箐斑岩铜(钼)矿床成岩成矿时限的厘定[J].矿物学报,25(1):69~74.
    裴荣富,王永磊,李莉,等.2007.岩浆侵入接触构造体系及其动力学与成矿[A].2007年全国岩石学与地球动力学暨化学地球动力学研讨会论文集. P63~68.
    曲晓明,侯增谦,黄卫. 2001.冈底斯斑岩铜成矿带:西藏第二条“玉龙”斑岩铜矿带[J].矿床地质, 20(4): 355~366.
    秦克章,李惠民,李伟实,等. 1999.内蒙古乌努格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质论评,45(2): 180~185.
    钱青. 2001. adakite的地球化学特征及成因[J].岩石矿物学杂志,20(3):297~306.
    芮宗瑶,黄崇轲,齐国明,等. 1984.中国斑岩型铜(钼)矿[M].北京:地质出版社.
    芮宗瑶,王福同,李恒海,等. 2001.新疆东天山斑岩铜矿带的新进展[J].中国地质,28:11~16.
    芮宗瑶,侯增谦. 2003.冈底斯斑岩铜矿成矿时代及青藏高原隆升[J].矿床地质,22(3):217~225.
    沈渭洲. 1987.稳定同位素地质[M].北京:原子能出版社.
    谭雪春,等.滇西主要有色金属矿床区域成矿地质背景.云南地质,1991,1.
    唐仁鲤,罗怀松. 1993.西藏玉龙斑岩铜(钼)矿带地质[M].北京:地质出版社.
    涂光炽. 1982.华南两个富碱侵入岩带的初步研究[A].中国科学院贵阳地球化学研究所年报[C].贵阳:贵州人民出版社,127~129.
    涂光炽. 1989.关于富碱侵入岩[J].矿产与地质,13(3):1.
    王强,赵振华,熊小林,等. 2001.底侵玄武质下地壳的熔融:来自安徽沙溪adakite
    质富钠石英闪长玢岩的证据[J].地球化学,30(4):353~362.
    王强,赵振华,许继峰,等. 2001.扬子地块东部埃达克质岩浆及其动力学与成矿意义[A].见:埃达克质岩及其地球动力学意义学术研讨会论文摘要[C].中国:北京,41~44.
    王元龙,张旗,王强,等. 2003.埃达克质岩与Cu-Au成矿作用关系的初步探讨[J].岩石学报,19:543~550.
    王登红,屈文俊,李志伟,等. 2004.金沙江-红河成矿带斑岩铜钼矿的成矿集中期:Re-Os同位素定年[J].中国科学(D辑),34(4):345~349.
    王登红,杨建民,薛春纪,等. 2001.西南三江-大渡河地区喜马拉雅期金成矿作用的同位素
    年代学依据.见:陈毓川主编.喜马拉雅期内生成矿作用研究.北京:地震出版社, 84~87.
    王义昭,李兴林,段丽兰,等. 2000.三江地区南段大地构造与成矿[M].北京:地质出版社,76~85.
    王肇芬,赵俊磊,王璞译.1990.世界斑岩铜矿.北京:地质出版社.
    魏启荣. 1999.三江中段火山岩同位素示踪及地球化学分区与成矿[D].武汉:中国地质大学.
    吴志亮,李峰,杨世瑜,等. 1996.滇西斑岩带大理段斑岩型铜多金属成矿地质特征及找矿标志(内部资料).
    西南冶金地质勘探公司310队. 1981.云南省祥云县马厂箐矿区铜钼矿评价报告(内部资料).
    谢应雯,张玉泉,胡国相. 1984.哀牢山--金沙江富碱侵入带地球化学与成矿专属性初步研究[J].昆明工学院学报,4:1~17.
    谢应雯,张玉泉,钟孙霖,等.1999.云南洱海东部新生代高钾碱性岩浆岩痕量元素特征.岩石学报,15(1):75~81
    熊德信,孙晓明,石贵勇. 2007.云南哀牢山喜马拉雅期造山型金矿带矿床地球化学及成矿模式[M].北京:地质出版社.
    杨建民,薛春纪,徐珏,等. 2001.滇西北喜马拉雅期富碱斑岩地质特征及其成矿作用[A].
    陈毓川.喜马拉雅期内生成矿作用研究[C].北京:地质出版社,57~68.
    杨世瑜,江祝伟.1991.云南弥渡马厂箐金矿区构造体系控矿特征及成矿预测.昆明工学院科研报告.
    杨岳清,等.1993.金沙江-澜沧江-怒江地区金矿类型及成矿条件[J].地质学报,67(1):63~75.
    杨志明,侯增谦,宋玉财,等. 2008a.西藏驱龙超大型斑岩铜矿床:地质、蚀变与成矿[J].矿床地质,27(3):279~318.
    杨志明.2008b.西藏驱龙超大型斑岩铜矿床-岩浆作用与矿床成因(博士论文).
    冶金工业部地质研究所.1984.中国斑岩铜矿.北京:科学出版社.
    俞广钧. 1988.马厂箐金矿床成矿地质条件及其成因探讨[J].昆明工学院学报,1:1~10.
    於崇文. 2006.矿床在混沌边缘分形生长(上)[M].合肥:安徽教育出版社,705.
    云南省地质调查局.1973.大理幅1∶20万区域地质调查报告(地质部分).
    云南省地质调查局. 1990.大理县幅、下关市幅、凤仪镇幅1∶5万区域地质调查报告(地质部分).
    云南省地质矿产局.1990.大理幅水系沉积物1∶20万地球化学图说明书.
    云南省地质矿产局.1990.云南省区域地质志[M].北京:地质出版社,1990.
    曾普胜,侯增谦,高永峰,等. 2006.印度-亚洲碰撞带东段喜马拉雅期铜-钼-金矿床Re-Os年龄及成矿作用[J].地质论评,52(1):72~84.
    曾普胜,莫宣学,喻学惠. 2002.滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景[J].岩石矿物学杂志,21(3):231~241
    翟裕生,彭润民,向运川,等.2004.区域成矿研究法[M].北京:中国大地出版社.
    翟裕生.论成矿系统.地学前缘,1999,1.
    张丙喜,李文达译.1982.铜矿地质及铜的经济评价.北京:地质出版社.
    张玉泉,谢应雯,梁华英,等. 1997.藏东玉龙铜矿带含矿斑岩演化与成矿关系[J].西藏地质,(2): 74~86.
    张玉泉,谢应雯,梁华英,等. 1998.藏东玉龙铜矿带含矿斑岩及成岩系列[J].地球化学,27:236~243.
    张玉泉,谢应雯. 1997.哀牢山-金沙江富碱侵入岩年代学和Nd,Sr同位素特征[J].中国科学(D辑), 27(4):289~293.
    张旗,王元龙,张福勤,等. 2002.埃达克岩与斑岩铜矿[J].华南地质与矿产,(3):85~90.
    张旗,许继峰,王焰,等. 2004.埃达克岩的多样性[J].地质通报,23(9-10):959~965.
    张旗,王焰,刘伟,等. 2002.埃达克岩的特征及其意义[J].地质通报,21:431~435.
    张连昌,秦克章,英基丰,等. 2004.东天山土屋-延东斑岩铜矿带埃达克岩及其与成矿作用的关系[J].岩石学报,20:259~268.
    张理刚. 1988.长石铅和矿石铅同位素组成及其地质意义[J].矿床地质,7(2):55~64.
    赵淮. 1995.中滇-大理-金平地区与喜马拉雅期斑岩有关的铅-铜-钼-金矿床成矿模式[J].云南地质,14(4):333~341.
    赵振华,熊小林,王强,等. 2004.新疆西天山莫斯早特石英钠长斑岩铜矿床-一个与埃达克质岩石有关的铜矿实例[J].岩石学报,20:249~258.
    赵欣,喻学惠,莫宣学,张瑾,吕伯西.2004.滇西新生代富碱斑岩及其深源包体的岩石学和地球化学特征[J].现代地质,18(2):217~228.
    朱炳泉,刘北玲,李献华. 1989.大陆与大洋地幔Nd-Sr-Pb同位素特征与三组分混合--四体系再循环模式[J].中国科学(D辑),(10):1092~1121.
    朱训,黄崇轲,芮宗瑶,周跃华,朱贤甲,胡宗声,梅占魁.1983.德兴斑岩铜矿[M].地质出版社.
    钟汉. 1986.斑岩铜矿概论[M].长春:吉林科学技术出版社.
    中国人民武装警察部队黄金第十三支队.1993.云南省祥云县金厂箐岩金矿勘探报告(内部资料).
    中国人民武装警察部队黄金第十支队.2007.云南省大理州宝兴厂矿区人头箐矿段金矿普查报告(内部资料).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700