OATP1B1与AML的临床遗传药理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类基因组中的遗传变异,是人体对药物及其他外源性化合物产生不同反应的重要原因。同时,在一定程度上,人类对大部分疾病的易感性也决定于人类基因中的各种变异。在过去的40年里,随着分子生物学的发展,遗传药理学从一个小学科逐渐发展成为推动临床药理学进步的中坚力量,同时也成为生物医药研究中一个炙手可热的领域。目前,人类基因组拥有超过一千万个单核苷酸突变以及大量的其他类型的遗传变异。在任何一项临床研究中,只要经费允许,我们都可以对超过一百万个遗传多态性或者超过两万五千个基因的表达进行分析。尽管如此,目前这些工作仍没能有效改变传统的临床治疗模式,大部分的临床药物治疗依然遵循经验用药模式,但转变正在悄然进行,相当多的临床医生已经开始在日常医疗工作中考虑基因多态性的影响,如CYP2C9,CYP2C19,CYP2D6,TPMT以及VKORC1等。更明显的是,遗传药理学已经改变了临床药物研发的要求和模式。遗传药理学准则已经成为许多大型药物临床研究的基本要求。美国食品药品管理局(FDA)也鼓励临床试验者提供实验药物的相关遗传药理学资料。
     自2002年开始人类基因组单体型图计划(International HapMap Project)正式启动。由这项由美国、日本、英国、加拿大、中国和尼日利亚的科学家们合作的,从人类基因组计划延续而来的项目,旨在开发一个面向公众的,人类全基因组单体型数据库。该数据库的信息将用来指导各种遗传研究以及临床表型相关的研究。HapMap计划所研究的DNA样本为来自不同地域,不同种族的270个个体。到Ⅱ期数据发布时,共分析了三百多万个SNP,分析密度达到了每1kb序列中分析1个SNP。这大概覆盖了九百万到一千万个常见SNP中的25%~35%。目前,其数据也已经可以通过互联网无偿获得。
     基于以上研究背景,本课题旨在查明有机阴离子转运体OATP1B1的常见遗传多态性对他汀类降脂药物阿托伐他汀代谢动力学的影响,以及通过竞争性抑制和非竞争性抑制,改变OATP1B1转运能力后,阿托伐他汀以及罗素他汀药代动力学的改变。此外,通过严格设计的临床实验,应用HapMap数据库提供的基因单体型信息,考察多基因,多遗传变异以及多个单体型,对接受阿糖胞苷标准化疗的急性髓细胞样白血病(AML)患者临床预后和药物疗效的影响进行研究。本课题不仅为药物反应个体差异提供分子水平的解释,还为临床遗传药理学开辟新的研究方法和研究方向。
     本课题的主要研究结果如下:
     1.证实在中国健康人群中,OATP1B1单体型显著影响阿托伐他汀在不同个体中的血药浓度。OATP1B1*5突变携带者与OATP1B1*1a/*1a相比,阿托伐他汀血药浓度显著升高;
     2.发现单剂量口服600mg利福平,可显著抑制阿托伐他汀的肝摄取。OATP1B1单体型显著影响利福平对阿托伐他汀肝脏摄取的抑制效应。利福平抑制作用在OATP1B1*1a/*1a个体中较OATP1B1*5突变携带者中更显著。
     3.连续14天服用熊脱氧胆酸胶囊,血浆罗素他汀及胆红素水平显著升高。这可能是由于熊脱氧胆酸通过抑制转录因子HNF1α,进而抑制OATP1B1活性所致。这种抑制水平要相对低于直接抑制OATP1B1转运。由于熊脱氧胆酸所抑制的转录因子HNF1α能参与调节多种药物代谢酶的表达,临床应用熊脱氧胆酸时,应注意可能通过此机制产生的多种药物相互作用。
     4.研究了参与阿糖胞苷体内代谢的多种代谢酶(CDA,dCK),转运体(hCNT1)的多个单核苷酸变异以及单体型对接受阿糖胞苷标准化疗的急性髓细胞样白血病(AML)患者的总体生存率,无事件生存率,无复发生存率等临床预后指标的影响。结果证实,hCNT1,1561C>T(rs2242046)遗传变异,与完全缓解组AML患者的总体生存率以及药物毒性反应显著相关。此外,在出现药物治疗失效以及治疗早期死亡患者中,骨髓移植以及加用全反式维甲酸可显著改善患者的总体生存率。
     5.首次将人类基因组单体型图(HapMap)数据应用于临床研究,并证实,在候选基因已知的情况下,HapMap数据库能有效指导临床遗传药理学研究,并提供有力的数据分析工具。
     总之,本项目从遗传药理学角度研究了阿托伐他汀,罗素他汀的药物反应个体差异以及药物相互作用,从药物基因组学水平综合研究了阿糖胞苷药物疗效的遗传机制对AML患者预后的影响,并首次将HapMap数据应用于临床研究,为临床遗传药理学研究开辟了新的研究方向。
The different response to drugs and other xenobiotics among individuals and the susceptibility to almost all diseases are to some extent due to variations in human genome.In the past 40 years,driven by the advances in molecular biology,pharmacogenetics has evolved from a minor discipline to a major driving force of clinical pharmacology. Nowadays,over 10 million SNPs and other kinds of variants have been detected in human genome.If the budget is enough,we can assess more than 1 million polymorphisms or the expression of more than 25,000 genes in each clinical study.However,this has not yet changed daily therapeutic mode in clinic which is somehow empirical.But some physicians are aware of the importance of some gene polymorphisms, such as those in CYP2C9,CYP2C19,CYP2D6,TPMT and VKORC1.To more practical situation,pharmacogenetics has changed the practices and requirements in preclinical and clinical drug research.Pharmacognetics displines have become a basic requirement of many large clinical trials on new drugs.The US Food and Drug Administration(FDA) also has encouraged the voluntary deposition of supplementary pharmacogenomics data.
     Following the International Hunam Genomics Project,International HapMap Project is carried out under the cooperation of scientists coming from US,Japan,Britain,Canada,China and Nigeria.It was launched in 2002 with the aim of providing a public resource to accelerate medical genetic research.The information in this database will be used for genetic studies and clinic studies on phenotyps.In HapMap project,DNA samples retrieved were from 270 donors come from four different places and four different species.With the releasing of PhaseⅡdata,over three million SNPs have been analyzed.All the data have been open to public through internet now.
     Based on these information,the aim of our study was to clarify the impact of the common genetic polymorphisms occurred on OATP1B1 on the pharmacokinetics of atorvastatin and how does the kinetics of atorvastatin and rosuvastain change when the activity of OATP1B1 is inhibited via a competitive inhibition manner or non-competitive inhibition manner.We also lanched a well designed clinical study which is accomplished in Ulm University,Germany,on the clinical outcome of AML patients to the perspective of Pharmacogenomics with the guide of HapMap knowledge.This project provided new explains for individual differences of drug response and explored a new way to translate HapMap knowledge into the pharmacogenetics and pharmacogenomics study.
     In this project we have found that:
     1.OATP1B1 haplotypes significantly changes the pharmacokinetics of atorvastatin in vivo.
     2.OATP1B transporters represent the major hepatic uptake systems for atorvastatin.Single oral dose of 600mg rifamin can significantly inhibit the hepatic uptake of atorvastain.OATP1B1 haplotypes significantly influence the inhibition effect of rifampin on the activity of OATP1B1. Individuals with OATP1B1~*1a/~*1a wild type were more sensivie to the inhibition of rifampin than OATP1B1~*5 carriers.
     3.Confirm the findings from in vitro studies that UDCA inhibits OATP1B1 activity by inhibition of the transcription factor HNF1αin vivo.
     4.Frequencies of several SNPs of hCNT1,CDA and dCK are different between AML patients and healthy individuals.In RD and ED group, bone marrow transplantation and the use of ATAR can improved the prognosis of AML patients,hCNT1 genetic variat,1561C>T(rs2242046), was associated with drug toxicity and overall survival rate in patients who were complete remission.
     5.The PhaseⅡdatabase released in HapMap provides aboundant and confidential information for the analysis of dCK genome.Using HapMap database can provide a new method for pharmacogenetics and pharmacogenomics research.
     In summary,we studied the inter-individual difference of atorvastatin response to the perspective of pharmacogentics and drug interactions of atorvastatin and rosuvastain.We also explored the impact of genetics variants involved in cytarabine metabolism on the clinical outcomes of AML patiens and for the first time translate the HapMap knowledge into clinical study which provides a new approach to proceed with pharmacogenetics and pharmacogenomics study.
引文
1.Lesko, L.J.et al. Pharmacogenetics and pharmacogenomics in drug development and regulatory decision making: report of the first FDA-PWG-PhRMA-DruSafe Workshop. J Clin Pharmacol. 43, 342-358 (2003).
    2.The International HapMap Project. Nature. 426, 789-796 (2003).
    3.Integrating ethics and science in the International HapMap Project. Nat Rev Genet. 5,467-475 (2004).
    4.Schinkel, A.H. The physiological function of drug-transporting P-glycoproteins. Semin Cancer Biol. 8, 161-170 (1997).
    5.Kim, R.B. Transporters and xenobiotic disposition. Toxicology. 181-182, 291-297(2002).
    6.Tirona, R.G. & Kim, R.B. Pharmacogenomics of organic anion-transporting polypeptides (OATP). Adv Drug Deliv Rev. 54,1343-1352 (2002).
    7.Konig, J., Cui, Y., Nies, A.T. & Keppler, D. A novel human organic anion transporting polypeptide localized to the basolateral hepatocyte membrane. Am J Physiol Gastrointest Liver Physiol. 278, G156-164 (2000).
    8.Kameyama, Y., Yamashita, K., Kobayashi, K., Hosokawa, M. & Chiba, K. Functional characterization of SLCO1B1 (OATP-C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet Genomics. 15, 513-522 (2005).
    9.Chen, C.et al. Differential interaction of 3-hydroxy-3-methylglutaryl-coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab Dispos.33, 537-546 (2005).
    10. Kim, S.R.et al. Genetic variations and frequencies of major haplotypes in SLCO1B1 encoding the transporter OATP1B1 in Japanese subjects: SLCO1B1*17 is more prevalent than * 15. Drug Metab Pharmacokinet. 22,456-461 (2007).
    11.Nishizato, Y.et al. Polymorphisms of OATP-C (SLC21A6) and OAT3 (SLC22A8) genes: consequences for pravastatin pharmacokinetics. Clin Pharmacol Ther. 73,554-565 (2003).
    12.Tirona, R.G., Leake, B.F., Merino, G. & Kim, R.B. Polymorphisms in OATP-C:identification of multiple allelic variants associated with altered transport activity among European- and African-Americans. J Biol Chem. 276, 35669-35675 (2001).
    13.Zhang, W.et al. Effect of SLCO1B1 genetic polymorphism on the pharmacokinetics of nateglinide. Br J Clin Pharmacol. 62, 567-572 (2006).
    14.Tamai, I.et al. Molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem Biophys Res Commun. 273,251-260 (2000).
    15.Abe, T.et al. Identification of a novel gene family encoding human liver-specific organic anion transporter LST-1. J Biol Chem. 274,17159-17163 (1999).
    16.Lennernas, H. Clinical pharmacokinetics of atorvastatin. Clin Pharmacokinet. 42,1141-1160(2003).
    17.Jacobsen, W.et al. Lactonization is the critical first step in the disposition of the 3-hydroxy-3-methylglutaryl-CoA reductase inhibitor atorvastatin. Drug Metab Dispos. 28,1369-1378 (2000).
    18.Chowbay, B., Cumaraswamy, S., Cheung, Y.B., Zhou, Q. & Lee, E.J. Genetic polymorphisms in MDR1 and CYP3A4 genes in Asians and the influence of MDR1 haplotypes on cyclosporin disposition in heart transplant recipients. Pharmacogenetics. 13, 89-95 (2003).
    19.Balram, C., Zhou, Q., Cheung, Y.B. & Lee, E.J. CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol. 59, 123-126 (2003).
    20.Kuehl, P.et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 27, 383-391 (2001).
    21.Hustert, E.et al. The genetic determinants of the CYP3A5 polymorphism. Pharmacogenetics. 11, 773-779 (2001).
    22.Hermann, M.et al. Substantially elevated levels of atorvastatin and metabolites in cyclosporine-treated renal transplant recipients. Clin Pharmacol Ther. 76,388-391(2004).
    23.Omar, M.A. & Wilson, J.P. FDA adverse event reports on statin-associated rhabdomyolysis. Ann Pharmacother. 36, 288-295 (2002).
    24.Williams, D. & Feely, J. Pharmacokinetic-pharmacodynamic drug interactions with HMG-CoA reductase inhibitors. Clin Pharmacokinet. 41, 343-370 (2002).
    25.Ando, H.et al. Effects of grapefruit juice on the pharmacokinetics of pitavastatin and atorvastatin. Br J Clin Pharmacol. 60, 494-497 (2005).
    26.Lilja, J.J., Kivisto, K.T. & Neuvonen, P.J. Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin. Clin Pharmacol Ther. 66, 118-127(1999).
    27.Bossuyt, X., Muller, M. & Meier, P.J. Multispecific amphipathic substrate transport by an organic anion transporter of human liver. J Hepatol. 25, 733-738(1996).
    28.Takikawa, H. Hepatobiliary transport of bile acids and organic anions. J Hepatobiliary Pancreat Surg. 9, 443-447 (2002).
    29.Smith, N.F., Figg, W.D. & Sparreboom, A. Role of the liver-specific transporters OATPIBI and OATP1B3 in governing drug elimination. Expert Opin Drug Metab Toxicol. 1, 429-445 (2005).
    30.Prueksaritanont, T.et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab Dispos. 30, 505-512 (2002).
    31.Shitara, Y. & Sugiyama, Y. Pharmacokinetic and pharmacodynamic alterations of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors: drug-drug interactions and interindividual differences in transporter and metabolic enzyme functions. Pharmacol Ther. 112, 71 -105 (2006).
    32.Niemi, M., Backman, J.T., Fromm, M.F., Neuvonen, P.J. & Kivisto, K.T. Pharmacokinetic interactions with rifampicin : clinical relevance. Clin Pharmacokinet. 42, 819-850 (2003).
    33.Schuetz, E.G., Schinkel, A.H., Relling, M.V. & Schuetz, J.D. P-glycoprotein: a major determinant of rifampicin-inducible expression of cytochrome P4503A in mice and humans. Proc Natl Acad Sci U S A. 93, 4001-4005 (1996).
    34.Fromm, M.F.et al. The effect of rifampin treatment on intestinal expression of human MRP transporters. Am J Pathol. 157, 1575-1580 (2000).
    35.Vavricka, S.R., Van Montfoort, J., Ha, H.R., Meier, P.J. & Fattinger, K. Interactions of rifamycin SV and rifampicin with organic anion uptake systems of human liver. Hepatology. 36,164-172 (2002).
    36.Baldes, C.et al. Development of a fluorescence-based assay for screening of modulators of human organic anion transporter 1B3 (OATP1B3). Eur J Pharm Biopharm. 62, 39-43 (2006).
    37.Letschert, K., Faulstich, H., Keller, D. & Keppler, D. Molecular characterization and inhibition of amanitin uptake into human hepatocytes. Toxicol Sci. 91, 140-149(2006).
    38.Tirana, R.G., Leake, B.F., Wolkoff, A.W. & Kim, R.B. Human organic anion transporting polypeptide-C (SLC21A6) is a major determinant of rifampin-mediated pregnane X receptor activation. J Pharmacol Exp Ther. 304,223-228 (2003).
    39.Acocella, G., Nicolis, F.B. & Tenconi, L.T. The effect of an intravenous infusion of rifamycin SV on the excretion of bilirubin, bromsulphalein, and indocyanine green in man. Gastroenterology. 49, 521-525 (1965).
    40.Cui, Y. & Walter, B. Influence of albumin binding on the substrate transport mediated by human hepatocyte transporters OATP2 and OATP8. J Gastroenterol. 38, 60-68 (2003).
    41.Lau, Y.Y., Okochi, H., Huang, Y. & Benet, L.Z. Pharmacokinetics of atorvastatin and its hydroxy metabolites in rats and the effects of concomitant rifampicin single doses: relevance of first-pass effect from hepatic uptake transporters, and intestinal and hepatic metabolism. Drug Metab Dispos. 34,1175-1181 (2006).
    42.Wu, X., Whitfield, L.R. & Stewart, B.H. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Pharm Res. 17,209-215 (2000).
    43.Hochman, J.H.et al. Interactions of human P-glycoprotein with simvastatin, simvastatin acid, and atorvastatin. Pharm Res. 21,1686-1691 (2004).
    44.Backman, J.T., Luurila, H., Neuvonen, M. & Neuvonen, P.J. Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin Pharmacol Ther. 78,154-167 (2005).
    45.Bidstrup, T.B.et al. Rifampici n seems to act as both an inducer and an inhibitor ofthe metabolism of repaglinide. Eur J Clin Pharmacol. 60,109-114 (2004).
    46.Fan, L.et al. The effect of herbal medicine baicalin on pharmacokinetics of rosuvastatin, substrate of organic anion-transporting polypeptide 1B1. Clin Pharmacol Ther. 83,471-476 (2008).
    47.Vaughan, C.J., Gotto, A.M., Jr. & Basson, C.T. The evolving role of statins in the management of atherosclerosis. J Am Coll Cardiol. 35,1-10 (2000).
    48.Olsson, A.G., McTaggart, F. & Raza, A. Rosuvastatin: a highly effective new HMG-CoA reductase inhibitor. Cardiovasc Drug Rev. 20, 303-328 (2002).
    49.Carswell, C.I., Plosker, G.L. & Jarvis, B. Rosuvastatin. Drugs. 62, 2075-2085; discussion 2086-2077 (2002).
    50.Martin, P.D.et al. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin Ther. 25,2822-2835 (2003).
    51.Cooper, K.J.et al. The effect of erythromycin on the pharmacokinetics of rosuvastatin. EurJ Clin Pharmacol. 59, 51-56 (2003).
    52.Cooper, K.J.et al. Lack of effect of ketoconazole on the pharmacokinetics of rosuvastatin in healthy subjects. Br J Clin Pharmacol. 55, 94-99 (2003).
    53.Cooper, K.J.et al. The effect of fluconazole on the pharmacokinetics of rosuvastatin. Eur J Clin Pharmacol. 58, 527-531 (2002).
    54.Cooper, K.J.et al. Effect of itraconazole on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther. 73, 322-329 (2003).
    55.Martin, P.D., Kemp, J., Dane, A.L., Warwick, M.J. & Schneck, D.W. No effect of rosuvastatin on the pharmacokinetics of digoxin in healthy volunteers. J Clin Pharmacol. 42, 1352-1357 (2002).
    56.McTaggart, F. Comparative pharmacology of rosuvastatin. Atheroscler Suppl. 4, 9-14 (2003).
    57.Simonson, S.G.et al. Rosuvastatin pharmacokinetics in heart transplant recipients administered an antirejection regimen including cyclosporine. Clin Pharmacol Ther.76,167-177(2004).
    58.Schuster, H. Rosuvastatin--a highly effective new 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor: review of clinical trial data at 10-40 mg doses in dyslipidemic patients. Cardiology. 99,126-139 (2003).
    59.Schneck, D.W.et al. The effect of gemfibrozil on the pharmacokinetics of rosuvastatin. Clin Pharmacol Ther. 75, 455-463 (2004).
    60.Shitara, Y., Hirano, M., Sato, H. & Sugiyama, Y. Gemfibrozil and its glucuronide inhibit the organic anion transporting polypeptide 2 (OATP2/OATP1B1:SLC21A6)-mediated hepatic uptake and CYP2C8-mediated metabolism of cerivastatin: analysis of the mechanism of the clinically relevant drug-drug interaction between cerivastatin and gemfibrozil. J Pharmacol Exp Ther.311,228-236 (2004).
    61.Trauner, M. & Boyer, J.L. Bile salt transporters: molecular characterization, function, and regulation. Physiol Rev. 83, 633-671 (2003).
    62.Maher, J.M.et al. Alterations in transporter expression in liver, kidney, and duodenum after targeted disruption of the transcription factor HNF1 alpha. Biochem Pharmacol. 72, 512-522 (2006).
    63.Jung, D.et al. Characterization of the human OATP-C (SLC21A6) gene promoter and regulation of liver-specific OATP genes by hepatocyte nuclear factor 1 alpha. J Biol Chem. 276, 37206-37214 (2001).
    64.Jung, D. & Kullak-Ublick, G.A. Hepatocyte nuclear factor 1 alpha: a key mediator of the effect of bile acids on gene expression. Hepatology. 37,622-631 (2003).
    65.Furihata, T., Satoh, T., Yamamoto, N., Kobayashi, K. & Chiba, K. Hepatocyte nuclear factor 1 alpha is a factor responsible for the interindividual variation of OATP1B1 mRNA levels in adult Japanese livers. Pharm Res. 24, 2327-2332(2007).
    66.Xu, L.Y.et al. Organic anion transporting polypeptide-1B1 haplotypes in Chinese patients. Acta Pharmacol Sin. 28, 1693-1697 (2007).
    67.Lau, Y.Y., Huang, Y., Frassetto, L. & Benet, L.Z. effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin Pharmacol Ther. 81, 194-204 (2007).
    68.Treiber, A., Schneiter, R., Delahaye, S. & Clozel, M. Inhibition of organic anion transporting polypeptide-mediated hepatic uptake is the major determinant in the pharmacokinetic interaction between bosentan and cyclosporin A in the rat. J Pharmacol Exp Ther. 308,1121 -1129 (2004).
    69.Kajosaari, L.I..et al. Cyclosporine markedly raises the plasma concentrations of repaglinide. Clin Pharmacol Ther. 78, 388-399 (2005).
    70.Cheng, X., Maher, J., Dieter, M.Z. & Klaassen, CD. Regulation of mouse organic anion-transporting polypeptides (Oatps) in liver by prototypical microsomal enzyme inducers that activate distinct transcription factor pathways. Drug Metab Dispos. 33, 1276-1282 (2005).
    71.Maeda, K., Kambara, M., Tian, Y, Hofinann, A.F. & Sugiyama, Y Uptake of ursodeoxycholate and its conjugates by human hepatocytes: role of Na(+)-taurocholate cotransporting polypeptide (NTCP), organic anion transporting polypeptide (OATP) 1B1 (OATP-C), and oatplB3 (OATP8). Mol Pharm. 3, 70-77 (2006).
    72.Ho, R.H.et al. Drug and bile acid transporters in rosuvastatin hepatic uptake: function, expression, and pharmacogenetics. Gastroenterology. 130, 1793-1806(2006).
    73.Jung, D., Hagenbuch, B., Fried, M., Meier, P.J. & Kullak-Ublick, G.A. Role of liver-enriched transcription factors and nuclear receptors in regulating the human, mouse, and rat NTCP gene. Am J Physiol Gastrointest Liver Physiol. 286,G752-761 (2004).
    74.Mita, S.et al. Inhibition of bile acid transport across Na+/taurocholate cotransporting polypeptide (SLC10A1) and bile salt export pump (ABCB 11)-coexpressing LLC-PK1 cells by cholestasis-inducing drugs. Drug Metab Dispos. 34, 1575-1581 (2006).
    75.Ueno, T. & Gonzalez, F.J. Transcriptional control of the rat hepatic CYP2E1 gene.Mol Cell Biol. 10, 4495-4505 (1990).
    76.Chambaz, J., Cardot, P., Pastier, D., Zannis, V.I. & Cladaras, C. Promoter elements and factors required for hepatic transcription of the human ApoA-Ⅱ gene. J Biol Chem.266,11676-11685 (1991).
    77.Ishii, Y., Hansen, A.J. & Mackenzie, P.I. Octamer transcription factor-1 enhances hepatic nuclear factor-1 alp ha-mediated activation of the human UDPglucuronosyltransferase 2B7 promoter. Mol Pharmacol. 57,940-947 (2000).
    78.Cui, Y., Konig, J., Leier, I., Buchholz, U. & Keppler, D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J Biol Chem. 276, 9626-9630 (2001).
    79.Huang, M.J.et al. Risk factors for severe hyperbilirubinemia in neonates. Pediatr Res. 56, 682-689 (2004).
    80.Cass, C.E., Young, J.D. & Baldwin, S.A. Recent advances in the molecular biology of nucleoside transporters of mammalian cells. Biochem Cell Biol. 76,761-770(1998).
    81.Clarke, M.L., Mackey, J.R., Baldwin, S.A., Young, J.D. & Cass, C.E. The role of membrane transporters in cellular resistance to anticancer nucleoside drugs. Cancer Treat Res. 112, 27-47 (2002).
    82.Sundaram, M.et al. Topology of a human equilibrat ive, nitrobenzylthioinosine(NBMPR)-sensitive nucleoside transporter (hENT1) implicated in the cellular uptake of adenosine and anti-cancer drugs. J Biol Chem. 276, 45270-45275(2001).
    83.Liliemark, J.O. & Plunkett, W. Regulation of 1-beta-D-arabinofuranosylcytosine 5'-triphosphate accumulation in human leukemia cells by deoxycytidine 5'-triphosphate. Cancer Res. 46,1079-1083 (1986).
    84.Plunkett, W., Liliemark, J.O., Estey, E. & Keating, M.J. Saturation of ara-CTP accumulation during high-dose ara-C therapy: pharmacologic rationale for intermediate-dose ara-C. Semin Oncol. 14,159-166 (1987).
    85.Laliberte, J. & Momparler, R.L. Human cytidine deaminase: purification of enzyme, cloning, and expression of its complementary DNA. Cancer Res. 54, 5401-5407(1994).
    86.Gray, J.H.et al. Functional and genetic diversity in the concentrative nucleoside transporter, CNT1, in human populations. Mol Pharmacol. 65, 512-519 (2004).
    87.Kirch, H.C.et al. Recombinant gene products of two natural variants of the human cytidine deaminase gene confer different deamination rates of cytarabine in vitro. Exp Hematol. 26,421-425 (1998).
    88.Schroder, J.K., Kirch, C., Seeber, S. & Schutte, J. Structural and functional analysis of the cytidine deaminase gene in patients with acute myeloid leukaemia. Br J Haematol. 103, 1096-1103 (1998).
    89.Fitzgerald, S.M.et al. Identification of functional single nucleotide polymorphism haplotypes in the cytidine deaminase promoter. Hum Genet. 119,276-283 (2006).
    90.Shi, J.Y.et al. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics. 14, 759-768 (2004).
    91.Joerger, M.et al. Novel deoxycytidine kinase gene polymorphisms: a population screening study in Caucasian healthy volunteers. Eur J Clin Pharmacol. 62, 681-684(2006).
    92.McCulloch, E.A. Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982). Blood. 62,1-13 (1983).
    93.Bennett, J.M.et al. Long-term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group experience. Cancer. 80,2205-2209 (1997).
    94.Appelbaum, F.R., Rowe, J.M., Radich, J. & Dick, J.E. Acute myeloid leukemia. Hematology Am Soc Hematol Educ Program. 62-86 (2001).
    95.Hubeek,I.et al. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer. 93,1388-1394(2005).
    96.Abdulla, P. & Coe, I.R. Characterization and functional analysis of the promoter for the human equilibrative nucleoside transporter gene, hENT1. Nucleosides Nucleotides Nucleic Acids. 26, 99-110 (2007).
    97.Pritchard, J.K. & Przeworski, M. Linkage disequilibrium in humans: models and data.Am J Hum Genet. 69,1-14 (2001).
    98.Jorde, L.B. Linkage disequilibrium and the search for complex disease genes. Genome Res. 10,1435-1444 (2000).
    99.Reich, D.E.et al. Linkage disequilibrium in the human genome. Nature. 411, 199-204 (2001).
    100.Gabriel, S.B.et al. The structure of haplotype blocks in the human genome. Science. 296, 2225-2229 (2002).
    101.A haplotype map of the human genome. Nature. 437,1299-1320 (2005).
    102.Lander, E.S.et al. Initial sequencing and analysis of the human genome. Nature. 409, 860-921 (2001).
    103.Jones, T.S., Yang, W., Evans, W.E. & Relling, M.V. Using HapMap tools in pharmacogenomic discovery: the thiopurine methyltransferase polymorphism. Clin Pharmacol Ther. 81, 729-734 (2007).
    104. Mubagwa, K. & Flameng, W. Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res. 52,25-39 (2001).
    105. Rosales, O.R., Eades, B. & Assali, A.R. Cardiovascular drugs: adenosine role in coronary syndromes and percutaneous coronary interventions. Catheter Cardiovasc Interv. 62, 358-363 (2004).
    106. Pearlman, B.L. Hepatitis C infection: a clinical review. South Med J. 97, 364-373; quiz 374 (2004).
    107. Main, J., McCarron, B. & Thomas, H.C. Treatment of chronic viral hepatitis. Antivir Chem Chemother. 9, 449-460 (1998).
    108. Gray, J.H., Owen, R.P. & Giacomini, K.M. The concentrative nucleoside transporter family, SLC28. Pflugers Arch. 447, 728-734 (2004).
    109. Baldwin, S.A.et al. The equilibrative nucleoside transporter family, SLC29. Pflugers Arch. 447, 735-743 (2004).
    110. King, A.E., Ackley, M.A., Cass, C.E., Young, J.D. & Baldwin, S.A. Nucleoside transporters: from scavengers to novel therapeutic targets. Trends Pharmacol Sci. 27,416-425 (2006).
    111. Ritzel, M.W.et al. Molecular cloning and functional expression of cDNAs encoding a human Na+-nucleoside cotransporter (hCNT1). Am J Physiol. 272, C707-714(1997).
    112. Cass, C.E.et al. Nucleoside transporters of mammalian cells. Pharm Biotechnol.12,313-352(1999).
    113. Hamilton, S.R.et al. Subcellular distribution and membrane topology of the mammalian concentrative Na+-nucleoside cotransporter rCNT1. J Biol Chem. 276,27981-27988(2001).
    114. Pennycooke, M., Chaudary, N., Shuralyova, I., Zhang, Y. & Coe, I.R. Differential expression of human nucleoside transporters in normal and tumor tissue. Biochem Biophys Res Commun. 280, 951-959 (2001).
    115. Ngo, L.Y., Patil, S.D. & Unadkat, J.D. Ontogenic and longitudinal activity of Na(+)-nucleoside transporters in the human intestine. Am J Physiol Gastrointest Liver Physiol. 280,G475-481 (2001).
    116. Lai, Y., Bakken, A.H. & Unadkat, J.D. Simultaneous expression of hCNT1-CFP and hENT1-YFP in Madin-Darby canine kidney cells.Localization and vectorial transport studies. J Biol Chem. 277, 37711-37717(2002).
    117. Duflot, S., Calvo, M., Casado, F.J., Enrich, C. & Pastor-Anglada, M. Concentrative nucieoside transporter (rCNT1) is targeted to the apical membrane through the hepatic transcytotic pathway. Exp Cell Res. 281, 77-85(2002).
    118. Vickers, M.F., Young, J.D., Baldwin, S.A., Ellison, M.J. & Cass, C.E. Functional production of mammalian concentrative nucieoside transporters in Saccharomyces cerevisiae. Mol Membr Biol. 18, 73-79 (2001).
    119. Mackey, S.R.et al. Functional nucieoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 58, 4349-4357 (1998).
    120. Graham, K.A.et al. Differential transport of cytosine-containing nucleosides by recombinant human concentrative nucieoside transporter protein hCNTl. Nucleosides Nucleotides Nucleic Acids. 19,415-434 (2000).
    121. Mata, J.F.et al. Role of the human concentrative nucieoside transporter (hCNT1) in the cytotoxic action of 5[Prime]-deoxy-5-fluorouridine, an active intermediate metabolite of capecitabine, a novel oral anticancer drug. Mol Pharmacol. 59, 1542-1548 (2001).
    122. Abbruzzese, J.L. New applications of gemcitabine and future directions in the management of pancreatic cancer. Cancer. 95, 941-945 (2002).
    123. Tempero, M.et al. Randomized phase Ⅱ comparison of dose-intense gemcitabine: thirty-minute infusion and fixed dose rate infusion in patients with pancreatic adenocarcinoma. J Clin Oncol. 21, 3402-3408 (2003).
    124. Cargill, M.et al. Characterization of single-nucleotide polymorphisms in coding regions of human genes. Nat Genet. 22, 231-238 (1999).
    125. Ritzel, M.W.et al. Molecular cloning, functional expression and chromosomal localization of a cDNA encoding a human Na+/nucleoside cotransporter (hCNT2) selective for purine nucleosides and uridine. Mol Membr Biol. 15,203-211 (1998).
    126. Che, M., Ortiz, D.F. & Arias, I.M. Primary structure and functional expression of a cDNA encoding the bile canalicular, purine-specific Na(+)-nucleoside cotransporter. JBiol Chem. 270,13596-13599 (1995).
    127. Wang, J. & Giacomini, K.M. Molecular determinants of substrate selectivity in Na+-dependent nucleoside transporters. J Biol Chem. 272, 28845-28848(1997).
    128. Patil, S.D., Ngo, L.Y., Glue, P. & Unadkat, J.D. Intestinal absorption of ribavirin is preferentially mediated by the Na+-nucleoside purine (N1) transporter. Pharm Res. 15, 950-952 (1998).
    129. Gerstin, K.M., Dresser, M.J. & Giacomini, K.M. Specificity of human and rat orthologs of the concentra tive nucleoside transporter, SPNT. Am J Physiol Renal Physiol. 283, F344-349 (2002).
    130. Li, L., Tan, C.M., Koo, S.H., Chong, K.T. & Lee, E.J. Identification and functional analysis of variants in the human concentrative nucleoside transporter 2, hCNT2 (SLC28A2) in Chinese, Malays and Indians. Pharmacogenet Genomics. 17, 783-786 (2007).
    131. Owen, R.P.et al. Genetic analysis and functional characterization of polymorphisms in the human concentrative nucleoside transporter, CNT2. Pharmacogenet Genomics. 15, 83-90 (2005).
    132. Ritzel, M.W.et al. Molecular identification and characterization of novel human and mouse concentrative Na+-nucleoside cotransporter proteins (hCNT3 and mCNT3) broadly selective for purine and pyrimidine nucleosides (system cib). J Biol Chem. 276,2914-2927 (2001).
    133. Plagemann, P.G. & Aran, J.M. Characterization of Na(+)-dependent, active nucleoside transport in rat and mouse peritoneal macrophages, a mouse macrophage cell line and normal rat kidney cells. Biochim Biophys Acta. 1028,289-298 (1990).
    134. Vickers, M.F.et al. Functional production and reconstitution of the human equilibrative nucleoside transporter (hENT1) in Saccharomyces cerevisiae. Interaction of inhibitors of nucleoside transport with recombinant hENT1 and a glycosylation-defective derivative (hENTl/N48Q). Biochem J. 339 ( Pt 1),21-32(1999).
    135. Griffith, D.A. & Jarvis, S.M. Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta. 1286,153-181 (1996).
    136. Jennings, L.L.et al. Distinct regional distribution of human equilibrative nucleoside transporter proteins 1 and 2 (hENT1 and hENT2) in the central nervous system. Neuropharmacology. 40, 722-731 (2001).
    137. Mangravite, L.M., Xiao, G. & Giacomini, K.M. Localization of human equilibrative nucleoside transporters, hENT1 and hENT2, in renal epithelial cells. Am J Physiol Renal Physiol. 284, F902-910 (2003).
    138. Yao, S.Y.et al. Molecular cloning and functional characterization of nitrobenzylthioinosine (NBMPR)-sensitive (es) and NBMPR-insensitive (ei) equilibrative nucleoside transporter proteins (rENT1 and rENT2) from rat tissues. J Biol Chem. 272, 28423-28430 (1997).
    139. Griffiths, M.et al. Molecular cloning and characterization of a nitrobenzylthioinosine-insensitive (ei) equilibrative nucleoside transporter from human placenta. Biochem J. 328 ( Pt 3), 739-743 (1997).
    140. Mackey, J.R., Baldwin, S.A., Young, J.D. & Cass, C.E. Nucleoside transport and its significance for anticancer drug resistance. Drug Resist Updat. 1, 310-324(1998).
    141. Sundaram, M.et al. Chimeric constructs between human and rat equilibrative nucleoside transporters (hENT1 and rENT1) reveal hENT1 structural domains interacting with coronary vasoactive drugs. J Biol Chem. 273, 21519-21525(1998).
    142. Kiss, A.et al. Molecular cloning and functional characterization of inhibitor-sensitive (mENT1) and inhibitor-resistant (mENT2) equilibrative nucleoside transporters from mouse brain. Biochem J. 352 Pt 2, 363-372(2000).
    143. Ward, J.L., Sherali, A., Mo, Z.P. & Tse, CM. Kinetic and pharmacological properties of cloned human equilibrative nucleoside transporters, ENT1 and ENT2, stably expressed in nucleoside transporter-deficient PK15 cells. Ent2 exhibits a low affinity for guanosine and cytidine but a high affinity for inosine. JBiol Chem. 275, 8375-8381 (2000).
    144.Osato, D.H.et al. Functional characterization in yeast of genetic variants in the human equilibrative nucleoside transporter, ENT1. Pharmacogenetics. 13, 297-301 (2003).
    145. Myers, S.N.et al. Functional single nucleotide polymorphism haplotypes in the human equilibrative nucleoside transporter 1. Pharmacogenet Genomics. 16, 315-320(2006).
    146.Galmarini, C.M., Mackey, J.R. & Dumontet, C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol. 3,415-424 (2002).
    147.Mackey, J.R.et al. Immunohistochemical variation of human equilibrative nucleoside transporter 1 protein in primary breast cancers. Clin Cancer Res. 8, 110-116(2002).
    148.Wiley, J.S., Jones, S.P., Sawyer, W.H. & Paterson, A.R. Cytosine arabinoside influx and nucleoside transport sites in acute leukemia. J Clin Invest. 69, 479-489(1982).
    149.Spratlin, J.et al. The absence of human equilibrative nucleoside transporter 1 is associated with reduced survival in patients with gemcitabine-treated pancreas adenocarcinoma. Clin Cancer Res. 10, 6956-6961 (2004).
    150.Crawford, C.R., Patel, D.H., Naeve, C. & Belt, J.A. Cloning of the human equilibrative, nitrobenzylmercaptopurine riboside (NBMPR)-insensitive nucleoside transporter ei by functional expression in a transport-deficient cell line. J Biol Chem. 113, 5288-5293 (1998).
    151.Lum, P.Y., Ngo, L.Y., Bakken, A.H. & Unadkat, J.D. Human intestinal es nucleoside transporter: molecular characterization and nucleoside inhibitory profiles. Cancer Chemother Pharmacol. 45,273-278 (2000).
    152.Yao, S.Y.et al. Transport of antiviral 3'-deoxy-nucleoside drugs by recombinant human and rat equilibrative, nitrobenzylthioinosine (NBMPR)-insensitive (ENT2) nucleoside transporter proteins produced in Xenopus oocytes. Mol Membr Biol. 18, 161-167 (2001).
    153 Baldwin, S.A.et al. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem. 280,15880-15887 (2005).
    154. Kong, W., Engel, K. & Wang, J. Mammalian nucleoside transporters. Curr Drug Metab. 5, 63-84 (2004).