用户名: 密码: 验证码:
聚芴类共轭聚电解质、聚合物的合成及结构性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
共轭聚合物是一类集合了半导体的光学、电学性能与聚合物优异的机械加工性能、易操作性能的新型材料。目前,共轭聚合物已经被广泛的应用于光电器件及传感器等领域。共轭聚电解质是一类包含共轭主链和可以在极性溶剂中离子化的功能性官能团的聚合物。由于集合了电子离域聚合物的半导体性质和光捕获性质,以及聚电解质的电荷调节行为,共轭聚电解质表现出一些不同于中性共轭聚合物的独特的性质与功能,从而引起了人们的广泛关注。本论文立足于新型共轭聚电解质、聚合物的设计与合成。一方面致力于提高共轭聚电解质在水中的溶解度,通过结构修饰调控共轭聚电解质的性质。另一方面设计合成了一系列侧链含有功能性官能团的共轭聚合物和齐聚物,它们的侧链官能团可与氟离子发生反应生成共轭聚电解质,应用这一性质可以制备化学方法固定的p-n结聚合物半导体双层器件。主要工作包括以下几个方面:
     1.通过在侧链上引入高的电荷密度和采用合适的侧链长度,合成了一种在水中具有极高的溶解度和很高的荧光量子效率的共轭聚电解质。将此材料作为电子注入层,可以有效地改善有机发光二极管的器件性能。通过调节聚电解质的季胺化程度,可以调节其在水中的溶解度,从而有效地调控其在溶液以及薄膜中的光物理性质。合成了一系列水溶性的芴与联吡啶的共聚物,研究了它们在水溶液中的光学性质和离子传感性质。
     2.设计合成了一种新型的含有芴-苯共轭主链和二米基硼官能团侧链的共轭聚合物。该聚合物的二米基硼可以与氟离子反应从而形成共轭聚电解质。应用这种聚合物和抗衡离子为氟离子的共轭聚电解质,利用B-F共价键的形成,可以制备化学固定的p-n结有机半导体双层器件。这个器件的发光电化学池行为没有开启延迟,并且表现出了极好的电流整流。
     3.通过不同的合成方法与结构设计的尝试,合成了一种可溶性的同时含寡聚氧化乙烯侧链与二米基硼官能团的共轭聚合物。为了更好地理解含这两种官能团聚合物的结构与性质的关系,合成了它们的模型化合物-齐聚物,初步研究了其光学性质与热力学性质。
Conjugated polymers are a novel class of materials that combine the optical and electronic properties of semiconductors with the attractive mechanical properties and processing advantages of polymers. These days, conjugated polymers have been widely used in optoelectronic devices and sensors. Conjugated polyelectrolytes (CPEs) are polymers that contain aπconjugated backbone and functional groups that ionize in high dielectric media. Because of combining the semiconducting and light harvesting properties characteristic of electronically delocalized polymers with the charge-mediated behavior of polyelectrolytes,conjugated polyelectrolytes exhibit some unique properties and functionalities as compared with neutral conjugated polymer, and thus become more and more attractive in recent years. Because the properties of conjugated polymers can be fined-tuned by manipulation of their chemical structures, considerable research efforts have been directed towards the preparation of well-defined conjugated polymers. This thesis mainly focused on the design and synthesis of novel conjugated polyelectrolytes/polymers. On one hand, we aimed on increasing the water solubility of conjugated polyelectrolytes and adjusting conjugated polyelectrolytes properties by modification of the structure. On the other hand, we designed and synthesized several conjugated polymers/oligomers with functionalized groups on the side chains which can combine a fluoride ion and form conjugated polyelectrolytes. By application of this property, these polymers can be used for fabrication of chemically fixed p-n junction polymer semiconducting bilayers.
     Conjugated polyelectrolytes (CPEs) presumably tends to come together and aggregate to minimize exposure of the backbone to polar solvent such as water due to the extremely hydrophobic nature of the conjugated backbone. Lots of reported conjugated polyelectrolytes behave with low solubility and low fluorescence in water, which badly limited their applications. So it is most important to design and synthesize water-soluble conjugated polymers with high solubility. By introducing high charge density to the side chains of the polymer and adopting appropriated side chain length, we synthesized a water soluble conjugated polymer with excellent water solubility up to 100 mg ml-1 as well as high PL quantum yield of 44% in water. The standard NPB/Alq3 device using this polyelectrolyte as the electron injection layer shows nearly 3 times enhancement in the EL efficiency. Through controlling of the reaction time we have synthesized a series of conjugated polyelectrolytes with different quaternization degrees. The relationships of the solubility and the PL quantum yield with the quaternization degree have also been demonstrated. AFM was used to investigate the aggregation behavior of the polyelectrolytes in films. By rational incorporation of functional group-bipyridyl to the conjugated backbone, we have prepared a series of fluorene based bipyridine containing water soluble conjugated polymers. The aqueous solution behavior and ion responsive properties of these polyelectrolytes were studied.
     In LECs, the ion motion that is required for the operation of these devices leads to long temporal responses and a dynamic electronic structure. So, the development of new materials and new methods to fix the ions is desirable. We designed and prepared a new conjugated polymer PFP-BMes which composed of poly (fluorene-co-phenylene) PFP conjugated backbone and dimesitylboron functionality attached to its side chains. The dimesitylboryl group in PFP-BMes can be modified by a fluoride source in solution, and thus form a polyelectrolyte. A permanently-fixed organic p-n heterojunctions can thus be achieved by using this polymer with dimesitylboron functionality (anion-trapping functional groups) and an uplayer of a cationic conjugated polyelectrolyte (CPE) with fluoride counteranions. The devices show no delay in the turn on of light-emitting electrochemical behavior and excellent current rectification.
     The ionic conducting polymer poly(ethylene oxide) (PEO) is usually used to facilitate the ion motion in a typical LECs. However, due to the polarity difference of the PEO and the EL polymers, phase separation between these two polymers occurs as they mixed together, which can significantly degrade the device performance. In order to solve this problem, we sought to incorporate short PEO chains into dimesitylboryl functionality containing conjugated polymers. However, the desired polymer encountered a solubility problem. Different synthetic strategies were tried and a variety of polymer structures were designed to make this kind of polymer soluble. Finally, by rational incorporation of a unit with branched structures, we got a conjugated polymer with very good solubility. To better understand the relationship between the property and structure of this kind of polymers, we synthesized an oligomer combining both of the functionalities, and studied its optical properties and thermal properties.
引文
[1] Burroughes J. H., Bradley D. D. C., Brown A. R., Marks R. N., Mackay K., Friend R. H., et al. LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS. Nature, 1990, 347: 539.
    [2] Braun D., Heeger A. J. VISIBLE-LIGHT EMISSION FROMSEMICONDUCTING POLYMER DIODES. Appl. Phys. Lett., 1991, 58: 1982.
    [3] Gustafsson G., Cao Y., Treacy G. M., Klavetter F., Colaneri N., Heeger A. J. FLEXIBLE LIGHT-EMITTING-DIODES MADE FROM SOLUBLE CONDUCTING POLYMERS. Nature, 1992, 357: 477.
    [4] Burroughes J. H., Jones C. A., Friend R. H. NEW SEMICONDUCTOR-DEVICE PHYSICS IN POLYMER DIODES AND TRANSISTORS. Nature, 1988, 335: 137.
    [5] Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J. POLYMER PHOTOVOLTAIC CELLS - ENHANCED EFFICIENCIES VIA A NETWORK OF INTERNAL DONOR-ACCEPTOR HETEROJUNCTIONS. Science, 1995, 270: 1789.
    [6] Wessling R. A. THE POLYMERIZATION OF XYLYLENE BISDIALKYL SULFONIUM SALTS. J. Poly. Sci. Poly. Symp., 1985: 55.
    [7] Lenz R. W., Han C. C., Stengersmith J., Karasz F. E. PREPARATION OF POLY(PHENYLENE VINYLENE) FROM CYCLOALKYLENE SULFONIUM SALT MONOMERS AND POLYMERS. J. Poly. Sci. Part. A. Poly. Chem., 1988, 26: 3241.
    [8] Tokito S., Momii T., Murata H., Tsutsui T., Saito S. POLYARYLENEVINYLENE FILMS PREPARED FROM PRECURSOR POLYMERS SOLUBLE IN ORGANIC-SOLVENTS. Polymer, 1990, 31: 1137.
    [9] Burn P. L., Bradley D. D. C., Friend R. H., Halliday D. A., Holmes A. B., Jackson R. W., et al. PRECURSOR ROUTE CHEMISTRY AND ELECTRONIC-PROPERTIES OF POLY(P-PHENYLENE-VINYLENE), POLY (2,5-DIMETHYL-P-PHENYLENE)VINYLENE AND POLY (2,5-DIMETHOXY-P-PHENYLENE)VINYLENE. J. Chem. Soc. Perk. Trans., 1992: 3225.
    [10] Garay R. O., Baier U., Bubeck C., Mullen K. LOW-TEMPERATURE SYNTHESIS OF POLY(P-PHENYLENEVINYLENE) BY THE SULFONIUM SALT ROUTE. Adv. Mater., 1993, 5: 561.
    [11] Gilch H. G., Wheelwri.Wl. POLYMERIZATION OF ALPHA-HALOGENATED P-XYLENES WITH BASE. J. Poly. Sci. Part. A. Poly. Chem., 1966, 4: 1337.
    [12] Wan W. C., Antoniadis H., Choong V. E., Razafitrimo H., Gao Y., Feld W. A., et al. Halogen precursor route to poly (2,3-diphenyl-p-phenylene)vinylene (DP-PPV): Synthesis, photoluminescence, electroluminescence, and photoconductivity. Macromolecules, 1997, 30: 6567.
    [13] Neef C. J., Ferraris J. P. MEH-PPV: Improved synthetic procedure and molecular weight control. Macromolecules, 2000, 33: 2311.
    [14] Hwang D. H., Shim H. K., Lee J. I., Lee K. S. SYNTHESIS AND PROPERTIES OF MULTIFUNCTIONAL POLY(2-TRIMETHYLSILYL-1,4-PHENYLENE- VINYLENE)-ANOVEL, SILICON-SUBSTITUTED, SOLUBLE PPV DERIVATIVE. J. Chem. Soc. Chem. Comm., 1994: 2461.
    [15] Zhang C., Hoger S., Pakbaz K., Wudl F., Heeger A. J. IMPROVED EFFICIENCY IN GREEN POLYMER LIGHT-EMITTING-DIODES WITH AIR-STABLE ELECTRODES. J. Electron. Mater., 1994, 23: 453.
    [16] Kim S. T., Hwang D. H., Li X. C., Gruner J., Friend R. H., Holmes A. B., et al. Efficient green electroluminescent diodes based on poly(2-dimethyloctylsilyl-1,4-phenylenevinylene). Adv. Mater., 1996, 8: 979.
    [17] Horhold H. H., Helbig M. POLY(PHENYLENEVINYLENE)S - SYNTHESIS AND REDOXCHEMISTRY OF ELECTROACTIVE POLYMERS. Macromole. Symp., 1987, 12: 229.
    [18] Leclerc M., Diaz F. M., Wegner G. STRUCTURAL-ANALYSIS OF POLY(3-ALKYLTHIOPHENE)S. Macromole. Chem. Phys., 1989, 190: 3105.
    [19] Uchida M., Ohmori Y., Morishima C., Yoshino K. VISIBLE AND BLUE ELECTROLUMINESCENT DIODES UTILIZING POLY(3-ALKYLTHIOPHENE)S AND POLY(ALKYLFLUORENE)S. Synth. Met., 1993, 57: 4168.
    [20] Ohmori Y., Uchida M., Muro K., Yoshino K. EFFECTS OF ALKYL CHAIN-LENGTH AND CARRIER CONFINEMENT LAYER ON CHARACTERISTICS OF POLY(3-ALKYLTHIOPHENE) ELECTROLUMINESCENT DIODES. Solid. State. Commun., 1991, 80: 605.
    [21] Braun D., Gustafsson G., McBranch D., Heeger A. J. ELECTROLUMINESCENCE AND ELECTRICAL TRANSPORT INPOLY(3-OCTYLTHIOPHENE) DIODES. J. Appl. Phys., 1992, 72: 564.
    [22] Garten F., Schlatmann A. R., Gill R. E., Vrijmoeth J., Klapwijk T. M., Hadziioannou G. LIGHT-EMISSION IN REVERSE BIAS OPERATION FROM POLY(3-OCTYLTHIOPHENE)-BASED LIGHT-EMITTING-DIODES. Appl. Phys. Lett., 1995, 66: 2540.
    [23] Liu Y. Q., Jiang X. Z., Li Q. L., Xu Y., Zhu D. B. Electroluminescence devices made with poly(alkylthiophenes). Synth. Met., 1997, 85: 1285.
    [24] Miyazaki Y., Yamamoto T. POLY (THIOPHENE-2,5-DIYL) HAVING CROWN ETHEREAL SUBUNIT - PREPARATION, STABLE N-DOPED STATE, AND LIGHT-EMITTING DIODE. Chem. Lett., 1994: 41.
    [25] Berggren M., Gustaffson G., Inganas O., Andersson M. R., Wennerstrom O., Hjertberg T. GREEN ELECTROLUMINESCENCE IN POLY-(3-CYCLOHEXYLTHIOPHENE) LIGHT-EMITTING-DIODES. Adv. Mater., 1994, 6: 488.
    [26] Andersson M. R., Berggren M., Inganas O., Gustafsson G., Gustafssoncarlberg J. C., Selse D., et al. ELECTROLUMINESCENCE FROM SUBSTITUTED POLY(THIOPHENES) - FROM BLUE TO NEAR-INFRARED. Macromolecules, 1995, 28: 7525.
    [27] Inganas O., Berggren M., Andersson M. R., Gustafsson G., Hjertberg T., Wennerstrom O., et al. THIOPHENE POLYMERS IN LIGHT-EMITTING-DIODES - MAKING MULTICOLOR DEVICES. Synth. Met., 1995, 71: 2121.
    [28]Andersson M. R., Thomas O., Mammo W., Svensson M., Theander M., Inganas O. Substituted polythiophenes designed for optoelectronic devices and conductors. J. Mater. Chem., 1999, 9: 1933.
    [29] Hou J. H., Tan Z. A., Yan Y., He Y. J., Yang C. H., Li Y. F. Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J. Am. Chem. Soc., 2006, 128: 4911.
    [30] Li Y. F., Zou Y. P. Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv. Mater., 2008, 20: 2952.
    [31] Zhu Z., Waller D., Gaudiana R., Morana M., Muhlbacher D., Scharber M., et al.Panchromatic conjugated polymers containing alternating donor/acceptor units for photovoltaic applications. Macromolecules, 2007, 40: 1981.
    [32] Hou J. H., Chen H. Y., Zhang S. Q., Li G., Yang Y. Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. J. Am. Chem. Soc., 2008, 130: 16144.
    [33] McCulloch I., Heeney M., Bailey C., Genevicius K., Macdonald I., Shkunov M., et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater., 2006, 5: 328.
    [34] van Duren J. K. J., Dhanabalan A., van Hal P. A., Janssen R. A. J. Low-bandgap polymer photovoltaic cells. Synth. Met., 2001, 121: 1587.
    [35] Lee J. I., Klaerner G., Miller R. D. Structure-property relationship for excimer formation in poly(alkylfluorene) derivatives. Synth. Met., 1999, 101: 126.
    [36] Kreyenschmidt M., Klaerner G., Fuhrer T., Ashenhurst J., Karg S., Chen W. D., et al. Thermally stable blue-light-emitting copolymers of poly(alkylfluorene). Macromolecules, 1998, 31: 1099.
    [37] Klarner G., Davey M. H., Chen W. D., Scott J. C., Miller R. D. Colorfast blue-light-emitting random copolymers derived from di-n-hexylfluorene and anthracene. Adv. Mater., 1998, 10: 993.
    [38] Suh Y. S., Ko S. W., Jung B. J., Shim H. K. Synthesis and electroluminescent properties of cyclohexyl-substituted polyfluorenes. Opt. Mater., 2003, 21: 109.
    [39] Setayesh S., Grimsdale A. C., Weil T., Enkelmann V., Mullen K., Meghdadi F., et al. Polyfluorenes with polyphenylene dendron side chains: Toward non-aggregating, light-emitting polymers. J. Am. Chem. Soc., 2001, 123: 946.
    [40] Wu Y. G., Li J., Fu Y. Q., Bo Z. S. Synthesis of extremely stable blue light emitting poly(spirobifluorene)s with suzuki polycondensation. Org. Lett., 2004, 6: 3485.
    [41] Setayesh S., Marsitzky D., Mullen K. Bridging the gap between polyfluorene and ladder-poly-p-phenylene: Synthesis and characterization of poly-2,8-indenofluorene. Macromolecules, 2000, 33: 2016.
    [42] Jacob J., Zhang J. Y., Grimsdale A. C., Mullen K., Gaal M., List E. J. W.Poly(tetraarylindenofluorene)s: New stable blue-emitting polymers. Macromolecules, 2003, 36: 8240.
    [43] Jacob J., Oldridge L., Zhang J. Y., Gaal M., List E. J. W., Grimsdale A. C., et al. Progress towards stable blue light-emitting polymers. Curr. Appl. Phys., 2004, 4: 339.
    [44] Chen J. P., Markiewicz D., Lee V. Y., Klaerner G., Miller R. D., Scott J. C. Improved efficiencies of light-emitting diodes through incorporation of charge transporting components in tri-block polymers. Synth. Met., 1999, 107: 203.
    [45] Schulz G. L., Chen X. W., Holdcroft S. High band gap poly(9,9-dihexylfluorene-alt-bithiophene) blended with 6,6 -phenyl C-61 butyric acid methyl ester for use in efficient photovoltaic devices. Appl. Phys. Lett., 2009, 94: 023302.
    [46] Herguch P., Jiang X. Z., Liu M. S., Jen A. K. Y. Highly efficient fluorene- and benzothiadiazole-based conjugated copolymers for polymer light-emitting diodes. Macromolecules, 2002, 35: 6094.
    [47] Campbell A. J., Bradley D. D. C., Antoniadis H. Dispersive electron transport in an electroluminescent polyfluorene copolymer measured by the current integration time-of-flight method. Appl. Phys. Lett., 2001, 79: 2133.
    [48] Schulz G. L., Holdcroft S. Conjugated Polymers Bearing Iridium Complexes for Triplet Photovoltaic Devices. Chem. Mater., 2008, 20: 5351.
    [49] Fukuda M., Sawada K., Yoshino K. FUSIBLE CONDUCTING POLY(9-ALKYLFLUORENE) AND POLY(9,9-DIALKYLFLUORENE) AND THEIR CHARACTERISTICS. Jap. J. Appl. Phys. Part. Lett., 1989, 28: L1433.
    [50] Fukuda M., Sawada K., Yoshino K. SYNTHESIS OF FUSIBLE AND SOLUBLE CONDUCTING POLYFLUORENE DERIVATIVES AND THEIR CHARACTERISTICS. J. Poly. Sci. Part. A. Poly. Chem., 1993, 31: 2465.
    [51] Yamamoto T., Morita A., Miyazaki Y., Maruyama T., Wakayama H., Zhou Z., et al. PREPARATION OF PI-CONJUGATED POLY(THIOPHENE-2,5-DIYL), POLY(PARA-PHENYLENE), AND RELATED POLYMERS USING ZERO VALENT NICKEL-COMPLEXES - LINEAR STRUCTURE AND PROPERTIES OF THE PI-CONJUGATED POLYMERS. Macromolecules, 1992, 25: 1214.
    [52] Pei Q. B., Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc., 1996, 118: 7416.
    [53] Ranger M., Rondeau D., Leclerc M. New well-defined poly(2,7-fluorene) derivatives: Photoluminescence and base doping. Macromolecules, 1997, 30: 7686.
    [54] Bernius M. T., Inbasekaran M., O'Brien J., Wu W. S. Progress with light-emitting polymers. Adv. Mater., 2000, 12: 1737.
    [55] Bao Z. N., Chan W. K., Yu L. P. Exploration of the Stille coupling reaction for the syntheses of functional polymers. J. Am. Chem. Soc., 1995, 117: 12426.
    [56] Pei Q. B., Yu G., Zhang C., Yang Y., Heeger A. J. POLYMER LIGHT-EMITTING ELECTROCHEMICAL-CELLS. Science, 1995, 269: 1086.
    [57] Pei Q. B., Yang Y., Yu G., Zhang C., Heeger A. J. Polymer light-emitting electrochemical cells: In situ formation of a light-emitting p-n junction. J. Am. Chem. Soc., 1996, 118: 3922.
    [58] Pei Q. B., Yang Y. Solid-state polymer light-emitting electrochemical cells. Synth. Met., 1996, 80: 131.
    [59] Pei Q., Yang Y., Yu G., Cao Y., Heeger A. J. Solid state polymer light-emitting electrochemical cells: Recent developments. Synth. Met., 1997, 85: 1229.
    [60] Yang Y. Polymer electroluminescent devices. MRS Bull., 1997, 22: 31.
    [61] Gao J., Yu G., Heeger A. J. Polymer light-emitting electrochemical cells with frozen p-i-n junction. Appl. Phys. Lett., 1997, 71: 1293.
    [62] Gao J., Li Y. F., Yu G., Heeger A. J. Polymer light-emitting electrochemical cells with frozen junctions. J. Appl. Phys., 1999, 86: 4594.
    [63] Leger J. M., Rodovsky D. B., Bartholomew G. R. Self-assembled, chemically fixed homojunctions in semiconducting polymers. Adv. Mater., 2006, 18: 3130.
    [64] Leger J. M., Patel D. G., Rodovsky D. B., Bartholomew G. P. Polymer photovoltaic devices employing a chemically fixed p-i-n junction. Adv. Funct. Mater., 2008, 18: 1212.
    [65] Brabec C. J., Sariciftci N. S., Hummelen J. C. Plastic solar cells. Adv. Funct. Mater., 2001, 11: 15.
    [66] Gunes S., Neugebauer H., Sariciftci N. S. Conjugated polymer-based organicsolar cells. Chem. Rev., 2007, 107: 1324.
    [67] Wohrle D., Meissner D. ORGANIC SOLAR-CELLS Adv. Mater., 1991, 3: 129.
    [68] Tang C. W. 2-LAYER ORGANIC PHOTOVOLTAIC CELL. Appl. Phys. Lett., 1986, 48: 183.
    [69] Sariciftci N. S., Smilowitz L., Heeger A. J., Wudl F. PHOTOINDUCED ELECTRON-TRANSFER FROM A CONDUCTING POLYMER TO BUCKMINSTERFULLERENE. Science, 1992, 258: 1474.
    [70] Patil A. O., Ikenoue Y., Wudl F., Heeger A. J. WATER-SOLUBLE CONDUCTING POLYMERS. J. Am. Chem. Soc., 1987, 109: 1858.
    [71] Schottland P., Fichet O., Teyssie D., Chevrot C. Langmuir-Blodgett films of an alkoxy derivative of poly(3,4-ethylenedioxythiophene). Synth. Met., 1999, 101: 7.
    [72] Cutler C. A., Bouguettaya M., Kang T. S., Reynolds J. R. Alkoxysulfonate-functionalized PEDOT polyelectrolyte multilayer films: Electrochromic and hole transport materials. Macromolecules, 2005, 38: 3068.
    [73] Shi S. Q., Wudl F. SYNTHESIS AND CHARACTERIZATION OF A WATER-SOLUBLE POLY(PARA-PHENYLENEVINYLENE) DERIVATIVE. Macromolecules, 1990, 23: 2119.
    [74] Gu Z., Bao Y. J., Zhang Y., Wang M., Shen Q. D. Anionic water-soluble poly(phenylenevinylene) alternating copolymer: High-efficiency photoluminescence and dual electroluminescence. Macromolecules, 2006, 39: 3125.
    [75] Peng Z. H., Xu B. B., Zhang J. H., Pan Y. C. Synthesis and optical properties of water-soluble poly(p-phenylenevinylene)s. Chem. Commun., 1999: 1855.
    [76] Fan Q. L., Lu S., Lai Y. H., Hou X. Y., Huang W. Synthesis, characterization, and fluorescence quenching of novel cationic phenyl-substituted poly(p-phenylenevinylene)s. Macromolecules, 2003, 36: 6976.
    [77] Wallow T. I., Novak B. M. IN AQUA SYNTHESIS OF WATER-SOLUBLE POLY(PARA-PHENYLENE) DERIVATIVES. J. Am. Chem. Soc., 1991, 113: 7411.
    [78] Rulkens R., Schulze M., Wegner G. RIGID-ROD POLYELECTROLYTES - SYNTHESIS OF SULFONATED POLY(P-PHENYLENE)S. Macromol. Rapid Commun., 1994, 15: 669.
    [79] Child A. D., Reynolds J. R. WATER-SOLUBLE RIGID-ROD POLYELECTROLYTES - A NEW SELF-DOPED, ELECTROACTIVE SULFONATOALKOXY-SUBSTITUTED POLY(P-PHENYLENE). Macromolecules, 1994, 27: 1975.
    [80] Brodowski G., Horvath A., Ballauff M., Rehahn M. Synthesis and intrinsic viscosity in salt-free solution of a stiff-chain cationic poly(p-phenylene) polyelectrolyte. Macromolecules, 1996, 29: 6962.
    [81] Ramey M. B., Hiller J. A., Rubner M. F., Tan C. Y., Schanze K. S., Reynolds J. R. Amplified fluorescence quenching and electroluminescence of a cationic poly(p-phenylene-co-thiophene) polyelectrolyte. Macromolecules, 2005, 38: 234.
    [82] Li C. J., Slaven W. T., John V. T., Banerjee S. Palladium catalysed polymerization of aryl diiodides with acetylene gas in aqueous medium: a novel synthesis of areneethynylene polymers and oligomers. Chem. Commun., 1997: 1569.
    [83] Slaven W. T., Li C. J., Chen Y. P., John V. T., Rachakonda S. H. In aqua synthesis of a high molecular weight arylethynylene polymer exhibiting reversible hydrogel properties. J. Macromole. Sci. Pure. Appl. Chem., 1999, A36: 971.
    [84] Swager T. M. The molecular wire approach to sensory signal amplification. Acc. Chem. Res., 1998, 31: 201.
    [85] Thomas S. W., Joly G. D., Swager T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev., 2007, 107: 1339.
    [86] McQuade D. T., Hegedus A. H., Swager T. M. Signal amplification of a "turn-on" sensor: Harvesting the light captured by a conjugated polymer. J. Am. Chem. Soc., 2000, 122: 12389.
    [87] Tan C. Y., Pinto M. R., Schanze K. S. Photophysics, aggregation and amplified quenching of a water-soluble poly( phenylene ethynylene). Chem. Commun., 2002: 446.
    [88] Tan C. Y., Alas E., Muller J. G., Pinto M. R., Kleiman V. D., Schanze K. S. Amplified quenching of a conjugated polyelectrolyte by cyanine dyes. J. Am. Chem. Soc., 2004, 126: 13685.
    [89] Pinto M. R., Kristal B. M., Schanze K. S. A water-soluble poly(phenyleneethynylene) with pendant phosphonate groups. Synthesis, photophysics, and layer-by-layer self-assembled films. Langmuir, 2003, 19: 6523.
    [90] Mwaura J. K., Zhao X. Y., Jiang H., Schanze K. S., Reynolds J. R. Spectral broadening in nanocrytalline TiO2 solar cells based on poly(p-phenylene ethynylene) and polythiophene sensitizers. Chem. Mater., 2006, 18: 6109.
    [91] Zhao X. Y., Pinto M. R., Hardison L. M., Mwaura J., Muller J., Jiang H., et al. Variable band gap poly(arylene ethynylene) conjugated polyelectrolytes. Macromolecules, 2006, 39: 6355.
    [92] Liu B., Yu W. L., Lai Y. H., Huang W. Synthesis of a novel cationic water-soluble efficient blue photoluminescent conjugated polymer. Chem. Commun., 2000: 551.
    [93] Liu B., Yu W. L., Lai Y. H., Huang W. Blue-light-emitting cationic water-soluble polyfluorene derivatives with tunable quaternization degree. Macromolecules, 2002, 35: 4975.
    [94] Stork M., Gaylord B. S., Heeger A. J., Bazan G. C. Energy transfer in mixtures of water-soluble oligomers: Effect of charge, aggregation, and surfactant complexation. Adv. Mater., 2002, 14: 361.
    [95] Liu B., Gaylord B. S., Wang S., Bazan G. C. Effect of chromophore-charge distance on the energy transfer properties of water-soluble conjugated oligomers. J. Am. Chem. Soc., 2003, 125: 6705.
    [96] Liu B., Wang S., Bazan G. C., Mikhailovsky A. Shape-adaptable water-soluble conjugated polymers. J. Am. Chem. Soc., 2003, 125: 13306.
    [97] Yang R. Q., Wu H. B., Cao Y., Bazan G. C. Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion. J. Am. Chem. Soc., 2006, 128: 14422.
    [98] Huang F., Hou L. T., Wu H. B., Wang X. H., Shen H. L., Cao W., et al. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors. J. Am. Chem. Soc., 2004, 126: 9845.
    [99] Burrows H. D., Lobo V. M. M., Pina J., Ramos M. L., de Melo J. S., Valente A. J.M., et al. Fluorescence enhancement of the water-soluble poly{1,4-phenylene- 9,9-bis(4-phenoxybutylsulfonate) fluorene-2,7-diyl} copolymer in n-dodecylpentaoxyethylene glycol ether micelles. Macromolecules, 2004, 37: 7425.
    [100] Knaapila M., Almasy L., Garamus V. M., Pearson C., Pradhan S., Petty M. C., et al. Solubilization of polyelectrolytic hairy-rod polyfluorene in aqueous solutions of nonionic surfactant. J. Phys. Chem. B, 2006, 110: 10248.
    [101] Brookins R. N., Schanze K. S., Reynolds J. R. Base-free Suzuki polymerization for the synthesis of polyfluorenes functionalized with carboxylic acids. Macromolecules, 2007, 40: 3524.
    [102] Wang S., Hong J. W., Bazan G. C. Synthesis of cationic water-soluble light-harvesting dendrimers. Org. Lett., 2005, 7: 1907.
    [103] Zhu B., Han Y., Sun M. H., Bo Z. S. Water-soluble dendronized polyfluorenes with an extremely high quantum yield in water. Macromolecules, 2007, 40: 4494.
    [104] Ferreira M., Cheung J. H., Rubner M. F. MOLECULAR SELF-ASSEMBLY OF CONJUGATED POLYIONS - A NEW PROCESS FOR FABRICATING MULTILAYER THIN-FILM HETEROSTRUCTURES. Thin Solid Films, 1994, 244: 806.
    [105] Ferreira M., Rubner M. F. MOLECULAR-LEVEL PROCESSING OF CONJUGATED POLYMERS .1. LAYER-BY-LAYER MANIPULATION OF CONJUGATED POLYIONS. Macromolecules, 1995, 28: 7107.
    [106] Onitsuka O., Fou A. C., Ferreira M., Hsieh B. R., Rubner M. F. Enhancement of light emitting diodes based on self-assembled heterostructures of poly(p-phenylene vinylene). J. Appl. Phys., 1996, 80: 4067.
    [107] Baur J. W., Kim S., Balanda P. B., Reynolds J. R., Rubner M. F. Thin-film light-emitting devices based on sequentially adsorbed multilayers of water-soluble poly(p-phenylene)s. Adv. Mater., 1998, 10: 1452.
    [108] Chang S. C., Bharathan J., Yang Y., Helgeson R., Wudl F., Ramey M. B., et al. Dual-color polymer light-emitting pixels processed by hybrid inkjet printing. Appl. Phys. Lett., 1998, 73: 2561.
    [109] Thunemann A. F., Ruppelt D. Electroluminescent polyelectrolyte-surfactant complexes. Langmuir, 2001, 17: 5098.
    [110] Thunemann A. F. Nanostructured dihexadecyldimethylammonium-poly(1,4-phenylene-ethinylene-carboxylate): An ionic complex with blue electroluminescence. Adv. Mater., 1999, 11: 127.
    [111] Huang F., Wu H. B., Wang D., Yang W., Cao Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater., 2004, 16: 708.
    [112] Huang F., Hou L. T., Shen H. L., Jiang J. X., Wang F., Zhen H. Y., et al. Synthesis, photophysics, and electroluminescence of high-efficiency saturated red light-emitting polyfluorene-based polyelectrolytes and their neutral precursors. J. Mater. Chem., 2005, 15: 2499.
    [113] Huang F., Hou L. T., Shen H. L., Yang R. Q., Hou Q., Cao Y. Synthesis and optical and electroluminescent properties of novel conjugated polyelectrolytes and their neutral precursors derived from fluorene and benzoselenadiazole. J. Poly. Sci. Part. A. Poly. Chem., 2006, 44: 2521.
    [114] Zhang Y., Xu Y. H., Niu Q. L., Peng J. B., Yang W., Zhu X. H., et al. Synthesis and optoelectronic characterization of conjugated phosphorescent polyelectrolytes with a neutral Ir complex incorporated into the polymer backbone and their neutral precursors. J. Mater. Chem., 2007, 17: 992.
    [115] Shen H. L., Huang F., Hou L. T., Wu H. B., Cao W., Yang W., et al. Synthesis and characterization of polyfluorene electrolytes as green and red light-emitting layers for high-efficiency PLEDs. Synth. Met., 2005, 152: 257.
    [116] Zhang Y., Xiong Y., Sun Y. H., Zhu X. H., Peng J. B., Cao Y. Phosphorescent chelating polyelectrolytes and their neutral precursors: Synthesis, characterizations, photoluminescence and electroluminescence. Polymer, 2007, 48: 3468.
    [117] Meerholz K. Device physics - Enlightening solutions. Nature, 2005, 437: 327.
    [118] Steuerman D. W., Garcia A., Dante M., Yang R., Lofvander J. P., Nguyen T. Q. Imaging the interfaces of conjugated polymer optoelectronic devices. Adv. Mater., 2008, 20: 528.
    [119] Wu H. B., Huang F., Mo Y. Q., Yang W., Wang D. L., Peng J. B., et al. Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater., 2004, 16: 1826.
    [120] Ma W. L., Iyer P. K., Gong X., Liu B., Moses D., Bazan G. C., et al. Water/methanol-soluble conjugated copolymer as an electron-transport layer in polymer light-emitting diodes. Adv. Mater., 2005, 17: 274.
    [121] Hoven C., Yang R., Garcia A., Heeger A. J., Nguyen T. Q., Bazan G. C. Ion motion in conjugated polyelectrolyte electron transporting layers. J. Am. Chem. Soc., 2007, 129: 10976.
    [122] Yang R. Q., Xu Y. H., Dang X. D., Nguyen T. Q., Cao Y., Bazan G. C. Conjugated oligoelectrolyte electron transport/injection layers for organic optoelectronic devices. J. Am. Chem. Soc., 2008, 130: 3282.
    [123] Baur J. W., Durstock M. F., Taylor B. E., Spry R. J., Reulbach S., Chiang L. Y. Photovoltaic interface modification via electrostatic self-assembly. Synth. Met., 2001, 121: 1547.
    [124] Mwaura J. K., Pinto M. R., Witker D., Ananthakrishnan N., Schanze K. S., Reynolds J. R. Photovoltaic cells based on sequentially adsorbed multilayers of conjugated poly(p-phenylene ethynylene)s and a water-soluble fullerene derivative. Langmuir, 2005, 21: 10119.
    [125] Ding L., Jonforsen M., Roman L. S., Andersson M. R., Inganas O. Photovoltaic cells with a conjugated polyelectrolyte. Synth. Met., 2000, 110: 133.
    [126] Qiao Q. Q., McLeskey J. T. Water-soluble polythiophene/nanocrystalline TiO2 solar cells. Appl. Phys. Lett., 2005, 86: 153501.
    [127] McLeskey J. T., Qiao Q. Q. Hybrid solar cells from water-soluble polymers. Int. J. Photoener., 2006: 20951.
    [128] Qiao Q. Q., Su L. Y., Beck J., McLeskey J. T. Characteristics of water-soluble polythiophene: TiO2 composite and its application in photovoltaics. J. Appl. Phys., 2005, 98: 094906.
    [129] Yang J. H., Garcia A., Nguyen T. Q. Organic solar cells from water-soluble poly(thiophene)/fullerene heterojunction. Appl. Phys. Lett., 2007, 90: 103514.
    [130] Taranekar P., Qiao Q., Jiang H., Ghiviriga I., Schanze K. S., Reynolds J. R. Hyperbranched conjugated polyelectrolyte bilayers for solar-cell applications. J. Am. Chem. Soc., 2007, 129: 8958.
    [131] Cimrova V., Schmidt W., Rulkens R., Schulze M., Meyer W., Neher D. Efficient blue light emitting devices based on rigid-rod polyelectrolytes. Adv. Mater., 1996, 8: 585.
    [132] Neher D., Gruner J., Cimrova V., Schmidt W., Rulkens R., Lauter U. Light-emitting devices based on solid electrolytes and polyelectrolytes. Polym. Adv. Technol., 1998, 9: 461.
    [133] Edman L., Pauchard M., Liu B., Bazan G., Moses D., Heeger A. J. Single-component light-emitting electrochemical cell with improved stability. Appl. Phys. Lett., 2003, 82: 3961.
    [134] Edman L., Liu B., Vehse M., Swensen J., Bazan G. C., Heeger A. J. Single-component light-emitting electrochemical cell fabricated from cationic polyfluorene: Effect of film morphology on device performance. J. Appl. Phys., 2005, 98: 044502.
    [135] Edman L. Bringing light to solid-state electrolytes: The polymer light-emitting electrochemical cell. Electrochim. Acta, 2005, 50: 3878.
    [136] Cheng C. H. W., Boettcher S. W., Johnston D. H., Lonergan M. C. Unidirectional current in a polyacetylene hetero-ionic junction. J. Am. Chem. Soc., 2004, 126: 8666.
    [137] Cheng C. H. W., Lonergan M. C. A conjugated polymer pn junction. J. Am. Chem. Soc., 2004, 126: 10536.
    [138] Shin J. H., Xiao S., Fransson A., Edman L. Polymer light-emitting electrochemical cells: Frozen-junction operation of an "ionic liquid" device. Appl. Phys. Lett., 2005, 87: 043506.
    [139] Gu Z., Shen Q. D., Zhang J., Yang C. Z., Bao Y. J. Dual electroluminescence from a single-component light-emitting electrochemical cell, based on water-soluble conjugated polymer. J. Appl. Polym. Sci., 2006, 100: 2930.
    [140] Sax S., Mauthner G., Piok T., Pradhan S., Scherf U., List E. J. W. Intrinsicelectrochemical doping in blue light emitting polymer devices utilizing a water soluble anionic conjugated polymer. Org. Electron., 2007, 8: 791.
    [141] Pinto M. R., Schanze K. S. Conjugated polyelectrolytes: Synthesis and applications. Synt. Stut., 2002: 1293.
    [142] Kim I. B., Dunkhorst A., Gilbert J., Bunz U. H. F. Sensing of lead ions by a carboxylate-substituted PPE: Multivalency effects. Macromolecules, 2005, 38: 4560.
    [143] Kim I. B., Bunz U. H. F. Modulating the sensory response of a conjugated polymer by proteins: An agglutination assay for mercury ions in water. J. Am. Chem. Soc., 2006, 128: 2818.
    [144] Ho H. A., Leclerc M. Optical sensors based on hybrid aptamer/conjugated polymer complexes. J. Am. Chem. Soc., 2004, 126: 1384.
    [145] He F., Tang Y. L., Wang S., Li Y. L., Zhu D. B. Fluorescent amplifying recognition for DNA G-quadruplex folding with a cationic conjugated polymer: A platform for homogeneous potassium detection. J. Am. Chem. Soc., 2005, 127: 12343.
    [146] Walters K. A., Trouillet L., Guillerez S., Schanze K. S. Photophysics and electron transfer in poly(3-octylthiophene) alternating with Ru(II)- and Os(II)-bipyridine complexes. Inorg. Chem., 2000, 39: 5496.
    [147] Fan Q. L., Zhou Y., Lu X. M., Hou X. Y., Huang W. Water-soluble cationic poly(p-phenyleneethynylene)s (PPEs): Effects of acidity and ionic strength on optical behaviour. Macromolecules, 2005, 38: 2927.
    [148] Lakowicz J. R. Principles of Fluorescence Spectroscopy. New York: Plenum Press., 1986.
    [149] Ramachandran G., Smith T. A., Gomez D., Ghiggino K. P. Fluorescence studies on the conjugated polyelectrolyte DPS-PPV poly (2,5-dipropoxy sulphonato para phenylene) vinylene in aqueous solution. Synth. Met., 2005, 152: 17.
    [150] Tan C. Y., Pinto M. R., Kose M. E., Ghiviriga I., Schanze K. S. Solvent-induced self-assembly of a meta-linked conjugated polyelectrolyte. Helix formation, guest intercalation, and amplified quenching. Adv. Mater., 2004, 16: 1208.
    [151] Chen L. H., McBranch D. W., Wang H. L., Helgeson R., Wudl F., Whitten D.G. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc. Natl. Acad. Sci. USA., 1999, 96: 12287.
    [152] Wang J., Wang D. L., Miller E. K., Moses D., Bazan G. C., Heeger A. J. Photoluminescence of water-soluble conjugated polymers: Origin of enhanced quenching by charge transfer. Macromolecules, 2000, 33: 5153.
    [153] Wang D. L., Wang J., Moses D., Bazan G. C., Heeger A. J. Photoluminescence quenching of conjugated macromolecules by bipyridinium derivatives in aqueous media: Charge dependence. Langmuir, 2001, 17: 1262.
    [154] Fan C. H., Hirasa T., Plaxco K. W., Heeger A. J. Photoluminescence quenching of water-soluble conjugated polymers by viologen derivatives: Effect of hydrophobicity. Langmuir, 2003, 19: 3554.
    [155] Chen L. H., Xu S., McBranch D., Whitten D. Tuning the properties of conjugated polyelectrolytes through surfactant complexation. J. Am. Chem. Soc., 2000, 122: 9302.
    [156] Dalvi-Malhotra J., Chen L. H. Enhanced conjugated polymer fluorescence quenching by dipyridinium-based quenchers in the presence of surfactant J. Phys. Chem. B, 2005, 109: 3873.
    [157] Cabarcos E. L., Carter S. A. Characterization of the photoluminescence quenching of mixed water-soluble conjugated polymers for potential use as biosensor materials. Macromolecules, 2005, 38: 4409.
    [158] Muller J. G., Atas E., Tan C., Schanze K. S., Kleiman V. D. The role of exciton hopping and direct energy transfer in the efficient quenching of conjugated polyelectrolytes. J. Am. Chem. Soc., 2006, 128: 4007.
    [159] Jiang H., Zhao X. Y., Schanze K. S. Amplified fluorescence quenching of a conjugated polyelectrolyte mediated by Ca2+. Langmuir, 2006, 22: 5541.
    [160] Choi H. W., Kim Y. S., Yang N. C., Suh D. H. Synthesis of a new conjugated polymer based on benzimidazole and its sensory properties using the fluorescence-quenching effect. J. Appl. Polym. Sci., 2004, 91: 900.
    [161] DiCesare N., Pinto M. R., Schanze K. S., Lakowicz J. R. Saccharide detection based on the amplified fluorescence quenching of a water-solublepoly(phenylene ethynylene) by a boronic acid functionalized benzyl viologen derivative. Langmuir, 2002, 18: 7785.
    [162] Li C., Numata M., Takeuchi M., Shinkai S. A sensitive colorimetric and fluorescent probe based on a polythiophene derivative for the detection of ATP. Angew. Chem. Int. Edit., 2005, 44: 6371.
    [163] He F., Tang Y. L., Yu M. H., Wang S., Li Y. L., Zhu D. B. Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing. Adv. Funct. Mater., 2006, 16: 91.
    [164] Rininsland F., Xia W. S., Wittenburg S., Shi X. B., Stankewicz C., Achyuthan K., et al. Metal ion-mediated polymer superquenching for highly sensitive detection of kinase and phosphatase activities. Proc. Natl. Acad. Sci. USA., 2004, 101: 15295.
    [165] Kumaraswamy S., Bergstedt T., Shi X. B., Rininsland F., Kushon S., Xia W. S., et al. Fluorescent-conjugated polymer superquenching facilitates highly sensitive detection of proteases. Proc. Natl. Acad. Sci. USA., 2004, 101: 7511.
    [166] Pinto M. R., Schanze K. S. Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc. Natl. Acad. Sci. USA., 2004, 101: 7505.
    [167] Wosnick J. H., Mello C. M., Swager T. M. Synthesis and application of poly(phenylene ethynylene)s for bioconjugation: A conjugated polymer-based fluorogenic probe for proteases. J. Am. Chem. Soc., 2005, 127: 3400.
    [168] Nilsson K. P. R., Rydberg J., Baltzer L., Inganas O. Self-assembly of synthetic peptides control conformation and optical properties of a zwitterionic polythiophene derivative. Proc. Natl. Acad. Sci. USA., 2003, 100: 10170.
    [169] Nilsson K. P. R., Inganas O. Optical emission of a conjugated polyelectrolyte: Calcium-induced conformational changes in calmodulin and calmodulin-calcineurin interactions. Macromolecules, 2004, 37: 9109.
    [170] Ho H. A., Boissinot M., Bergeron M. G., Corbeil G., Dore K., Boudreau D., et al. Colorimetric and fluorometric detection of nucleic acids using cationic polythiophene derivatives. Angew. Chem. Int. Edit., 2002, 41: 1548.
    [171] Nilsson K. P. R., Inganas O. Chip and solution detection of DNAhybridization using a luminescent zwitterionic polythiophene derivative. Nat. Mater., 2003, 2: 419.
    [172] Bera-Aberem M., Ho H. A., Leclerc M. Functional polythiophenes as optical chemo- and biosensors. Tetrahedron, 2004, 60: 11169.
    [173] Raymond F. R., Ho H. A., Peytavi R., Bissonnette L., Boissinot M., Picard F. J., et al. Detection of target DNA using fluorescent cationic polymer and peptide nucleic acid probes on solid support. BMC Biotechnol., 2005, 5.
    [174] Dore K., Dubus S., Ho H. A., Levesque I., Brunette M., Corbeil G., et al. Fluorescent polymeric transducer for the rapid, simple, and specific detection of nucleic acids at the zeptomole level. J. Am. Chem. Soc., 2004, 126: 4240.
    [175] Ho H. A., Dore K., Boissinot M., Bergeron M. G., Tanguay R. M., Boudreau D., et al. Direct molecular detection of nucleic acids by fluorescence signal amplification. J. Am. Chem. Soc., 2005, 127: 12673.
    [176] Dore K., Leclerc M., Boudreau D. Investigation of a fluorescence signal amplification mechanism used for the direct molecular detection of nucleic acids. J. Fluoresc., 2006, 16: 259.
    [177] Wang S., Bazan G. C. Optically amplified RNA-protein detection methods using light-harvesting conjugated polymers. Adv. Mater., 2003, 15: 1425.
    [178] Liu B., Baudrey S., Jaeger L., Bazan G. C. Characterization of TectoRNA assembly with cationic conjugated polymers. J. Am. Chem. Soc., 2004, 126: 4076.
    [179] Liu B., Bazan G. C. Homogeneous fluorescence-based DNA detection with water-soluble conjugated polymers. Chem. Mater., 2004, 16: 4467.
    [180] Gaylord B. S., Heeger A. J., Bazan G. C. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc. Natl. Acad. Sci. USA., 2002, 99: 10954.
    [181] Baker E. S., Hong J. W., Gaylord B. S., Bazan G. C., Bowers M. T. PNA/dsDNA complexes: Site specific binding and dsDNA biosensor applications. J. Am. Chem. Soc., 2006, 128: 8484.
    [182] Gaylord B. S., Heeger A. J., Bazan G. C. DNA hybridization detection with water-soluble conjugated polymers and chromophore-labeled single-stranded DNA. J.Am. Chem. Soc., 2003, 125: 896.
    [183] Wang S., Gaylord B. S., Bazan G. C. Fluorescein provides a resonance gate for FRET from conjugated polymers to DNA intercalated dyes. J. Am. Chem. Soc., 2004, 126: 5446.
    [184] Liu B., Bazan G. C. Interpolyelectrolyte complexes of conjugated copolymers and DNA: Platforms for multicolor biosensors. J. Am. Chem. Soc., 2004, 126: 1942.
    [1] Huang F., Hou L. T., Wu H. B., Wang X. H., Shen H. L., Cao W., et al. High-efficiency, environment-friendly electroluminescent polymers with stable high work function metal as a cathode: Green- and yellow-emitting conjugated polyfluorene polyelectrolytes and their neutral precursors. J. Am. Chem. Soc., 2004, 126: 9845.
    [2] Faid K., Leclerc M. Functionalized regioregular polythiophenes: Towards the development of biochromic sensors. Chem. Commun., 1996: 2761.
    [3] McQuade D. T., Pullen A. E., Swager T. M. Conjugated polymer-based chemical sensors. Chem. Rev., 2000, 100: 2537.
    [4] Tan C. Y., Pinto M. R., Schanze K. S. Photophysics, aggregation and amplified quenching of a water-soluble poly( phenylene ethynylene). Chem. Commun., 2002: 446.
    [5] Pinto M. R., Kristal B. M., Schanze K. S. A water-soluble poly(phenylene ethynylene) with pendant phosphonate groups. Synthesis, photophysics, and layer-by-layer self-assembled films. Langmuir, 2003, 19: 6523.
    [6] Liu B., Yu W. L., Lai Y. H., Huang W. Synthesis of a novel cationic water-soluble efficient blue photoluminescent conjugated polymer. Chem. Commun., 2000: 551.
    [7] Burrows H. D., Lobo V. M. M., Pina J., Ramos M. L., de Melo J. S., Valente A. J. M., et al. Fluorescence enhancement of the water-soluble poly{1,4-phenylene- 9,9-bis(4-phenoxybutylsulfonate) fluorene-2,7-diyl} copolymer in n-dodecylpentaoxyethylene glycol ether micelles. Macromolecules, 2004, 37: 7425.
    [8] Liu B., Bazan G. C. Interpolyelectrolyte complexes of conjugated copolymers and DNA: Platforms for multicolor biosensors. J. Am. Chem. Soc., 2004, 126: 1942.
    [9] Nguyen T. Q., Kwong R. C., Thompson M. E., Schwartz B. J. Improving the performance of conjugated polymer-based devices by control of interchaininteractions and polymer film morphology. Appl. Phys. Lett., 2000, 76: 2454.
    [10] Liu B., Yu W. L., Lai Y. H., Huang W. Blue-light-emitting cationic water-soluble polyfluorene derivatives with tunable quaternization degree. Macromolecules, 2002, 35: 4975.
    [11] Itaya T. Formation of amphiphilic complexes of cationic polyelectrolyte carrying pendant saccharide residue with anionic surfactants. Polymer, 2002, 43: 2255.
    [12] Balanda P. B., Ramey M. B., Reynolds J. R. Water-soluble and blue luminescent cationic polyelectrolytes based on poly(p-phenylene). Macromolecules, 1999, 32: 3970.
    [13] Huang F., Wu H. B., Wang D., Yang W., Cao Y. Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem. Mater., 2004, 16: 708.
    [14] Wang S., Bazan G. C. Solvent-dependent aggregation of a water-soluble poly(fluorene) controls energy transfer to chromophore-labeled DNA. Chem. Commun., 2004: 2508.
    [15] Huang Y. Q., Fan Q. L., Zhang G. W., Chen Y., Lu X. M., Huang W. A fluorene-containing water-soluble poly(p-phenyleneethynylene) derivative: Highly fluorescent and sensitive conjugated polymer with minor aggregation in aqueous solution. Polymer, 2006, 47: 5233.
    [16] Demas J. N., Crosby G. A. MEASUREMENT OF PHOTOLUMINESCENCE QUANTUM YIELDS - REVIEW. J. Phys. Chem., 1971, 75: 991.
    [17] Liu B., Gaylord B. S., Wang S., Bazan G. C. Effect of chromophore-charge distance on the energy transfer properties of water-soluble conjugated oligomers. J. Am. Chem. Soc., 2003, 125: 6705.
    [18] Wu H. B., Huang F., Mo Y. Q., Yang W., Wang D. L., Peng J. B., et al. Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater., 2004, 16: 1826.
    [19] Cao Y., Yu G., Heeger A. J. Efficient, low operating voltage polymer light-emitting diodes with aluminum as the cathode material. Adv. Mater., 1998, 10: 917.
    [20] Lee H. M., Choi K. H., Hwang D. H., Do L. M., Zyung T., Lee J. W., et al. Use ofionomer as an electron injecting and hole blocking material for polymer light-emitting diode. Appl. Phys. Lett., 1998, 72: 2382.
    [21] Yang R. Q., Wu H. B., Cao Y., Bazan G. C. Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion. J. Am. Chem. Soc., 2006, 128: 14422.
    [22] Liu B., Yu W. L., Pei J., Liu S. Y., Lai Y. H., Huang W. Design and synthesis of bipyridyl-containing conjugated polymers: Effects of polymer rigidity on metal ion sensing. Macromolecules, 2001, 34: 7932.
    [23] Zhang M., Lu P., Ma Y. G., Shen J. C. Metal ionochromic effects of conjugated polymers: Effects of the rigidity of molecular recognition sites on metal ion sensing. J. Phys. Chem. B, 2003, 107: 6535.
    [1] Pei Q. B., Yu G., Zhang C., Yang Y., Heeger A. J. POLYMER LIGHT-EMITTING ELECTROCHEMICAL-CELLS. Science, 1995, 269: 1086.
    [2] Pei Q. B., Yang Y., Yu G., Zhang C., Heeger A. J. Polymer light-emitting electrochemical cells: In situ formation of a light-emitting p-n junction. J. Am. Chem. Soc., 1996, 118: 3922.
    [3] Pachler P., Wenzl F. P., Scherf U., Leising G. The efficiency of light-emitting electrochemical cells. J. Phys. Chem. B, 2005, 109: 6020.
    [4] Kervella Y., Armand M., Stephan O. Organic light-emitting electrochemical cells based on polyfluorene - Investigation of the failure modes. J. Electrochem. Soc., 2001, 148: H155.
    [5] Smith D. L. Steady state model for polymer light-emitting electrochemical cells. J. Appl. Phys., 1997, 81: 2869.
    [6] Matyba P., Maturova K., Kemerink M., Robinson N. D., Edman L. The dynamic organic p-n junction. Nat. Mater., 2009, 8: 672.
    [7] Gao J., Yu G., Heeger A. J. Polymer light-emitting electrochemical cells with frozen p-i-n junction. Appl. Phys. Lett., 1997, 71: 1293.
    [8] Gao J., Li Y. F., Yu G., Heeger A. J. Polymer light-emitting electrochemical cells with frozen junctions. J. Appl. Phys., 1999, 86: 4594.
    [9] Leger J. M., Patel D. G., Rodovsky D. B., Bartholomew G. P. Polymer photovoltaic devices employing a chemically fixed p-i-n junction. Adv. Funct. Mater., 2008, 18: 1212.
    [10] Jakle F. Boron: organoboranes, in: R. B. King (Ed.), Encyclopedia of Inorganic Chemistry, 2nd ed. Chichester: Wiley, 2005.
    [11] Kubo Y., Yamamoto M., Ikeda M., Takeuchi M., Shinkai S., Yamaguchi S., et al. A colorimetric and ratiometric fluorescent chemosensor with three emission changes: Fluoride ion sensing by a triarylborane-porphyrin conjugate. Angew. Chem. Int. Edit., 2003, 42: 2036.
    [12] Yamaguchi S., Akiyama S., Tamao K. Tri-9-anthrylborane and its derivatives: New boron-containing pi-electron systems with divergently extended pi-conjugation through boron. J. Am. Chem. Soc., 2000, 122: 6335.
    [13] Yamaguchi S., Shirasaka T., Akiyama S., Tamao K. Dibenzoborole-containing pi-electron systems: Remarkable fluorescence change based on the "on/off" control ofthe p(pi)-pi* conjugation. J. Am. Chem. Soc., 2002, 124: 8816.
    [14] Yuan Z., Taylor N. J., Ramachandran R., Marder T. B. Third-order nonlinear optical properties of organoboron compounds: Molecular structures and second hyperpolarizabilities. Appl. Organomet. Chem., 1996, 10: 305.
    [15] Pelter A., Singaram S., Brown H. THE DIMESITYLBORON GROUP IN ORGANIC-CHEMISTRY .6. HYDROBORATIONS WITH DIMESITYLBORANE. Tetrahedron Lett., 1983, 24: 1433.
    [16] Entwistle C. D., Marder T. B. Applications of three-coordinate organoboron compounds and polymers in optoelectronics. Chem. Mater., 2004, 16: 4574.
    [17] Wakamiya A., Mori K., Yamaguchi S. 3-Boryl-2,2 '-bithiophene as a versatile core skeleton for full-color highly emissive organic solids. Angew. Chem. Int. Edit., 2007, 46: 4273.
    [18] Elbing M., Bazan G. C. A new design strategy for organic optoelectronic materials by lateral boryl substitution. Angew. Chem. Int. Edit., 2008, 47: 834.
    [19] Zhou Q., Swager T. M. METHODOLOGY FOR ENHANCING THE SENSITIVITY OF FLUORESCENT CHEMOSENSORS - ENERGY MIGRATION IN CONJUGATED POLYMERS. J. Am. Chem. Soc., 1995, 117: 7017.
    [20] Englert B. C., Scholz S., Leech P. J., Srinivasarao M., Bunz U. H. F. Templated ceramic microstructures by using the breath-figure method. Chemistry-a European Journal, 2005, 11: 995.
    [21] Eisch J. J., Shafii B., Odom J. D., Rheingold A. L. BORA-AROMATIC SYSTEMS .11. AROMATIC STABILIZATION OF THE TRIARYLBORIRENE RING-SYSTEM BY TRICOORDINATE BORON AND FACILE RING-OPENING WITH TETRACOORDINATE BORON. J. Am. Chem. Soc., 1990, 112: 1847.
    [22] Pelter A., Smith K., Brown H. C. Borane Reagents. New York: Academic Press, 1988.
    [23] Englert B. C., Bakbak S., Bunz U. H. F. Click chemistry as a powerful tool for the construction of functional poly(p-phenyleneethynylene)s: Comparison of pre- and postfunctionalization schemes. Macromolecules, 2005, 38: 5868.
    [24] Garcia A., Brzezinski J. Z., Nguyen T. Q. Cationic Conjugated PolyelectrolyteElectron Injection Layers: Effect of Halide Counterions. J. Phys. Chem. C., 2009, 113: 2950.
    [25] Steuerman D. W., Garcia A., Dante M., Yang R., Lofvander J. P., Nguyen T. Q. Imaging the interfaces of conjugated polymer optoelectronic devices. Adv. Mater., 2008, 20: 528.
    [26] Hoven C. V., Garcia A., Bazan G. C., Nguyen T. Q. Recent Applications of Conjugated Polyelectrolytes in Optoelectronic Devices. Adv. Mater., 2008, 20: 3793.
    [27] Wu H. B., Huang F., Mo Y. Q., Yang W., Wang D. L., Peng J. B., et al. Efficient electron injection from a bilayer cathode consisting of aluminum and alcohol-/water-soluble conjugated polymers. Adv. Mater., 2004, 16: 1826.
    [28] Hoven C. V., Yang R. Q., Garcia A., Crockett V., Heeger A. J., Bazan G. C., et al. Electron injection into organic semiconductor devices from high work function cathodes. Proc. Natl. Acad. Sci. USA., 2008, 105: 12730.
    [29] Hardy L. C., Shriver D. F. PREPARATION AND ELECTRICAL RESPONSE OF SOLID POLYMER ELECTROLYTES WITH ONLY ONE MOBILE SPECIES. J. Am. Chem. Soc., 1985, 107: 3823.
    [30] Ratner M. A., Shriver D. F. ION-TRANSPORT IN SOLVENT-FREE POLYMERS. Chem. Rev., 1988, 88: 109.
    [31] Leger J. M., Rodovsky D. B., Bartholomew G. R. Self-assembled, chemically fixed homojunctions in semiconducting polymers. Adv. Mater., 2006, 18: 3130.
    [1] Pei Q. B., Yu G., Zhang C., Yang Y., Heeger A. J. POLYMER LIGHT-EMITTING ELECTROCHEMICAL-CELLS. Science, 1995, 269: 1086.
    [2] Pei Q. B., Yang Y., Yu G., Zhang C., Heeger A. J. Polymer light-emitting electrochemical cells: In situ formation of a light-emitting p-n junction. J. Am. Chem. Soc., 1996, 118: 3922.
    [3] Morgado J., Moons E., Friend R. H., Cacialli F. De-mixing of polyfluorene-based blends by contact with acetone: Electro- and photo-luminescence probes. Adv. Mater., 2001, 13: 810.
    [4] Wilson J. S., Frampton M. J., Michels J. J., Sardone L., Marletta G., Friend R. H., et al. Supramolecular complexes of conjugated polyelectrolytes with poly(ethylene oxide): Multifunctional luminescent semiconductors exhibiting electronic and ionic transport. Adv. Mater., 2005, 17: 2659.
    [5] Sardone L., Sabatini C., Latini G., Barigelletti F., Marletta G., Cacialli F., et al. Scanning force microscopy and optical spectroscopy of phase-segregated thin films of poly(9,9 '-dioctylfluorene-alt-benzothiadiazole) and poly(ethylene oxide). J. Mater. Chem., 2007, 17: 1387.
    [6] Jones R. A. L., Richards R. W. Polymers at Surfaces and Interfaces. Cambridge, U. K.: Cambridge University Press, 1999.
    [7] Bates F. S., Fredrickson G. H. Block copolymers - Designer soft materials. Physics Today, 1999, 52: 32.
    [8] Cao Y., Yu G., Heeger A. J., Yang C. Y. Efficient, fast response light-emitting electrochemical cells: Electroluminescent and solid electrolyte polymers with interpenetrating network morphology. Appl. Phys. Lett., 1996, 68: 3218.
    [9] Pei Q. B., Yang Y. Efficient photoluminescence and electroluminescence from a soluble polyfluorene. J. Am. Chem. Soc., 1996, 118: 7416.
    [10] Kervella Y., Armand M., Stephan O. Organic light-emitting electrochemical cells based on polyfluorene - Investigation of the failure modes. J. Electrochem. Soc., 2001, 148: H155.
    [11] Stephan O., Collomb V., Vial J. C., Armand M. Blue-green light-emitting diodes and electrochemical cells based on a copolymer derived from fluorene. Synth. Met., 2000, 113: 257.
    [12] Kocienski P. J., Cernigliaro G., Feldstein G. SYNTHESIS OF (+/-)-METHYL N-TETRADECA-TRANS-2,4,5-TRIENOATE, AN ALLENIC ESTER PRODUCED BY MALE DRIED BEAN BEETLE ACANTHOSCELIDES-OBTECTUS (SAY). J. Org. Chem., 1977, 42: 353.
    [13] Stork M., Gaylord B. S., Heeger A. J., Bazan G. C. Energy transfer in mixtures of water-soluble oligomers: Effect of charge, aggregation, and surfactant complexation. Adv. Mater., 2002, 14: 361.
    [14] Haque S. A., Park T., Xu C., Koops S., Schulte N., Potter R. J., et al. Interface engineering for solid-state dye-sensitized nanocrystalline solar cells: The use of ion-solvating hole-transporting polymers. Adv. Funct. Mater., 2004, 14: 435.
    [15] Bao Z. N., Chan W. K., Yu L. P. Exploration of the Stille coupling reaction for the syntheses of functional polymers. J. Am. Chem. Soc., 1995, 117: 12426.
    [16] Bangcuyo C. G., Evans U., Myrick M. L., Bunz U. H. F. Synthesis and characterization of a 2,1,3-benzothiadiazole-b-alkyne-b-1,4bis(2-ethylhexyloxy)benzene terpolymer, a stable low-band-gap poly(heteroaryleneethynylene). Macromolecules, 2001, 34: 7592.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700