地震属性及其对实际数据的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震勘探的目标是寻找地下油气藏,地震属性能够用来刻画地下油气藏的地质特征。地震属性是对地震数据特征的度量,地震属性反映了不同类型的物理性质。研究和分析地震属性,就是要找到某些地震属性,这些属性是与目标体地质特征或油藏特征之间有着间接或直接的关系。
     Chapman理论是一个频率相关的孔隙弹性理论,这个理论预测的弹性参数随着频率变化。为了分析这种随频率变化弹性参数,本文研究了匹配逼近时频分析方法。构建一个地层模型,用Chapman理论计算目的层的含烃岩石的弹性参数,然后进行正演得到地震记录。通过应用匹配逼近时频分析方法对正演的地震记录进行分解,能够得到与频率相关的地震振幅能量变化。提取的频变属性能够指示地下油藏中烃类的分布。
     地震曲率是一种重要的地震属性,它与地下断层和裂缝的分布密切相关。在本文中提出了一个新方法来计算体曲率,这个方法基于相干算法,算法原理简单且容易实现。将地震数据分成不同的频带后,对其计算能得到多尺度的体曲率。多尺度的曲率属性反映了地下不同大小的地质结构特征,能为地震解释特供更加丰富的信息。曲率属性和方位AVO的结合能为裂缝解释提供更可信的解释结果。
     转换波处理是地震各向异性理论的一个重要成果。在某些构造区,转换波成像是纵波成像的重要补充。在本文中介绍了转换波理论,并处理了转换波数据。
The goal of seismic exploration is to find subsurface reserviors, and the seismic attributes can be used to characterize geologic characteristics associated with reservoirs. Seismic attributes reflect different types of physical property. The goal of research on and analysis of seismic attributes is to find some seismic attributes, which are directly/indirectly related to the desired geologic feature or reservoir property of interest.
     Chapman’model is a frequency-dependent poroelastic theory. The theory predicts that the elastic coefficients change with frequency. I did some research on MP method in order to anslyze the frequency-dependent property. I made a model of four layers, and the property target layers in this model was calculated on the basis of Chapman’theory, then computed synthetic seismic data for this model. Using MP to decompose the synthetic data, the results show that the erergy of amplitudes vary with frequency. I derived a frequency-dependent seismic attributes, which can be used as a indicator of hydrocarbon distribution.
     Curvature is an important seismic attribute. I propose a new approach way to calculate the curvature. My approach is derived from coherence algorithm. It is straightforward and easily implemented. Using the filtered seismic data, curvatures of different scales can be obtained. Curvatures of different scales reflect geological feactures of different sizes, and provide more information for seismic interpretation. The combination of curvature and AVO can result in a robust interpretation for fracture.
     The technique of processing converted wave is a new outcome of seismic anisotropy theory. Converted wave imaging is complementary to P wave imaging in some area.
引文
Alkhalifah T. Velocity analysis using nonhyperbolic moveout in transversely isotropic media. Geophysics, 1997, 62(6): 1839~1854.
    Al-Dossary S. and Marfurt K.J. 3D volumetric multispectral estimates of reflector curvature and rotation. Geophysics, 2006, 71(5): 41~51.
    Bahorich M. S. and Farmer S. L. 3D seismic discontinuity forfaults and stratigraphic features. The Leading Edge, 1995, 14(10): 1053~1058.
    Bakulin A., Grechkaz V. and Tsvankin I. Estimation of fracture parameters from reflection seismic data—Part I: HTI model due to a single fracture set. Geophysics, 2000, 65(6): 1788~1802.
    Barnes A. E. Theory of 2D complex seismic trace analysis. Geophysics, 1996, 61(1): 264~272.
    Barnes A. E. Weighted average seismic attributes. Geophysics, 2000, 65(1): 275~285.
    Bergbauer S. et al. Improving curvature analyses of deformed horizons using scale-dependent filtering techniques. AAPG Bulletin, 2003, 87(8): 1255~1272.
    Berryman J.G. Confirmation of Biot’s theory. Appl. Phys. Lett., 1980, 37, 382~384.
    Biot, M. A. Theory of propagation of elastic waves in a fluid saturated porous solid. I:Low frequency range, and II: Higherfrequency range. Journal of the Acoustical Society of America, 1956, 28(1), 168~191.
    Blumentritt C.H., et al. Volume-based curvature computations illuminate fracture orientations—Early to mid-Paleozoic, Central Basin Platform, west Texas. Geophysics, 2006, 71(5): 159~166.
    Brown A.R. Seismic attributes and their classification. The Leading Edge, 1996, 15(10): 1090.
    Bruce S., Robin P. and Gepffrey C. 3-D seismic horizon-based approaches to fracture-swarm sweet spot definition in tight-gas reservoirs. The Leading Edge, 2002, 21(1): 28~35.
    Castagna J.P., Sun S. and Seigfried R.W. Instantaneous spectral analysis: detection of low frequency shadows associated with hydrocarbons. The Leading Edge, 2003, 22(2): 120~127.
    Castagna J.P., Swanz H.W., and Foster D.J. Framework for AVO gradient and intercept interpretation. Geophysics, 1998, 63(3): 948~956.
    Chapman M. Modelling the wide-band laboratory response of rock samples to fluid and pressure changes: [PhD thesis]. UK: University of Edinburgh, 2001.
    Chapman M. The dynamic fluid substitution problem. 71st SEG Expanded Abstracts, 2001, 1708~1711.
    Chapman M., Zatsepin S.V. and Crampin S. Derivation of a microstructural poroelastic model. Geophys. J. Int., 2002, 151, 427~451.
    Chapman M. Frequency dependent anisotropy due to meso-scale fractures in the presence of equant porosity. Geophysical Prospecting, 2003, 51, 369~379.
    Chapman M., Liu E. and Li X-Y. The influence of abnormally high reservoir attenuation on the AVO signature. The leading edge, 2005, 24(11): 1120~1125.
    Chapman M. , Liu E. and Li X-Y. The influence of fluid-sensitive dispersion and attenuation on AVO analysis. Geophysical Journal International, 2006, 167, 89~105.
    Chakraborty A. and Okaya D. Frequency-time decomposition of seismic data using wavelet-based Methods. Geophysics, 1995, 60(6): 1906~1916.
    Charlotte E.S., Marfurt K.J., Lacazette A. and Ammerman M. Application of new seismic attributes to collapse chimneys in the Fort Worth Basin. Geophysics, 2006, 71(4): 111~119.
    Chen H., Brown R.L. and Castagna J.P. AVO for one- and two-fracture set models. Geophysics, 2005, 70(2): C1~C5.
    Chopra S. and Marfurt K.J. Volumetric curvature attributes add value to 3D seismic data interpretation. The Leading Edge, 2007, 26(7): 856~867.
    Coifman R.R. and Wickerhauser M.V. Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Th., 1992, 38, 713~719.
    Cooper G.R.J. and Cowan D.R. The meter reader—Sunshading geophysical data using fractional order horizontal gradients. The Leading Edge, 2003, 22(3): 204~205.
    Dai H. Integrative analysis of anisotropy parameter and velocities for PS converted waves. 73rd SEG Expanded Abstracts, 2003, 1577~1580.
    Dai H. Parallel processing of prestack Kirchhoff time migration on a Beowulf Cluster. Computers and geosciences, 2005, 31(7): 891~899.
    Dai H. and Li X. Anisotropic migration and model building for 4-C seismic data: A case study from Alba. 71st SEG Expanded Abstracts, 2001, 795~798.
    Dai H. and Li X-Y. A practical approach to update the migration velocity model for PS converted wave. 72nd SEG Expanded Abstracts, 2002, 2227~2230.
    Dai H. and Li X-Y. Migration velocity analysis of c-wave using INMO-CIP gather of PKTM: a case study from the Gulf of Mexico. 65th EAGE Expanded Abstracts, 2003, P106.
    Dai H. and Li X-Y. A simplified moveout formula for P-, S- and converted waves in multi-layered media. 67th EAGE, Extended Abstracts, 2005, P061.
    Dai H. and Li X-Y. Converted waves X-window tools (CXtools)– Development and applications. EAP annual report, 13(A1): 2006, 1-21.
    Dai H. and Li X-Y. Velocity model updating in prestack Kirchhoff time migration for PS converted waves: Part I– Theory. Geophysical Prospecting, 2007, 55(4): 525~547.
    Dai H. and Li X-Y. Velocity model updating in prestack Kirchhoff time migration for PS converted waves: Part II– Application. Geophysical Prospecting, 2007, 55(4): 549~559.
    Dai H., Li, X-Y and Conway P. 3D pre-stack Kirchhoff time migration of PS-waves and migration velocity model building. 74th SEG Expanded Abstracts, 2004, 1115~1118.
    Dai H., Li X-Y. and Conway P. Imaging beneath gas clouds using 3D pre-stack Kirchhoff time migration of PS-waves– A case study from North Sea. The Leading Edge, 2007, 26(4): 522~529.
    David P.K. and Mark P. F. An experimental evaluation of the curvature-strain relation in fault-related folds. AAPG Bulletin, 2008, 92(7): 869~884.
    Durka P.J., Ircha D. and Blinowska K.J. Stochastic Time-Frequency Dictionaries for Matching Pursuit. IEEE Transactions on Signal Processing, 2001, 49(3): 507~510.
    Durka P.J., Matysiak A., Martinez Montes E., Valdes Sosa P. and Blinowska K.J. Multichannel matching pursuit and EEG inverse solutions. Journal of Neuroscience Methods, 2005, 148(1): 49~59.
    Dvorkin J., Mavko G. and Nur A. Squirt flow in fully saturated rocks. Geophysics, 1995, 60(1): 97~107.
    Dvorkin J. and Nur A. Dynamic poroelasticity: a unified model with the squirt and Biotmechanisms. Geophysics, 1993, 58(4): 524~533.
    Ebrom D. The low-frequency gas shadow on seismic sections. The Leading Edge, 2004, 23(8): 772.
    Endres A.L. and Knight R.J. Incorporating pore geometry and fluid pressure communica-tion into modeling the elastic behaviour of porous rocks. Geophysics, 1997, 62(1): 106~117.
    Eshelby J.D. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond., A., 1957, 241, 376~396.
    Gabor D. Theory of communication. Journal of the Institute of Electrical Engineers, 1946, 93, 429~457.
    Gassmann F. Uber die Elastizitat poroser Medien. Vie. der Natur Gesellschaft in Zurich, 1951, 96, 1~23.
    Gersztenkorn A. and Marfurt K.J. Eigenstructure-based coherence computations as an aid to 3D structural and stratigraphic mapping. Geophysics, 1999, 64(5): 1446~1479.
    Hart B.S., Pearson R. and Rawling G.C. 3D Seismic horizon based approaches to fracture-swarm sweet spot definition in tight-gas reservoirs. The Leading Edge, 2002, 21(1): 28~35.
    Helbig K. and Thomsen L. 75-plus years of anisotropy in exploration and reservoir seismics: A historical review of concepts and methods. Geophysics, 2005, 70(6): 9~23.
    Henderson J., Purves S.J. and Fisher G. Delineation of geological elements from RGB color blending of seismic attribute volumes. The Leading Edge, 2008, 27 (3): 342~350.
    Hudson J.A., Liu E. and Crampin S. The mechanical properties of materials with intercomnected cracks and pores. Geophys. J. Int., 1996, 124, 105~112.
    Jenner E. Azimuthal AVO: Methodology and data examples. The Leading Edge, 2002, 21(8): 782~786.
    John W.S., Jr. and Jack K.C. The new SU user’s manual. Version 3.3, 2007.
    Jones T. Pore fluids and frequency-dependent wave propagation in rocks. Geophysics, 1986, 51(10): 1939~1953.
    Li X-Y, Dai H. and Yuan Jerry. Converted-wave imaging in inhomogenuous,anisotropic media: part II - prestack migration. 63rd EAGE Expanded Abstracts, 2001, 114.
    Li X-Y, Dai H. and Mancini F. Converted-wave imaging in anisotropic media: Theory and case studies. Geophysical Prospecting, 2007, 55(3): 345~363.
    Li X-Y, and Druzhinin A. A practical approach to P-SV prestack time migration and velocity analysis for transverse isotropy. 70th SEG Expanded Abstracts, 2000, 1142~1145.
    Li X-Y and Yuan J. Converted-wave moveout and conversion-point equations in layered VTI media: theory and application. Journal of Applied Geophysics, 2003, 54, 297~318.
    Lisle R.J. Detection of zones of abnormal strains in structures using Gaussian curvature analysis. AAPG Bulletin, 1994, 78(12): 1811~1819.
    Liu E. and Chapman M. A practical guide to time-frequency representation and spectral decomposition method. EAP Report, 2005, 13(C3): 1~43.
    Mallat S. A theory of multi resolution signal decomposition, the wavelet representation. IEEE Transactions, Pattern analysis and machine intelligence, 1989, 11, 674~693.
    Mallat S. and Zhang Z. Matching pursuit with time-frequency dictionaries. IEEE Transactions. Signal Processing, 1993, 41, 3397~3415.
    Mancini F., Li X-Y, Ziolkowki A., and Pointer T. Interpreting velocity ratios from 4C seismic data and well logs in the presence of gas and anisotropy, 72nd Mtg.: SEG Expanded Abstract, 2002, 1002~1005.
    Marfurt K.J. Robust estimates of 3D reflector dip. Geophysics, 2006, 71(4): 29~40.
    Marfurt K.J. and Kirlin R.L. 3D broad-band estimates of reflector dip and amplitude. Geophysics, 2000, 65(1): 304~320.
    Marfurt K.J., et al. 3D seismic attributes using a semblance-based coherency algorithm. Geophysics, 1998, 63(4): 1150~1165.
    Morlet J.G., Arens E.F. and D. Giard. Wave propagation and sampling theory: Part I, Complex signal and scattering in multilayered media, and Part II, Sampling theory and complex waves. Geophysics, 1982, 47(2): 203~236.
    Odebeatu E., Zhang J., Chapman M., Liu E. and Li X-Y. Application of spectral decom-position to detection of dispersion anomalies associated with gas saturation.The leading edge, 2006, 25(2): 206~210.
    Perez M.A., Gibson Jr R.L. Detection of fracture orientation using azimuthal variation of P-wave AVO responses: Barinas field(Venezuela). 66th SEG Expanded Abstracts, 1996, 1553~1556.
    Pointer T., Liu E. and Hudson J.A. Seismic wave propagation in cracked porous media. Geophys. J. Int., 2000, 142, 199~231.
    Qian S. and D. Chen. Signal representation via adaptive normalized Gaussian functions. Signal Processing, 1994, 36, 1~11.
    Roberts A. Curvature attributes and their application to 3D interpreted horizons. First Break, 2001, 19(2): 85~100.
    Rommel B.E. Dip move out processing (DMO) for converted waves in transversely isotropic media. 58th EAGE Expanded Abstract, 1996, P136.
    Rüger A. and Tsvankin I. Azimuthal variation of AVO response for fractured reservoirs. 65th SEG Expanded Abstracts, 1995, 1103~1106.
    Rüger A. and Tsvankin I. Using AVO for fracture detection: Analytic basis and practical solutions. The Leading Edge, 1997, 16(10): 1429~1434.
    Sheriff R.E. Encyclopedic Dictionary of Applied Geophysics (Fourth Edition). USA: Society of Exploration Geophysicists, 2002.
    Sothcott J., McCann C. and O'Hara S.G. The influence of two different pore fluids on the acoustic properties of reservoir sandstones at sonic and ultrasonic frequencies. 70th SEG Expanded Abstracts, 2000, 1883~1886.
    Stewart R.R., Gaiser J.E., Brown R.J. and Lawton D.C. Converted-wave seismic exploration: Methods. Geophysics, 2002, 67(5): 1348~1363.
    Taner M.T., F.Koehler and R.E. Sherrif. Complex seismic trace analysis. Geophysics, 1979, 44(6): 1041~1063.
    Tang J., Zhang S. and Li X-Y. PP and PS seismic response from fractured tight gas reservoirs: a case study. Journal of Geophysics and Engineering, 2008, 5, 92~102.
    Taylor D.B. ANISEIS 5.2 MANUAL. 2001.
    Tessmer G. and Behle A. Common-conversion point stacking technique for converted waves. Geophysical Prospecting, 1988, 36(6): 671~688.
    Thomsen L. Converted-wave reflection seismology over inhomogeneous, anisotropicmedia. Geophysics, 1999, 64(3): 678~690.
    Torreao J.R.A. and Amaral M.S. Signal differentiation through a Green’s function approach. Pattern Recognition Letters, 2002, 23, 1755~1759.
    Tsvankin I. and Grechka V. Dip moveout of converted waves and parameter estimation in transversely isotropic media. Geophysical Prospecting, 2000, 48(2): 257~292.
    Tsvankin I. and Thomsen L. Nonhyperbolic reflection moveout in anisotropic media. Geophysics, 1994, 59(8): 1290~1304.
    Wang Y. Seismic time-frequency spectral decomposition by matching pursuit. Geophysics, 2007, 72(1): 13~20.
    White R. The accuracy of estimating Q from seismic data. Geophysics, 1992, 57(11): 1508~1511.
    Wu T.T. The effect of inclusion shape on the elastic moduli of a two phase material. Int. J. Solids Structures, 1966, 2, 1~8.
    Yuan J. Analysis of four-component seafloor seismic data for seismic anisotropy: [Ph.D. thesis]. UK: The University of Edinburgh, 2001.
    Zatsepin S.V. and Crampin S. Modelling the compliance of crustal rock. I. Response of shear-wave splitting to differential stress. Geophys. J. Int., 1997, 129, 477~494.
    Zhang J., Chapman M., Li X-Y. and Liu E. Analysis of frequency-dependent variation for fluid detection in thin-bedded sand, part I: theory and numerical modelling. EAP Report, 2005, 13(C3): 1~29.
    牛滨华,孙晟,孙春岩.位移函数地震波在界面广义散射,北京,地质出版社,2010年5月.
    牛滨华,孙晟,孙春岩,位移位函数地震波在界面的广义散射,北京,地质出版社,2008年2月.
    牛滨华,孙春岩,黏弹性介质与地震波传播—半空间均匀各向同性,北京,地质出版社,2006年12月.
    牛滨华,孙春岩,固体弹性介质与地震波传播—半空间均匀各向同性单相,2005年12月,北京,地质出版社.
    牛滨华,孙春岩,半空间介质与地震波传播,北京,石油工业出版社,2002年10月.
    牛滨华,孙春岩,李明,各向同性固体连续介质与地震波传播,北京,石油工业出版社,2002年9月.