用户名: 密码: 验证码:
镉胁迫下大豆生长发育的生理生态动态特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过盆栽试验和水培试验研究了以下内容:(i)红壤镉污染下大豆的生长及主要生理指标在生长周期内的动态变化特征;(ii)镉在大豆植株整个生长周期内的吸收与分配动态特征;(iii)镉胁迫对大豆不同发育阶段生长及生理指标的影响及差异性研究;(iv)镉在大豆幼苗叶中的亚细胞分配、定位及其对幼苗生长的影响;(v)镉在大豆幼苗叶中的累积及其与幼苗生理生化指标的相关性研究;(vi)镉胁迫下不同大豆品种花荚期的生理生态响应。主要研究结果如下:
     1.红壤盆栽试验结果表明,Cd胁迫对大豆整个生活周期的叶绿素含量、POD活性、SOD活性及MDA含量的影响都是极显著的(ρ<0.01);短时间、低浓度的Cd胁迫对大豆植株的生长发育有促进作用,高浓度、长时间的Cd胁迫对大豆植株构成明显的毒害作用;大豆株高增长抑制的Cd浓度为1.00 mg·kg-1,远低于大豆生物量的增长受抑制的Cd浓度(2.50 mg·kg-1);当Cd浓度超过一定水平时,大豆植株生物量和株高的抑制程度与外源Cd浓度呈极显著的正相关(ρ<0.01),对土壤Cd污染具有指示作用,且大豆植株高度与其生物量相比,株高对Cd污染具有更好的指示作用:大豆幼苗期叶绿素含量对镉的敏感性高于开花结荚期和成熟期的敏感性;大豆POD、SOD活性的增加,能在一定程度上减轻Cd胁迫引起的膜脂过氧化造成的伤害作用;在Cd达到2.50 mg·kg-1水平时,植物保护性酶系统活性的提高已经不足以弥补因Cd胁迫对大豆植株造成的伤害;大豆幼苗期和花荚期叶片的POD活性对土壤Cd污染程度具有较好的指示作用,而大豆花荚期和成熟期叶片的SOD活性对土壤Cd污染程度具有较好的指示作用;在Cd胁迫下大豆MDA含量增加,表明细胞膜脂过氧化作用加强。
     2.红壤盆栽试验结果表明,当外源Cd胁迫浓度一定时,大豆根部Cd含量有着花荚期<幼苗期<成熟期的规律:大豆茎部中Cd含量基本上有着幼苗期<花荚期<成熟期的规律;在幼苗期、花荚期大豆叶中Cd含量随着时间的延长而逐渐提高,但在成熟期大豆叶中Cd含量随着时间的延长有下降趋势;在大豆整个生长周期,当胁迫时间一定时,大豆植株的各器官(根、茎、叶、籽粒、豆荚)中Cd含量随Cd添加浓度的增加而极显著增加,且均表现为乘幂函数关系。
     3.红壤盆栽试验结果表明,Cd胁迫对大豆植株的生理生态效应随着大豆的生长发育呈现各自不同的特点。大豆植株各发育阶段的MDA含量、生物量和株高的变化趋势没有多大差异,均表现为低浓度的刺激效应和高浓度的抑制效应;但保护性酶系统POD、SOD的活性和叶绿素含量的变化趋势差异显著。在幼苗期,大豆植株的叶绿素含量下降、SOD活性受到显著抑制、POD活性迅速激活,相互协调以缓解Cd的毒性;在花荚期,大豆植株的防御系统得到有效激发,保护性酶POD、SOD的活性急剧升高,叶绿素含量呈上升趋势;在成熟期,因为长时间的Cd毒害,尤其是Cd浓度较高的情况下,大豆植株的SOD、POD活性和叶绿素含量急剧下降。显然,在Cd胁迫下,大豆植株的生长发育以及生理生化指标呈现较为明显的“三个阶段”式变化。
     4.水培试验结果表明,大豆幼苗叶具有较强的Cd富集能力,叶中累积的Cd含量随着溶液Cd浓度的增加而急剧增加,二者具有明显的幂函数关系,回归方程为:y=10.2x0.308(R2=1.000,n=4);叶片中Cd大部分储存在细胞壁和可溶性成分中,小部分储存在细胞核、叶绿体和线粒体组分中,尤其是在高浓度Cd胁迫下大量Cd(55.00%)被束缚在细胞可溶性成分中。通过电镜切片可以在细胞壁、叶绿体、细胞核、液泡观察到黑色Cd颗粒沉着。这表明,细胞壁是叶细胞抵抗Cd毒性的第一屏障,细胞壁和可溶性成分是叶细胞储存Cd的主要场所。Cd在叶片细胞器的累积导致细胞间隙扩大、亚微结构受损,尤其是叶绿体的结构损坏,这可能是高浓度Cd抑制幼苗生长的内在原因之一
     5.红壤盆栽试验结果表明,随着外源Cd胁迫浓度的增加,大豆植株叶中Cd含量显著增加,回归方程为:y=8.76x+4.55 (R2=0.987; n=7, R20.01=0.766,R20.05=0.569);Cd累积对大豆幼苗的的生长具有低浓度的刺激效应和高浓度的抑制效应;随着叶中Cd富集含量的增加,幼苗叶绿素含量平缓降低,其回归方程为:y=-0.008x+3.300 (R2=0.657, n=7); Cd在大豆幼苗叶中的富集使SOD活性降低;POD活性随着大豆幼苗叶中Cd含量的增加而先增加后降低,二者表现为较明显的抛物线函数关系,回归方程为:y=-0.045x2+5.65x+204(R2=0.578,n=7);随着叶中Cd含量的增加,大豆幼苗MDA含量的变化呈先下降后上升最终缓慢下降趋势,回归方程为:y=-0.000001x3+0.0001x2-0.003x+0.131(R2=0.804,n=7)。大豆幼苗的株高、生物量、叶绿素含量、POD活性、MDA含量均与幼苗叶Cd含量显著或极显著相关,可以作为大豆幼苗叶Cd累积程度的预警指标。
     6.大豆五月王和日本青花荚期植株的生物量、株高、SOD、POD活性和叶绿素含量等主要生理生长指标对Cd胁迫的响应存在较大差异。对五月王和日本青植株高度刺激效应最显著的Cd胁迫浓度分别为0.50 mg·kg-1 0.25 mg·kg-1。Cd胁迫对五月王和日本青花荚早期叶绿素合成刺激效应最显著的Cd浓度分别为0.50 mg·kg-1、0.25 mg·kg-1。Cd对五月王和日本青植株SOD活性刺激效应最强的胁迫浓度分别为:2.50 mg·kg-1、1.00 mg·kg-1;在花荚早期,当外源Cd浓度≤0.50 mg·kg-1水平时,随着Cd浓度的增加而日本青植株SOD活性缓慢上升,但五月王植株SOD活性基本上没有变化。这表明,日本青花荚期植株对Cd的敏感性高于五月王花荚期植株的敏感性。
A pot experiment and solution culture experiment were conducted to study the following:(ⅰ) dynamic characteristics of main growth and physiological-ecological indicators of soybean plants during the whole growth period under Cd stress; (ⅱ) dynamic characteristics of Cd uptake and distribution in soybean plants during the whole growth period under Cd stress; (ⅲ) the effects of Cd stress on physiological and ecological indicators and their differences in soybean plants at different growth stages; (ⅳ) the effects of Cd on growth of soybean seedlings and subcellular distribution and localization of Cd in soybean leaves; (ⅴ) cadmium accumulation in soybean seedling leaves and correlation between cadmium accumulation and physiological-biochemical indicators;(ⅵ) physiological and ecological responses of two soybean cultivars at flowering-poding stage under Cd stress. The main results were summarized as follows:
     1. The pot experiments with red soil showed that during the whole growth period of soybean plants, the influences of Cd stress on chlorophyll contents, SOD activities, POD activities, and MDA contents in the leaves were very significant (ρ<0.01). The growth of the plants was enhanced under low concentrations and short time of Cd stress, and restrained under high concentrations and long time of Cd stress. Cd concentration to restrain the plant heights was 1.00 mg·kg-1, which was far lower than that (2.50 mg·kg-1) to restrain the biomass of the plants. When Cd concentration reached a certain level, there was a very significant positive correlation between the restraining effects on biomass and height of soybean plants and Cd concentrations (ρ<0.01), which could be used to indicate soil Cd pollution, especially by using the correlation concerning the plant height. The sensitivity of chlorophyll content to Cd stress was higher at seeding stage than that at flowering-poding and mature stages. Increase of POD and SOD activities could reduce, to some extent, the injury effects of soybean plants due to membrane-lipid peroxidation caused by Cd stress. However, when Cd concentration reached 2.50 mg·kg-1, further increasing activities of plant protective enzyme system did not make up enough for the soybean plant injury caused by Cd stress. The POD activities of soybean at seedling stage and flowering-poding stage, or the activities of SOD at flowering-poding stage and mature stage, could indicate well Cd pollution level in soil. MDA contents in soybean plants increased under Cd stress, implying peroxidation of membrane reinforced.
     2. The pot experiments showed that under certain Cd concentration stress, the Cd contents in the plant roots at different stages were in the following sequence of flowering-poding stage< seeding stage< mature stage; the Cd contents in the shoots were in seeding stage< flowering-poding stage< mature stage. At seeding stage and flowering-poding stage, the Cd contents in the soybean leaves increased gradually with the time, but decreased at mature stage. During the whole growth period, when the time of Cd stress was certain, Cd contents in all the organs of soybean plants increased with the increasing of Cd concentrations added in soils, and showed power function correlation.
     3. The pot experiments indicated that the characteristics of physiological and ecological effects were different greatly during the growth of soybean plants under Cd stress. The patterns of MDA contents, biomasses, and heights of soybean plants showed almost the same trends, namely, stimulating effects at low Cd concentrations and inhibitory effects at high Cd concentrations. However, change trends of activities of POD and SOD in the protective enzyme systems and chlorophyll contents in soybean leaves were quite different. At the seedling stage, chlorophyll contents and SOD activities were inhibited obviously, POD activities were activated rapidly, and the mutual coordination of these processes relieved Cd toxicity to soybean plants. At the flowering-poding stage, the antioxidant defense system of soybean plants was excited effectively by Cd stress, resulting in activities of protective enzymes POD and SOD increased rapidly with chlorophyll contents increasing. At the mature stage, SOD and POD activities and chlorophyll contents of soybean plants decreased sharply due to a long-term toxicity of Cd, especially under Cd stress with high concentrations. It was obvious that the indicators of the soybean growth and the physiological and biochemical characteristics behaved a significant pattern of three stages under Cd stress.
     4. The solution culture experiments showed that the capacity of soybean seeding leaves for Cd accumulation was strong. Cd accumulation in the leaves increased greatly with increasing of Cd concentrations added to the culture solutions, and showed power function correlation (y=10.2x0.308, R2= 1.000, n=4). Most Cd associated with the cell walls and soluble fractions, and a minor part of Cd presented in the nuclear and chloroplast fractions, mitochondria fractions, especially exposure to high Cd concentrations,55.00% Cd were bound in the soluble fractions. Deposited Cd black particles were observed in the cell walls, chloroplasts, nuclei, and vacuoles through electrical microscope slice. This fact indicated that the cell walls of soybean leaves were the first barrier protecting organelles from Cd toxicity, and the cell walls and soluble fractions were the main place for Cd storage. Due to Cd accumulated in the organelles, the intercellular space was enlarged and the subcellular structure was damaged, especially for the chloroplasts. It might be an internal reason of high Cd concentrations inhibiting the growth of plant seedlings.
     5. The pot experiments showed that Cd contents in soybean leaves increased significantly with increasing Cd stress concentrations, and showed linear function correlation (y=8.76x+4.55,R2=0.987; n=7, R20.01=0.766, R20.05=0.569). Cd accumulated in the seedling leaves showed stimulating effects at low Cd concentrations and inhibitory effects at high Cd concentrations. With increasing Cd accumulated in the seedling leaves, the chlorophyll contents of seedlings decreased slightly, and showed linear function correlation (y=-0.008x+3.300, R2=0.657, n=7). Cd accumulated in the leaves decreased SOD activities. POD activities increased at first and then decreased with increase of Cd accumulated in the leaves, and this correlation could be expressed as a parabola function (y=-0.045x2+5.65x+204, R2=0.578, n=7). With increasing Cd accumulated in the soybean seedlings, MDA contents decreased at first, then increased, decreased slowly finally, and the regression equation was as y=-0.000001x3+0.0001x2-0.003x+0.131 (R2=0.804, n=7). There were significant or very significant correlations between Cd contents in the leaves and the height, biomass, chlorophyll content, POD activity, MDA contents in soybean plants, which could be used as pre-warning indexes for Cd accumulation in the seedling leaves.
     6. The responses of main physiological and growth indexes, such as biomass, height, SOD, POD activities, and chlorophyll contents, at the flowering-poding stage between two varieties of soybean plants, Wu Yue Wang and Ri Bn Qing, were very different. The most significant stimulating effects of Cd concentrations on the heights of Wu Yue Wang and Ri Ben Qing at flowering-poding stage were 0.50 and 0.25 mg·kg-1, respectively. Those on chlorophyll contents of Wu Yue Wang and Ri Bn Qing at early flowering-poding stage were also 0.50 and 0.25 mg·kg-1, respectively. The most significant stimulating effects of Cd concentrations on SOD activity of Wu Yue Wang and Ri Ben Qing at early flowering-poding stage were 2.50 and 1.00 mg·kg-1, respectively. At early flowering-poding stage, below 0.50 mg·kg-1 of Cd, SOD activity of Ri Ben Qing rose slowly with the increase of Cd concentrations added in soil, but SOD activity of Wu Yue Wang basically changed quite slightly. All the facts above showed that Ri Ben Qing was more sensitive to Cd stress at flowering-poding stage.
引文
[1]Unyayar S, Celik A, Cekic F 6, et al. Cadmium-induced genotoxicity, cytotoxicity and lipid peroxidation in Allium sativum and Viciafaba [J]. Mutagenesis,2006,21(1):77-81.
    [2]王焕校.污染生态学[M].北京:高等教育出版社,2000.
    [3]Kovalchuk O, Titov V, Hohn B, et al. A sensitive transgenic plant system to detect toxic in organic compounds in the environment [J]. Nature Biotechnol,2001,19:568-572.
    [4]Han F, Shan X Q, Zhang S Z, et al. Enhanced cadmium accumulation in maize roots-the impact of organic acids [J]. Plant and Soil,2006,289 (1):355-368.
    [5]陈静生.中国水环境重金属研究[M].北京:中国环境科学出版社,1999.
    [6]李光林,魏世强,青长乐.镉在胡敏酸上的吸附动力学和热力学研究[J].土壤学报,2004,41(1):74-79.
    [7]陈宝梁,朱利中,林斌,等.阳离子表面活性剂增强固定土壤中的苯酚和对硝基苯酚[J].土壤学报,2004,41(1):148-151.
    [8]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.
    [9]刘敬勇.矿区土壤重金属污染及生态修复[J].中国矿业,2006,15(12):66-69.
    [10]高永华,王金,赵莉,等.污灌区土壤-植物系统中重金属分布与迁移转化特征研究[J].河北农业大学学报,2006,29(5):52-56.
    [11]张照新,孟丽.2007年第一季度大豆市场形势分析[J].农业展望,2007,3(5):14-15.
    [12]Krajcovicova-Kudladkova M, Ursinyova M, Masanova V, et al. Cadmium blood concentrations in relation to nutrion [J]. Cent Eur J Public Health,2006,14(3):126-129.
    [13]Belimov A A, Safronova V I, Tsyganov V E, et al. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisumsativum L) [J]. Euphytica,2003,131: 25-35.
    [14]Chafei C H, Gorbel M H. Nitrogen metabolism of tomato under cadmium stress conditions [J]. J Plant Nurt,2003,26:1634-1671.
    [15]谢建治,张书廷,刘树庆,等.潮褐土重金属Cd污染对小白菜营养品质指标的影响[J].农业环境科学学报,2004,23(4):678-682.
    [16]孙海兆,郑春荣,周东美,等.土壤Cd污染对青菜和蕹菜生长及Cd含量的影响[J].农业环境科学学报,2005,24(3):417-420.
    [17]Berkelaar E, Hale B. The relationship between root morphology and cadmium accumulation in seedlings of two durum wheat cultivars [J]. Canadian Journal of Botany,2000,78(3):381-387.
    [18]孙健,铁柏清,钱湛,等.湖南省有色金属矿区重金属污染土壤的植物修复.[J].中南林学院学报,2006,26(1):125-128.
    [19]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学,2006,34(3):549-552.
    [20]王岭梅,韦朝阳,杨林生.矿冶区周边水稻对不同来源重金属污染的指示作用[J].生态毒理学报,2009,4(3):373-381.
    [21]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报,2004,35(3):365-370.
    [22]许嘉林,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995,24-361.
    [23]Outota I, Pehrman R, Jaakkola T. Effect of industrial pollution on the distribution of 137Cs in soil and the soil-to-plant transfer in a pine forest in SW Finland [J]. Sci Total Environ,2003, 303(3):221-230.
    [24]Li J T, Qiu J W, Wang X W, et al. Cadmium contamination in orchard soils and fruit trees and its potential health risk in Guang zhou, China [J]. Environ Pollut,2006,143 (1):159-165.
    [25]郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [26]朱祖祥.土壤学(上册)[M].北京:农业出版社,1983.
    [27]邓明,罗春杨.汞、镉在城郊农业生态环境中的行为及影响研究[J].农业环境保护,1989,8(2):20-241.
    [28]高永华,王金,赵莉,等.污灌区土壤-植物系统中重金属分布与迁移转化特征研究[J].河北农业大学学报,2006,29(5):51-56.
    [29]方满,刘洪海.武汉市垃圾堆放场重金属污染调查及控制途径[J].中国环境科学,1998,8(4):54-59.
    [30]潘海峰.铬渣堆存区土壤重金属污染评价[J].环境与开发,1994,9(2):268-270.
    [31]刘俊,朱允华,胡南,等.花垣河软体动物多样性调查和水质评价[J].中国环境监测,2009,25(3):73-76.
    [32]高志岭,刘建玲,廖文华.磷肥施用与镉污染的研究现状及防治对策[J].河北农业大 学学报,2001,24(3):90-99.
    [33]何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998.
    [34]张祖锡,白瑛.改良城市污水农灌的作物与土壤效应[J].农业环境保护,1988,7(2):23-24.
    [35]周建利,陈同斌.我国城郊菜地土壤和蔬菜重金属污染研究现状与展望[J].湖北农学院学报,2002,22(5):476-480.
    [36]秦天才,吴玉树.镉铅及相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-49.
    [37]Kale H. Respome of roots of trees to heavy metals [J]. Environ Experi Bot,1993,33(1): 99-119.
    [38]Bemai M P, Grath S P. Efects of pH and heavy metals concentralions in solulion culture on the Proton release, growth and ele-mental composition of alyssum murale and raphanus sativus [J]. Plant Soil,1994,166:83-92.
    [39]Pfeiffer M W. Effect of born and cadmium on the nitrogen fixation sin soil [J]. Acta Microbilo Pol,1977,26(3):295-300.
    [40]Acar Y B, Alshawabkeh A N. Principles of dectrokinelic remediation [J]. Environ Sci Technol,1993,27(13):2638-2647.
    [41]秦普丰,铁柏青,周细红,等.铅与镉对棉花和水稻萌发及生长的影响[J].湖南农业大学学报,2000,26(3):205-207.
    [42]杨居荣,贺建群,黄翌,等.农作物Cd耐性的种内种间差异Ⅰ.种间差异[J].应用生态学报,1994,5(2):192-196.
    [43]杨明杰,林咸永,杨肖娥.Cd对不同种类植物生长和养分积累的影响[J].应用生态学报,1998,9(1):89-94.
    [44]Liao B H, Liu H Y, Zeng Q R, et al. Complex toxic effects of Cd2+, Zn2+, and acid rain on growth of kidney bean (Phaseolus vulgaris L) [J]. Environ Intern,2005,31(6):891-895.
    [45]王开锋,廖柏寒,刘红玉,等.模拟酸雨和Zn复合污染对蚕豆生长及其生理生化特性的影响[J].环境科学学报,2005,25(2):203-207.
    [46]曾敏,廖柏寒,曾清如,等.土壤-植物系统中模拟酸雨与Cd复合污染的短期环境效应-黄豆盆栽试验[J].环境科学学报,2005,25(12):1687-1692.
    [47]刘红玉,廖柏寒,鲁双庆.表面活性剂、酸雨和Cd2+复合污染对蚕豆胚根细胞核的 毒性[J].应用生态学报,2004,15(3):493-496.
    [48]余苹中,廖柏寒,刘红玉,等.模拟酸雨和Cd对小白菜、四季豆生理生化特性的影响[J].农业环境科学学报,2004,23(1):43-46.
    [49]余苹中,廖柏寒,宋稳成.模拟酸雨和Zn对四季豆根与叶酶活性的影响[J].农业环境科学学报,2004,23(5):917-920.
    [50]Liu H Y, Probst A, Liao B H. Metal contanmination in soils and crops affected by the Chenzhou Iead/zinc mine spill (Hunan,China) [J]. Sci Total Environ,2005,339:153-166.
    [51]林凡华,陈海博,白军.土壤环境中重金属污染危害的研究[J].环境科学与管理,2007,32(7):74-76.
    [52]王淑英,马啸华.土壤重金属污染的危害及修复[J].商丘师范学院学报,2005,21(5):122-125.
    [53]朱凤鸣,刘芳,邹学贤.昆明西郊镉污染对人体健康的影响[J].中国卫生检疫杂志,2002,12(5):602-603.
    [54]孔庆瑚,汪再娟,金锋,等.环境镉污染对人体健康影响的研究[J].医学研究通讯,2003,32(11):20-21.
    [55]江行玉,赵可夫.植物重金属伤害及其抗性机理[J].应用与环境生物学报,2001,7(1):92-99.
    [56]Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils-A review [J]. Soil Biol Biochem,1998,30:1389-1414.
    [57]McGrath S P, Knight B, Killham K, et al. Assessment of the toxicity of metals in soils amended with sewage sludge using a chemical speciation technique and a lux based biosensor [J]. Environ Toxic Chem,1999,18:659-663.
    [58]赵其国.我国东部红壤区土壤退化的时空变化、机理及调空对策[M].北京:科学出版社,2002,1-332.
    [59]Watmough S A, Hutchinson H A. The quantification and distribution of pollution Pb at a wood land in rural south central Ontario, Canada [J]. Environ Pollut,2004,128:419-428.
    [60]Piltier E F, Webb S M, Gaillard J F. Znic and lead sequestration in an impacted wetland system. [J]. Adv Environ Res,2003,8:103-112.
    [61]王艮梅,周立祥,占新华,等.水田土壤中水溶性有机物的产生动态及土壤中重金属活性的影响:田间微区试验[J].环境科学学报,2004,24(5):858-864.
    [62]陈同斌,郑袁明,陈煌,等.北京市土壤重金属含量背景值的系统研究[J].环境科学,2004,25(1):117-122.
    [63]Vandecasteele B, De Vos B, Tack F M G. Cadmium and Zinc uptake by volunteer willow species and elder.rooting in polluted dredged sediment disposal sites [J]. Sci Total Environ,2002, 299:191-205.
    [64]Stoltz E, Greger M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing in submerged mine tailings [J]. Environ Experi Botany,2002,47:271-280.
    [65]Fritioff A, Kautsky L, Greger M. Influence of temperature and salinity on heavy metal uptake by submerged plant [J]. Environ Pollut,2005,133:265-274.
    [66]蒋先军,骆永明,赵其国.重金属污染土壤的植物修复研究Ⅲ.金属富集植物Brassica juncea对锌镉的吸收和积累[J].土壤学报,2002,39(5):664-670.
    [67]曾清如,廖柏寒,杨仁斌,等.EDTA溶液萃取污染土壤中的重金属及其回收技术[J].中国环境科学,2003,23(6):597-601.
    [68]Sekhar K C, Kamala C T, Chary N S, et al. Removal of heavy metals using a plant biomass with refenrence ti environmental control [J]. Int J Miner Process,2003,68:37-45.
    [69]孙波,孙华,张桃林.红壤重金属复合污染修复的生态环境效应与评价指标[J].环境科学,2004,25(2):104-110.
    [70]Schutzendubel A, Polle A. Plant responses to abiotic stresses:heavy metal-induced oxidative stress and protection by mycorrhization [J]. J Experi Botany,2002,372:1351-1365.
    [71]Pang J, Chan G S, Zhang J, et al. Physiological aspects of vetiver grass for rehabilitation in abandoned metalliferous mine wastes [J]. Chemosphere,2003,52 (9):1559-1570.
    [72]陈宏,陈玉成,杨学春.石灰对土壤中Hg, Cd、Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    [73]何勇强,淘勤南.镉胁迫下大豆中镉的分布状况及其籽粒品质[J].环境科学学报,2000,20(4):510-512.
    [74]Maejima Y, Makino T, Takano H, et al. Remediation of cadmium-contaminated paddy soils by washing with chemicals:effect of soil washing on cadmium uptake by soybean [J]. Chemosphere,2007,67 (4):748-754.
    [75]黄运湘,廖柏寒,肖浪涛,等.镉处理对大豆幼苗生长及激素含量的影响[J].环境科学,2006,27(7):1398-1401.
    [76]王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9-13.
    [77]黄运湘,廖柏寒,肖浪涛,等.添加Cd2+对大豆生长发育及逆境生理指标的影响[J].水土保持学报,2006,20(3):187-191.
    [78]王玉,王从,张金彪,等.福建耕地土壤重金属污染的生态效应[J].福建农业大学学报,1996,25(4):461-466.[79]王志坤,廖柏寒,黄运湘,等.镉处理对大豆生物量及镉分布状况的影响[J].湖南农业大学学报(自然科学版),2006,32(6):658-661.
    [80]Wolnik K A, Fricke F L, Capar S G, et al. Elements in major raw agricultural crops in the United States.1. Cadmium and lead in lettuce, peanuts, potatoes, soybean, sweet corn, and wheat [J]. J Agric Food Chem,1983,31:1240-1244.
    [81]Mclaughlin M J, Tiller K G, Naidu R, et al. Review. The behaviour and environmental impact of contaminants in fertilizers [J]. Aust J Soil Res,1996,34:1-54.
    [82]Li Y M, Chaney R L, Schneiter A A. Screening for low grain cadmium phenotypes in sunflower, durum wheat and flax [J]. Euphytica,1997,94:23-30.
    [83]Grant C A, Bailey L D, Laugh M J, et al. Cadmium in soils and plants [M]. Dordrecht: Kluwer Academic Publishers,1999,151-198.
    [84]王焕校.污染生态学基础[M].昆明:云南大学出版社,1990,71-148.
    [85]Kelly J M, Parker G R, Fee W W M. Heavy metal accumulation and grow th of seedlings of five fo rest species as influenced by soil cadmium level [J]. J Environ Qual,1979,8:361-364.
    [86]王军,魏昌华,薛海英,等.救荒野豌豆对污染土壤中Cd的富集特征[J].地质科技情报,2008,27(1):8-9.
    [87]Shute T, Macfie S M. Cadmium and zinc accumulation in soybean:A threat to food safety? [J]. Sci Total Environ,2006,37(3):63-73.
    [88]Vievek D, Vivek P, Radhey S. Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L.CV.Azad) [J]. J Experi Bot,2001,52 (358):1101-1109.
    [89]Sandalio L M, Dalurzo H C, Gomez M, et al. Cadmium-induced.changes in the growth and oxidative metabolism of pea plants [J]. J Experi Bot,2001,52 (364):2115-2126.
    [90]Cao H C, Wang J D, Zhang X L. Ecotoxicity of Cadmium to Maize and Soybean Seedling in Black Soil [J]. Chinese Geographical Science,2007,17(3):270-27.
    [91]何勇强,陶勤南,广濑和久,等.镉胁迫下大豆中镉与几种微量元素的分布状况[J].浙江大学学报(农业与生命科学版),2000,26(2):155-156.
    [92]夏增禄.土壤环境容量及其应用[M].北京:气象出版社,1988.
    [93]Zenk M H. Heavy metal detoxification in higher plant:a review [J]. Gene,1996,179:21-30.
    [94]Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants:a review [J]. Environ Pollut,1997,98(1):29-36.
    [95]杜兰芳,沈宗根,王立新,等.CdCl2对豌豆种子萌发和幼苗生长的影响[J].西北植物学报,2007,27(7):1411-1416.
    [96]Chen Y X, He Y F, Yang Y, et al. Effect of cadmium on nodulation and N2-fixation of soybean in contaminated soils [J]. Chemosphere,2003,50(6):781-787.
    [97]黄运湘,廖柏寒,王志坤.镉胁迫对大豆生长及籽粒中营养元素含量的影响[J].安全与环境学报,2008,8(2):11-14.
    [98]慈恩,高明,王子芳,等.镉对紫花苜蓿种子萌发与幼苗生长的影响研究[J].中国生态农业学报,2007,15(1):96-98.
    [99]Alland L, Jarrel W M. Proton and copper absorption to maize and soybean root cell walls [J]. Plant Physiol,1989,89:823-832.
    [100]Cristian B, Dennis H B, Fernando C. The cellular location of Cu in lichens and its effects on membrane integrity and chlorophyll fluorescence [J]. Environ Experi Bot,1997,38:165-179.
    [101]张治安,陈展宇,徐克章.镧对镉胁迫下大豆幼苗光合作用和活性氧代谢的影响[J].中国油料作物学报,2006,28(2):166-171.
    [102]Shamsi IH, Wei K, Ghulam J, et al. Interactions of cadmium and aluminum toxicity in their effect on growth and physiological parameters in soybean [J]. J Zhejiang Univ Sci B,2007,8(3): 181-188.
    [103]黄卓辉.玉米素对叶绿体耦联因子Mg2+-ATPase活力的调节[J].植物生理学报,1994,20(2):193-199.
    [104]强维亚,杨晖,陈拓,等.镉和增强紫外线-B辐射复合作用对大豆生长的影响[J].应用生态学报,2004,15(4):697-700.
    [105]Rachmilewitz E A, Shohel S B, Lubin B H. Lipid membrane peroxidation in beta-thalassemia major [J]. Blood,1976,47(3):495-505.
    [106]张芬琴,孟红梅,沈振国,等.镉胁迫下绿豆和箭舌豌豆幼苗的抗氧化反应[J].西北 植物学报,2006,26(7):1384-1389.
    [107]张治安,陈展宇,王振民,等.镉胁迫对大豆下胚轴保护酶活性的影响[J].吉林农业大学学报,2005,27(3):237-240.
    [108]吴旭红,何士敏,张树权.镉胁迫下大豆幼苗生理生化特性分析[J].黑龙江环境通报,2001,25(3):65-68.
    [109]王志坤,廖柏寒,黄运湘,等.镉胁迫对大豆幼苗生长影响及不同品种耐镉差异性研究[J].农业环境科学学报,2006,25(5):1143-1147.
    [110]罗承辉,廖柏寒,曾敏,等.磷对镉胁迫下黄豆生理生化特性的影响[J].湖南农业大学学报(自然科学版),2005,31(4):431-433.
    [111]Noriega G Q, Balestrasse K B, Batle A, et al. Cadmium induced oxidative stress in soybean plants also by the accumulation of delta-aminolevulinic acid [J]. Biometals,2007,20(6):841-851.
    [112]沙莎,缪月秋,徐勤松,等.镧对镉胁迫下豌豆幼苗根部细胞内离子平衡及膜质子泵的影响[J].中国稀土学报,2006,24(2):235-240.
    [113]Balestrasse K B, Gallego S M, Tomaro M L. Cadmium-induced senescence in nodules of soybean(Glycine max) [J]. Plant and Soil,2004,262:373-381.
    [114]Robert S, Joanna D. The effect of cadmium on cell cycle control in suspension culture cells of soybean [J]. Acta Physiologiae Plantarum,2004,26(3):335-344.
    [115]Ping H, Mitsuru O, Masako T, et al. Endogenous hormones and expression of senescence-related genes in different senescent types of maize [J]. J Experi Bot,2005,56 (414): 1117-1128.
    [116]Carina B, Mario D T, Patricia L, et al. The role of ascorbic acid in the control of flowering time and the onset of senescence [J]. J Experi Bot,2006,57(8):1657-1665.
    [117]Zhang M, Yuan B, Leng P. The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit [J]. J Experi Bot,2009,60(6):1-10.
    [118]Ci D, Jiang D, Dai T, et al. Effects of cadmium on plant growth and physiological traits in contrast wheat recombinant inbred lines differing in cadmium tolerance [J]. Chemosphere,2009, 77(11):1620-1625.
    [119]杨景辉.土壤污染与防治[M].北京:科学出版社,1995.
    [120]刘俊,廖柏寒,周航,等.镉胁迫对大豆花荚期生理生态的影响[J].生态环境学报,2009,18(1):176-182.
    [121]陈志良,莫大伦,仇荣亮.镉污染对生物有机体的危害及防治对策[J].环境保护科 学,2001,27(4):37-39.
    [122]周青,张辉,黄晓华,等.镧对镉胁迫下菜豆(Phaseolusvulgaris)幼苗生长的影响[J].环境科学,2003,24(4):48-53.
    [123]宋玉芳,许华夏,任丽萍,等.土壤重金属污染对蔬菜生长的抑制作用及其生态毒性[J].农业环境科学学报,2003,22(1):13-15.
    [124]马文丽,金小弟,王转花.镉处理对乌麦种子萌发幼苗生长及抗氧化酶的影响[J].农业环境科学学报,2004,23(1):55-59.
    [125]崔玮,张芬琴,金自学.Cd2+处理对两种豆科作物幼苗生长的影响[J].农业环境科学学报,2004,23(1):60-63.
    [126]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999.
    [127]中国科学院上海植物生理研究所.现代植物生理学实验指南[M].北京:科学出版社,1999.
    [128]Keshan U, Mukher. Phytotoxic effect of cadmium as foliar spray on mung bean plant [J]. Indian J Toxicol,1997,4:15-22.
    [129]Ghorbanli M, Hadad K S, Farzami S M. Effects of cadmium and gibberellin on growth and photosynthesis of Glycine max [J]. Photosynthetica,1999,37(4):627-631.
    [130]蔡葛平,郭燕红,姚辉,等.矮壮素和赤霉素对黄芩生物量及根中黄酮类成分产量的影响[J].中国农学通报,2008,24(7):213-215.
    [131]毛丽君,林位夫.植物生长素在农业中的应用[J].河北农业科学,2008,12(2):80-81.
    [132]王玲,黄世文,王全永,等.植物生长素对水稻叶片衰老及抗氧化酶活性的影响[J].浙江农业科学,2008,(3):310-313.
    [133]杨丹慧.重金属离子对高等植物光合膜结构与功能的影响[J].植物学通报,1991,8(3):26-29.
    [134]张治安,陈展宇,徐克章.镧对镉胁迫下大豆幼苗光合作用和活性氧代谢的影响[J].中国油料作物学报,2006,28(2):166-171.
    [135]蒋文智.重金属镐对叶绿体超微结构的影响[J].广西科学,1995,2(2):21-23.
    [136]张福锁.环境胁迫与植物营养[M].北京:中国农业大学出版社,1993.
    [137]Romero P M C, McCarthy I, Sandalio L M, et al. Cadmium toxicity and oxidative metabolism of pea leaf peroxisomes [J]. Free Rad Res,1999,31:25-31.
    [138]Chaoui A, Jarrar B, EI Ferijani E. Effects of cadmium and copper on peroxidase, NADH oxidase and IAA oxidase activities in cell wall, soluble and microsomal membrane fractions of pea roots [J]. J Plant Physiol,2004,161(11):1125-1234.
    [139]严重玲,洪业汤,付舜珍,等.Cd, Pb胁迫对烟草叶片中活性氧清除系统的影响[J].生态学报,1997,17(5):488-492.
    [140]张颖,高景彗.镉胁迫对红三叶种子萌发及幼苗生理特性的影响[J].西北农业学报,2007,16(3):57-59.
    [141]Fry S C. Isodityrosinc, a new cross-linking amino acid from plant cell wall glycoprotein: identification, assay and chemical synthesis [J]. Biochem J,1982,204:449-456.
    [142]Fry S C. Isodityrosinc, a diphenyl-either cross-link in plant cell wall glycoprotein [J]. Methods in Enzymol,1984,107:388-397.
    [143]Jita P, Braha B P. A comparison of biochemical responses to oxidative and metal stress in seedings of barley [J]. Hordeum Vulgara L Environ Pollut,1998,101:99-105.
    [144]朱雪竹,董斌,谢翼飞,等.不同形态铝对小麦抗氧化系统的影响[J].环境化学,2001,20(2):119-123.
    [145]朱晓红,显祖.花药中生长素的积累与过氧化物酶活性的关系[J].植物生理学通讯,1996,32(4):254-257.
    [146]郭观林,周启星.污染黑土中重金属的形态分布与生物活性研究[J].环境化学,2005,24(4):383-388.
    [147]Belimov A A, Safronova V I, Tsyganov V E, et al. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (Pisumsativum L.) [J]. Euphytica,2003, 131:25-35.
    [148]Chafei C H, Gorbel M H. Nitrogen metabolism of tomato under cadmium stress conditions [J]. J Plant Nurt,2003,26:1634-1671.
    [149]谢建治,张书廷,刘树庆,等.潮褐土重金属Cd污染对小白菜营养品质指标的影响[J].农业环境科学学报,2004,23(4):678-682.
    [150]孙海兆,郑春荣,周东美,等.土壤Cd污染对青菜和薨菜生长及Cd含量的影响[J].农业环境科学学报,2005,24(3):417-420.
    [151]王凯荣.我国农田Cd污染现状及其治理利用对策[J].农业环境保护,1997,16(6):274-278.
    [152]Hart J J. Characterization of cadmium binding, uptake, and translocation in intadt seedlings [J]. Plant Physiol,1998,116:1413-1420.
    [153]Page V, Feller. Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants [J]. Annals Bot,2005,96(3):425-434.
    [154]Claudia C, Laura D, Beat F, et al. Distribution of cadmium in leaves of Thlaspi caerulescens [J]. J Experi Bot,2005,56(412):765-775.
    [155]Dudka S, Piotrowska M, et al. Transfer of cadmium, lead, and zinc from industrially contaminated soil to crop plants:a field study [J]. Environ Pollut,1996,94(2):181-188.
    [156]Bi X, Feng X, et al. Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions [J]. Environ Pollut,2009,157(3):834-839.
    [157]Barazani O, Dudai N, Khadka U R, et al. Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium [J]. Chemosphere,2004,57(9):1213-1218.
    [158]Gardea-Torresdey J L, Peralta-Videa J R, Montes M, et al. Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.:impact on plant growth and uptake of nutritional elements [J]. Bioresour Technol,2004,92(3):229-235.
    [159]Kurz H, R. Schulz, Romheld V. Selection of cultivars to reduce the concentration of cadmium and thallium in food and fodder plants [J]. J Plant Nutr Soil Sci,1999,162:323-328.
    [160]Dunbar K R, McLaughlin M J, Reid R J. The uptake and partitioning of cadmium in two cultivars of potato (Solanum tuberosum L) [J]. J Exp Bot,2003,54:349-354.
    [161]Liu Z, He X Y, Chen W, et al. Accumulation and tolerance characteristics of cadmium in a potential hyperaccumulator-Lonicera japonica Thunb [J]. J Hazard Materi,2009,169 (1-3): 170-175.
    [162]吴大付,任秀娟,姜俊宇.镉在土壤-植物系统中迁移积累的研究进展[J].安徽农业科学,2007,35(5):1420-1422.
    [163]Kelly J M, Parker G R, Mc Fee W W. Heavy metal accumulation and growth of seedlings of five fo rest species as influenced by soil cadmium level [J]. J Environ Qual,1979,8:361-3641.
    [164]张金彪,黄维南.镉对植物的生理生态效应的研究进展[J].生态学报,2000,20(3):514-523.
    [165]Sawidis, T. Effect of cadmium on pollen germination and tube growth in Lilium longiflorum and Nicotiana tabacum [J]. Protoplasma,2008,233 (2):95-106.
    [166]Siddhu G, Sirohi D S, Kashyap K, et al. Toxicity of cadmium on the growth and yield of Solanum melongena L [J]. J Environ Biol,2008,29(6):853-7.
    [167]Smiri M, Chaoui A, EI Ferijani E, et al. Respiratory metabolism in the embryonic axis of germinating pea seed exposed to cadmium [J]. J Plant Physiol,2009,166 (3):259-69.
    [168]华涛,周启星.Cd-Zn对草鱼LCtenopharyngodon idellus)的联合毒性及对肝脏超氧化歧化酶(SOD)活性的影响[J].环境科学学报,2009,29(3):600-606.
    [169]陈健妙,郑青松,刘兆普,等.麻枫树(Jatropha curcas L)幼苗生长和光合作用对盐胁迫的响应[J].生态学报,2009,29(3):1356-1365.
    [170]刘周莉,何兴元,陈玮.镉胁迫对金银花生理生态特征的影响[J].应用生态学报,2009,20(1):40-44.
    [171]姚广,高辉远,王未未,等.铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响[J].生态学报,2009,29(3):1162-1169.
    [172]李铮铮,伍钧,唐亚,等.铅、锌及其交互作用对鱼腥草叶绿素含量及抗氧化酶系统的影响[J].生态学报,2007,27(12):5441-5446.
    [173]段九菊,郭世荣,康云艳,等.外源亚精胺对盐胁迫下黄瓜(Cucumis sativus L.)叶绿体活性氧清除系统和结合态多胺含量的影响[J].生态学报,2009,29(2):653-659.
    [174]周建民,党志,陈能场,等.螯合剂诱导下污染土壤溶液中TOC和重金属的动态变化及其相关性[J].环境化学,2007,26(5):602-605.
    [175]刘广深,许中坚,周根娣,等.模拟酸雨作用下红壤镉释放的研究[J].中国环境科学,2004,24(4):419-423.
    [176]崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报,2003,23(10):2133-2143.
    [177]李静,俞天明,周洁,等.铅锌矿区及周边土壤铅、锌、镉、铜的污染健康风险评价[J].环境科学,2008,29(8):2327-2330.
    [178]张显龙,于涛,冯靓微,等.大豆对镉的累积特性及形态研究[J].安徽农业科学,2010,38(2):672-673.
    [179]Kupper H, Zhao F J, McGrath S P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens [J]. Plant physiology,1999,119(1):305-311.
    [180]周建民,党志,淘雪琴,等.NTA对玉米体内Cu、Zn的积累及亚细胞分布的影响[J].环境科学,2005,26(6):126-130.
    [181]徐勤松,施国新,杜开和.重金属镉、锌在菹草叶细胞中的超微定位观察[J].云南植物研究,2002,24(2):241-244.
    [182]Delperee C, Lutts S. Growth inhibition occurs independently of cell mortality in tomato (Solanum lycopersicum) exposed to high cadmium concentrations [J]. J Int Plant Biol,2008,50(3): 300-310.
    [183]Fernandez R, Bertrand A, et al. Cadmium accumulation and its effect on the in vitro growth of woody fleabane and mycorrhized white birch [J]. Environ Pollut,2008,152(3):522-529.
    [184]Agrawal S B, Mishra S. Effects of supplemental ultraviolet-B and cadmium on growth, antioxidants and yield of Pisum sativum L [J]. Ecotoxicol Environ Saf,2009,72(2):610-618.
    [185]Salt D E, Prince R C, Pickering I J, et al. Mechanisms of cadmium mobility and accumulation in Indian mustard [J]. Plant Physiol,1995,109(4):1427-1433.
    [186]Sanita di T, Gabbrielli R. Response to cadmium in higher plants [J]. Environm Exp Bot, 1999,41:105-130.
    [187]Lozano R, Hernandez E, Bonay L E. Distribution of cadmium in shoot and root tissues of maize and pea plants:physiological disturbances [J]. J Experi Bot,1997,48(306):123-128.
    [188]Assche F, Clijsters H. Enzyme analysis in plants as a tool for assessing phytotoxicity of heavy metal polluted soils [J]. Med Fac Landbouww Rijksuniv Gent,1987,52(4):1819-1824.
    [189]张玉秀,于飞,张媛雅,等.植物对重金属的吸收转运和累积机制[J].中国生态农业学报,2008,16(5):1317-1321.
    [190]Chou K C, Shen H B. Recent progress in protein subcelluar location prediction [J]. Anal Biochem,2007,370(1):1-16.
    [191]Cataldo D A, Thomas R G, Wildung R D. Cadmium distribution and chemical fate in soybean plants [J]. Plant Physiol,1981,68(4):835-839.
    [192]Weigel H J, Jager H J. Subcellular distribution and chemical form of cadmium in bean plants [J]. Plant Physiol,1980,65(3):480-482.
    [193]陈健妙,郑青松,刘兆普,等.麻枫树(Jatropha curcas L)幼苗生长和光合作用对盐胁迫的响应[J].生态学报,2009,29(3):1356-1365.
    [194]Zhang YM, Liu X Z, Lu H, et al. Lipid peroxidation and ultrastructural modifications in brain after perinatal exposure to lead and/or cadmium in rat pups [J]. Biomed Environ Sci,2009, 22(5):423-429.
    [195]刘周莉,何兴元,陈玮.镉胁迫对金银花生理生态特征的影响[J].应用生态学报,2009,20(1):40-44.
    [196]姚广,高辉远,王未未,等.铅胁迫对玉米幼苗叶片光系统功能及光合作用的影响[J].生态学报,2009,29(3):1162-1169.
    [197]李铮铮,伍钧,唐亚,等.铅、锌及其交互作用对鱼腥草叶绿素含量及抗氧化酶系统的影响[J].生态学报,2007,27(12):5441-5446.
    [198]段九菊,郭世荣,康云艳,等.外源亚精胺对盐胁迫下黄瓜(Cucumis sativus L.)叶绿体活性氧清除系统和结合态多胺含量的影响[J].生态学报,2009,29(2):653-659.
    [199]Williams L E, Phillips D A. Effect of lrradiance on development of apparent nitrogen fixation and photosynthesis in soybean [J]. Plant Physiol,1980,66(5):968-972.
    [200]强维亚,陈拓,汤红官,等.Cd胁迫和增强Uv.B辐射复合对大豆根系分泌物的影响[J].植物生态学报,2003,27(3):293-298.
    [201]Belimov A A, Safronova V I, Tsyganov V E, et al. Genetic variability in tolerance to cadmium and accumulation of heavy metals in pea (pisumsativum L) [J]. Eupgytica,2003, 131(1):25-35.
    [202]Larst W J. Factors responsible for genotypic manganese tolerance in cowpea (vignz ungiculata) [J]. Plant and soil,1983,72:213-218.
    [203]Bell M J, Mclaughlin M J, Wright G C, et al. Inter-and instraspecitic variation in accumulation of cadmium by peanut, soybean and navy bean [J]. Australia Journal of agricultural research,1997,48:1151-1160.
    [204]Ashraf Metually, Vera I Safronova, Andrei A Belimov, et al. Genotypic variation of the response to cadmium toxicity in pisum sativum L [J]. Journal of Experimental Botany,2005, 56(409):167-178.
    [205]Megumi Sugiyama, Noriharu Ae,Tomohito Arao.Role of roots in differences in seed cadmium concentration among soybean cultivars-proof by grafting experiment [J]. Plant Soil, 2007,295:1-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700