候选抑癌基因启动子甲基化用于卵巢恶性肿瘤早期诊断的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的
     卵巢恶性肿瘤是妇科三大恶性肿瘤之一,死亡率高居妇科肿瘤之首,是严重威胁妇女生命和健康的主要妇科肿瘤。尽管手术技巧的提高和新型化疗药物的问世改善了晚期卵巢恶性肿瘤患者的近期生活质量,但5年生存率仍徘徊在30%左右。造成这一困境的主要原因就是由于目前临床上尚缺乏便捷而有效的常规筛查手段和早期诊断策略,多数患者就诊时已错失手术治疗的最佳时期。因此,早期诊断是改善卵巢恶性肿瘤患者预后的关键所在。但仅仅依靠常规妇科盆腔检查远远不能满足早期诊断的需要,因为在疾病早期肿瘤仅局限于卵巢时诊断非常困难。所以寻找有实用价值的肿瘤标志物一直是妇科肿瘤研究领域的重要课题。
     肿瘤标志物的检测不仅可用于恶性肿瘤的诊断,还可以用于疗效评估和治疗后病情的监测及复发癌的早期发现。甲胎蛋白(alpha-fetoprotein, AFP)和人绒毛膜促性腺激素(human chorionic gonadotropin, hCG)对内胚窦瘤和绒毛膜癌的诊断价值是不言而喻的。但对大多数卵巢恶性肿瘤而言,至今尚未找到特异性和敏感性堪与AFP和hCG相媲美的肿瘤标志物。目前,癌抗原125 (cancer antigen 125, CA125)是已发现的最重要的卵巢癌相关抗原,也是全世界范围内应用最广泛的卵巢上皮性肿瘤标志物,对卵巢浆液性囊腺癌诊断的准确率在80%以上。CA125对于卵巢上皮性癌的诊断价值已基本得到公认。但是由于部分卵巢非上皮性恶性肿瘤患者的血清CA125并不升高,而一些非恶性疾病患者的血清CA125也可升高,致使CA125仍不能单独作为诊断卵巢恶性肿瘤的指标,其临床应用受到局限。因此,探索CA125与其他肿瘤标志物联合检测以提高诊断的敏感性和特异性已成为当下临床工作中面临的巨大挑战之一。
     从分子水平探讨卵巢恶性肿瘤的发病机制,是近年来妇科肿瘤研究中的热点,也是发现新的肿瘤标志物的切入点。研究表明,表遗传学机制(epigenetic mechanism)参与了恶性肿瘤的形成和发展过程,在基因转录的调控过程中起着极其重要的作用。表遗传学调控的分子机制包括DNA甲基化(DNAmethyaltion)、组蛋白修饰(histone modification)、染色体重塑(chromatin remodeling)和小RNA (microRNA)调控等。大量研究表明,基因启动子区域CpG岛(promoter region CpG islands)的异常甲基化是抑癌基因(tumor suppressor gene, TS G)和其他肿瘤相关基因沉寂(silence)失活的重要原因,有时是TSG失活的唯一原因。因此,基因启动子区域CpG岛的甲基化(简称基因启动子甲基化)有望成为某些恶性肿瘤的分子标志物。
     SLIT2 (slit homolog 2 (Drosophila))基因最早在果蝇体内发现,其编码的蛋白质Slit2参与中枢神经系统的分化和发育,对轴突生长和神经元迁移有导向作用。近来有报道Slit2蛋白在乳腺癌、小细胞肺癌、结肠癌、神经胶质瘤中表达异常。
     3-OST-2 (heparan sulfate D-glucosaminyl 3-O-sulfotransferase 2)即硫酸乙酰肝素D-氨基葡萄糖-3-O磺基转移酶2基因,其编码的磺基转移酶参与硫酸肝素蛋白聚糖分子中粘多糖链的最后修饰过程。此修饰过程对决定硫酸肝素蛋白聚糖与多种蛋白结合的特异性以及其调节特性具有重要意义。研究发现,3-OST-2基因启动子甲基化后造成的转录沉默表明了硫酸肝素修饰的改变参与了肿瘤的发生与发展过程。
     CDH13 (cadherin 13)即H-Cadherin基因,其编码的钙依赖性细胞粘附糖蛋白是心肌细胞间相互作用的重要媒介,是神经细胞生长的负性调节因子。研究发现,CDH13蛋白在结肠癌、食道癌、胰腺癌、肺癌、宫颈癌、子宫内膜癌和何杰金淋巴瘤中表达下调,且与CDH13基因启动子的甲基化有关。
     TES (testis derived transcript)即睾丸素基因,含有3个富含半胱氨酸的区域(LIM),编码一种分子量较小的细胞骨架联合蛋白,通过与其他细胞骨架蛋白相互结合而发生作用,参与细胞的粘附、细胞的扩散和肌动蛋白细胞骨架的改建,并可抑制肿瘤细胞的生长。
     上述4种基因作为候选(candidate)的抑癌基因,其启动子区域CpG岛的甲基化状况已在结直肠癌、肺癌、乳腺癌、肝癌、胶质瘤及淋巴细胞白血病等肿瘤中进行了较为深入的研究,结果表明这些基因启动子的甲基化与肿瘤的发生发展有关,但鲜见其在卵巢恶性肿瘤中的甲基化状况及与卵巢恶性肿瘤发生发展关系的报道。
     甲基化特异的聚合酶链反应(Methylation specific PCR, MSP)是目前研究甲基化最敏感的实验技术之一,能发现0.1%的甲基化DNA(-50pg)。其基本原理为:单链DNA经过亚硫酸氢钠修饰后,所有未甲基化的胞嘧啶(cytosine, C)脱氨转变为尿嘧啶(uracil, U),而CpG二核苷酸中的胞嘧啶则因甲基化而保持不变。据此,分别设计两对针对甲基化和非甲基化等位基因的引物,通过PCR扩增即可将甲基化与非甲基化DNA序列区分开来。
     本研究采用MSP对以上4种候选的TSGs在卵巢恶性肿瘤患者的组织、外周血和腹水中的甲基化状况进行检测,以探讨DNA甲基化作为肿瘤分子标志在卵巢恶性肿瘤的诊断和早期诊断中的可行性。
     本研究分为以下三部分:
     第一部分卵巢恶性肿瘤组织中SLIT2、3-OST-2、CDH13和TES基因启动子甲基化的检测及临床意义
     目的:探讨抑癌基因启动子的甲基化作为卵巢恶性肿瘤诊断和早期诊断分子标志物的可行性。
     材料与方法:采用MSP对79例卵巢恶性肿瘤、40例卵巢良性肿瘤组织标本中SLIT2、3-OST-2、CDH13和TES基因启动子的甲基化状况进行检测,并分析甲基化与临床病理特征之间的关系。
     结果:1.卵巢恶性肿瘤组织中,SLIT2、3-OST-2、CDH13和TES基因启动子的甲基化率分别是86.1%(68/79),77.2%(61/79),43.0%(34/79)和30.4%(24/79),至少有一个基因发生甲基化的频率为97.5%(77/79),卵巢良性肿瘤中则未检测到任何一种基因的甲基化。2.甲基化与肿瘤的组织学类型、病理分级、临床病理分期和患者的年龄无相关性(P值均>0.05);平均甲基化基因个数与肿瘤分期无相关性(P=0.195)。3.SLIT2的甲基化与淋巴结转移相关(P=0.027),CDH13的甲基化与血清CA125水平相关(P=0.034)。4.早期(Ⅰ—Ⅱ期)卵巢恶性肿瘤组织中至少有上述一个基因发生甲基化的频率为96.9%(31/32)。
     结论:抑癌基因启动子的甲基化是卵巢恶性肿瘤发生中的早期和普遍事件,是卵巢恶性肿瘤早期诊断的可靠指标,多种基因联合检测,可提高诊断的准确性。
     第二部分:循环DNA中SLIT2、3-OST-2、CDH13和TES基因启动子的甲基化用于卵巢恶性肿瘤早期诊断的可行性研究
     目的:探讨循环DNA用于卵巢恶性肿瘤诊断和早期诊断的可行性。
     材料与方法:采用MSP对42例可疑卵巢恶性肿瘤患者和30例健康女性的外周血浆标本中SLIT2、3-OST-2、CDH13和TES基因启动子的甲基化状况进行检测,并将结果与相对应的肿瘤组织中同一基因的甲基化状况进行对比、分析。
     结果:1.肿瘤患者的血浆中,SLIT2、3-OST-2、CDH13和TES基因启动子的甲基化率分别是38.1%(16/42),28.6%(12/42),19.0%(8/42)和19.0%(8/42),至少一个基因发生甲基化的频率为54.8%(23/42),30例健康对照者的血浆中未检测到任一基因的甲基化。2.在由病理确诊的26例卵巢恶性肿瘤患者中,23例在外周血中检测到了至少一种基因的甲基化,敏感性为88.5%(23/26),25例在肿瘤组织中检测到了至少一种基因的甲基化,敏感性为96.2%(25/26),二者的特异性均为100%(17/17)。3.血浆中各基因甲基化的检出率与自身肿瘤组织中的甲基化率比较,差异无统计学意义(P值均>0.05),二者的一致性为95.2%(40/42)。4.若用血浆代替组织进行甲基化检测,其敏感性为92.0%(23/25),特异性为100%(17/17),准确性为95.2%(40/42),阳性预测值为100%(23/23),阴性预测值为89.5%(17/19)。5.早期(Ⅰ—Ⅱ期)恶性肿瘤患者的血浆中任一基因的甲基化率为70%(7/10),若用血浆代替组织进行甲基化检测的敏感性为77.8%(7/9),准确性为80.0%(8/10),阳性预测值为100%(7/7),阴性预测值为33.3%(1/3)。6.组织DNA中CDH13的甲基化率与CA125水平相关(P=0.021)。
     结论:循环DNA中抑癌基因启动子的甲基化是卵巢恶性肿瘤的可靠标志,外周血可替代肿瘤组织用于卵巢恶性肿瘤的诊断和早期诊断。
     第三部分:腹水或腹腔冲洗液中SLIT2、3-OST-2、CDH13和TES基因启动子的甲基化分析对卵巢恶性肿瘤诊断的价值
     目的:探讨腹水或腹腔冲洗液用于卵巢恶性肿瘤诊断和早期诊断的价值。
     材料与方法:采用MSP对42例可疑卵巢恶性肿瘤患者的腹水或腹腔冲洗液中SLIT2、3-OST-2、CDH13和TES基因启动子的甲基化状况进行检测,并将结果与腹水细胞学检查及第二部分研究结果进行对比、分析。
     结果:1.患者的腹水或腹腔冲洗液中,SLTT2、3-OST-2、CDH13和TES基因启动子的甲基化率分别是47.6%(20/42),38.1%(16/42),21.4%(9/42)和23.8%(10/42),至少一个基因发生甲基化的频率为52.4%(22/42),与血浆中的甲基化率比较,差异无统计学意义(P值均>0.05)。2.在经病理检查确诊的26例恶性肿瘤患者当中,有22例在腹水或腹腔冲洗液中检测到至少一种基因的甲基化,敏感性为84.6%(22/26),特异性为100%(17/17),与血浆用于诊断的敏感性(88.5%)比较,差异无统计学意义(校正χ2检验,P=1.0)。若以腹水替代组织进行甲基化检测,其敏感性为88.0%(22/25),特异性为100%(17/17),准确性为92.9%(39/42),阳性预测值为100%(22/22),阴性预测值为85.0%(17/20),各值与循环DNA中的数值相比,差异无统计学意义。3.在20例细胞学检查结果阳性的患者当中,19例检测到了任一基因的甲基化,敏感性为95.0%(19/20),特异性为100%(22/22)。4.在16例良性肿瘤患者的腹水或腹腔冲洗液中,无一例检测到任一基因的甲基化,与血浆的检测结果一致。5.早期恶性肿瘤患者的腹腔冲洗液或腹水中任一基因的甲基化率为60%(6/10),与血浆中的甲基化率(70%)无异,但若两者同时检测,敏感性略可提高(80%,8/10)。
     结论:腹水或腹腔冲洗液可替代血浆或肿瘤组织用于癌相关基因启动子的甲基化分析,对早期患者的腹水和血浆伺时进行甲基化检测,可提高诊断的准确性。
Backgroud
     Ovarian carcinoma is the third most common gynecological malignancy and is the leading cause of death among women with gynecologic cancers. The lifetime risk of ovarian carcinoma is about 1 in 55, while the prevalence in postmenopausal women is 1 in 2,500, and the age-adjusted incidence is around 11 per 100,000. It is estimated that 82,550 new cases will be diagnosed, and 53,600 deaths from ovarian carcinoma occur, in Europe and America in 2009. About 190,000 new cases and 114,000 deaths from ovarian cancer are estimated to occur annually in the world. Unfortunately, there is no reliable data at the national level on mortality from ovarian carcinoma in China.
     Because there is currently no sufficiently accurate screening test proven to be effective in the early detection of ovarian carcinoma,70%~75%of patients are not diagnosed until the disease has advanced to stage III or IV. The 5-year survival rate for women with these advanced stages is less than 30%, but patients with stage I disease have 5-year survival in access of 85%if appropriately treated. Because of the association between prognosis and stage, a specific and sensitive screening test is intuitively appealing. Detection of a large fraction of ovarian carcinoma in early stage would be of clearly clinical benefit and might significantly improve the overall survival. It is estimated that if the percentage of cases diagnosed in stage I could increase to 75%by early detection, mortality could be reduced by 50%, and the 5-year survival could rise to 80-95%.
     Both genetic and epigenetic changes that initiate and drive tumorigenesis are promising target for early detection because they may precede clinically obvious disease. Epigenetic alterations, defined as heritable changes in gene expression but without DNA sequence changing, such as DNA methylation, histone modification, microRNAs and chromatin remodeling, are increasingly focused on recently, for their reversible nature. DNA methylation, the best studied epigenetic mechanism, is an enzymatic process to add the methyl group at the fifth carbon of cytosines within the palindromic dinucleotide 5'-CpG-3'sequence. Cytosine methylation is important for epigenetic regulation of endogenous genes, silencing of transposons and controlling of genome stability. Now, DNA methyaltion is considered a third pathway to satisfy Knudson's hypothesis. It can lead to transcriptional inactivation and gene silence by directly blocking the binding of transcriptional factors to DNA, and/or by MBP(methyl-CpG-binding protein), which recruits chromatin remodeling corepressor complexes.
     Numerous studies have revealed that the coexistence of gene-specific promoter hypermethylation and global genomic DNA hypomethylation is an epigenetic characteristics of cancer cells, and the methylation of CpG dinucleotides in the promoter regions of tumor suppressor genes (TSGs) can be used as a useful biomarker for early detection of cancer. However, these analyses usually are performed after surgery or biopsy, which limits their use for early screening for cancer. Fortunately, several recent studies have demonstrated the feasibility of detecting tumor-specific genetic or epigenetic alterations in body fluids, especially in serum or plasma. Tumor-associated DNA in blood originate from cell lysis, apoptosis, necrosis or active release from the primary tumor, and has almost the same characteristics as primary tumor DNA, such as oncogene expression, tumor suppressor gene mutations, as well as microsatellite and epigenetic alterations.
     Methylation-specific PCR(MSP), a sensitive assay that detects CpG dinucleotides in a CpG island, can identify one allele in the presence of 1,000~10,000 unmethylated alleles, and does not require prior knowledge of epigenetic alterations. Due to both its high sensitivity and specificity, MSP analysis provides a straightforward answer to cancer detection. To determine the feasibility of DNA methylation for early detection of ovarian carcinoma, we first investigated the methylation status of the human homologue of the Drosophila Slit2(SLIT2), Heparan sulfate D-glucosaminyl 3-O-sulfotransferase-2(3-OST-2), H-cadherin (CDH13) and TESTIN(TES) genes in tumor DNA from 79 ovarian carcinoma patients. Then we analysed the methylation status of plasma and ascites DNA from another 42 patients with a probable ovarian carcinoma diagnosis, in order to determine the sensitivity and specificity of DNA methylation for detection of cancer.
     Our research has three parts and the abstrct was as followed:
     Part 1:The Frequency of Hypermethylated SLIT2,3-OST-2,CDH13 and TES in Primary Ovarian Carcinoma
     Purpose:To determine the feasibility of DNA methylation for early diagnosis of ovarian carcinoma.
     Materials and Methods:Using Methylation-specific PCR, we first assessed the methylation status of SLIT2,3-OST-2, CDH13 and TES in tumor DNA from 79 patients with ovarian carcinoma, and analyzed the relationship between methylation status and clinicopathological parameters.
     Results:
     1. In the samples from primary ovarian carcinomas, the frequency of aberrant promoter hypermethylation of SLIT2,3-OST-2, CDH13 and TES genes was 86.1% (68/79),77.2%(61/79),43.0%(34/79) and 30.4%(24/79), respectively. Overall, in 77 of the 79 tumors, at least one of the four gene promoters was hypermethylated, which provides 97.5%diagnostic coverage. In contrast, none of the 40 benign ovarian tissues exhibited abnormal promoter hypermethylation of any gene.
     2. Hypermethylation was detected in patients of all ages, in all histological cell types, in all pathological grades, in all stages of ovarian carcinoma, and even in borderline tumors of low malignant potential. The methylation status had no correlation with tumor stage, histological classifications, grade or patient age. There was no association between the mean number of methylated genes and the tumor stage (2.59 0.91 in stageⅠ-Ⅱvs 2.28±0.96 in stageⅢ-Ⅳ, P= 0.195).
     3. Hypermethylation of CDH13 was associated with CA 125 level (P= 0.034) and SLIT2 was associated with the lymph node metastasis (P= 0.027).
     4. The combination of SLIT2,3-OST-2, CDH13 and TES provided 97.5% diagnostic coverage, which improved the sensitivity of the gene panel for cancer detection.
     Conclusions:Ovarian carcinoma harbored CpG island hypermethylation of SLIT2,3-OST-2, CDH13 and TES genes. Promoter hypermethylation showed tumor-specific features and was a relatively early event in ovarian tumorigenesis. The combination of multiple genes could improve the sensitivity of the gene panel for cancer detection.
     Part 2:Detecting Methylated SLIT2,3-OST-2, CDH13 and TES in Plasma for Early Diagnosis of Ovarian Carcinoma
     Purpose:To determine the feasibility of circulating DNA for early diagnosis of ovarian carcinoma.
     Materials and Methods:Using Methylation-specific PCR, we investigated the methylation status of SLIT2,3-OST-2, CDH13 and TES in plasma DNA from 42 patients with a probable ovarian carcinoma diagnosis, and compared the methylation status of DNA from tissues to that from plasma.
     Results:
     1. In the 42 patients with suspected ovarian carcinoma, the frequency of promoter hypermethylation detected in plasma was 38.1%(16/42) for SLIT2, 28.6%(12/42) for 3-OST-2,19.0%(8/42) for CDH13 and 19.0%(8/42) for TES. Overall,54.8%(23/42) of the plasma DNA samples had at least one gene promoter hypermethylated. But no methylation of any gene was detected in the 30 plasma DNA samples from healthy age-matched women.
     2. After surgery, we examined the hypermethylation status of the panel genes in the matched tumor tissues.Comparing the methylation results from the plasma samples to the tumor samples revealed that the sensitivity of the gene panel was 88.5%(23/26) in plasma and 96.2%(25/26) in tissues, and the specificity both were 100%.
     3. The methylation concordance between plasma and paired tumor DNA was 95.2%(40/42).
     4. If plasma DNA was substituted for tumor DNA for diaagnosis, the sensitivity, specificity, accuracy, positive prognostic value and negative prognostic value were 92.0%(23/25),100%(17/17),95.2%(40/42),100%(23/23) and 89.5%(17/19), respectively.
     5. The methylation frequency of at least one gene in plasma DNA form stage I-Ⅱpatients was 70%(7/10).
     6. The frequency of CDH13 hypermethylation was still associated with CA 125 level (P=0.021) in tumor DNA.
     Conclusions:The aberrant promoter hypermethylation of tumor suppressor genes can be detected in the plasma of ovarian carcinoma patients. Circulating hypermethylated DNA detection is a promising strategy for early detection of ovarian carcinoma.
     Part 3:Evaluation of Methylated SLIT2,3-OST-2, CDH13 and TES in Ascites for Diagnosis of Ovarian Carcinoma
     Purpose:To determine the feasibility of ascites DNA for diagnosis of ovarian carcinoma.
     Materials and Methods:Using Methylation-specific PCR, we analysed the methylation status of SLIT2,3-OST-2, CDH13 and TES in ascites DNA from 42 patients with a probable ovarian carcinoma diagnosis, and compared the results to that from tissues and from plasma.
     Results:
     1.In the 42 patients with suspected ovarian carcinoma, the frequency of promoter hypermethylation detected in ascites was 47.6%(20/42) for SLIT2, 38.1%(16/42) for 3-OST-2,21.4%(9/42) for CDH13 and 23.8%(10/42) for TES. Overall,52.4%(22/42) of the ascites DNA samples had at least one gene promoter hypermethylated.
     2. The sensitivity of the gene panel for ovarian carcinoma diagnosis was 84.6% (22/26) in ascites. If ascites DNA was substituted for tumor DNA for diaagnosis, the sensitivity, specificity, accuracy, positive prognostic value, negative prognostic value were 88.0%(22/25),100%(17/17),92.9%(39/42),100%(22/22) and 85.0% (17/20), respectively.
     3. In the abnormal cytological patients,19 showed aberrant promoter hypermethylation, the sensitivity and specificity was 95.0%(19/20) and 100%(22/22), respectively.
     4. In the benign tumor patients, no methylation of any gene was detected in their ascites DNA, which was coincident with the results of plasma.
     5. The methylation frequency of panel genes in ascites DNA from stage I-II patients was 60%(6/10).
     Conclusions:The aberrant promoter hypermethylation of tumor suppressor genes can be detected in the ascites of ovarian carcinoma patients. Ascites DNA is a surrogate for methylation analysis of tumor DNA or plasma DNA.
引文
1. Shen, K., Problems in connection to treatment of ovarian tumors and fertility preservation. Zhonghua Fu Chan Ke Za Zhi,2003.38(8):p.489-92.
    2. Dallol, A., et al., SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal'carcinoma cells. Cancer Res,2003.63(5):p.1054-8.
    3. Dallol, A., et al., SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res,2002.62(20):p.5874-80.
    4. Dallol, A., et al., Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene,2003.22(29):p.4611-6.
    5. Morris, M.R., et al., Multigene methylation analysis of Wilms'tumour and adult renal cell carcinoma. Oncogene,2003.22(43):p.6794-801.
    6. Miyamoto, K., et al., Methylation-associated silencing of heparan sulfate D-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene,2003.22(2):p.274-80.
    7. Toyooka, S., et al., Aberrant methylation of the CDH13 (H-cadherin) promoter region in colorectal cancers and adenomas. Cancer Res,2002. 62(12):p.3382-6.
    8. Toyooka, K.O., et al., Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res,2001. 61(11):p.4556-60.
    9. Widschwendter, A., et al., CDH1 and CDH13 methylation in serum is an independent prognostic marker in cervical cancer patients. International journal of cancer Journal international du cancer,2004.109(2):p.163-6.
    10. Fiegl, H., et al., Methylated DNA collected by tampons-a new tool to detect endometrial cancer. Cancer Epidemiol Biomarkers Prev,2004.13(5):p. 882-8.
    11. Hibi, K., et al., Methylation pattern of CDH13 gene in digestive tract cancers. Br J Cancer,2004.91(6):p.1139-42.
    12. Roman-Gomez, J., et al., Promoter hypermethylation of cancer-related genes: a strong independent prognostic factor in acute lymphoblastic leukemia. Blood,2004.104(8):p.2492-8.
    13. Garvalov, B.K., et al., The conformational state of Tes regulates its zyxin-dependent recruitment to focal adhesions. J Cell Biol,2003.161(1):p. 33-9.
    14. Coutts, A.S., et al., TES is a novel focal adhesion protein with a role in cell spreading. J Cell Sci,2003.116(Pt 5):p.897-906.
    15. Dunwell, T.L., et al., Frequent epigenetic inactivation of the SLIT2 gene in chronic and acute lymphocytic leukemia. Epigenetics,2009.4(4):p.265-9.
    16. Jin, J., et al., Epigenetic inactivation of SLIT2 in human hepatocellular carcinomas. Biochem Biophys Res Commun,2009.379(1):p.86-91.
    17. Mueller, W., et al., Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene,2007.26(4):p.583-93.
    18. Herman, J.G., et al., Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A,1996.93(18):p. 9821-6.
    19. Holliday, R. and P. A. Jeggo, Mechanisms for changing gene expression and their possible relationship to carcinogenesis. Cancer surveys,1985.4(3):p. 557-81.
    20. Clark, S.J. and J. Melki, DNA methylation and gene silencing in cancer: which is the guilty party? Oncogene,2002.21(35):p.5380-7.
    21. Costello, J.F., et al., Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet,2000.24(2):p.132-8.
    22. Toyota, M., et al., CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A,1999.96(15):p.8681-6.
    23. Toyota, M., et al., Distinct genetic profiles in colorectal tumors with or without the CpG island methylator phenotype. Proc Natl Acad Sci U S A, 2000.97(2):p.710-5.
    24. Strathdee, G., et al., Primary ovarian carcinomas display multiple methylator phenotypes involving known tumor suppressor genes. Am J Pathol,2001. 158(3):p.1121-7.
    25. Toyota, M., et al., Aberrant methylation in gastric cancer associated with the CpG island methylator phenotype. Cancer Res,1999.59(21):p.5438-42.
    26. Huang, T.H., M.R. Perry, and D.E. Laux, Methylation profiling of CpG islands in human breast cancer cells. Hum Mol Genet,1999.8(3):p.459-70.
    27. Herman, J.G., et al., Distinct patterns of inactivation of p15INK4B and pl6INK4A characterize the major types of hematological malignancies. Cancer Res,1997.57(5):p.837-41.
    28. Jones, P. A. and P.W. Laird, Cancer epigenetics comes of age. Nat Genet,1999. 21(2):p.163-7.
    29. Li, S.E., DNA methylation, gene expression and tumor. Basic Medical Sciences and Clinics,1996; 16:321-40(05).
    30. Mummaneni, P., et al., The primary function of a redundant Spl binding site in the mouse aprt gene promoter is to block epigenetic gene inactivation. Nucleic Acids Res,1998.26(22):p.5163-9.
    31. Graff, J.R., et al., E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res,1995.55(22):p. 5195-9.
    32. Vertino, P.M., et al., De novo methylation of CpG island sequences in human fibroblasts overexpressing DNA (cytosine-5-)-methyltransferase. Mol Cell Biol,1996.16(8):p.4555-65.
    33. Rountree, M.R., et al., DNA methylation, chromatin inheritance, and cancer. Oncogene,2001.20(24):p.3156-65.
    34. Kennedy, B.K., et al., Nuclear organization of DNA replication in primary mammalian cells. Genes Dev,2000.14(22):p.2855-68.
    35. Takahashi, T., et al., Adiponectin, T-cadherin and tumour necrosis factor-alpha in damaged cardiomyocytes from autopsy specimens. J Int Med Res,2005.33(2):p.236-44.
    36. Ranscht, B. and M. Bronner-Fraser, T-cadherin expression alternates with migrating neural crest cells in the trunk of the avian embryo. Development, 1991.111(1):p.15-22.
    37. Fredette, B.J. and B. Ranscht, T-cadherin expression delineates specific regions of the developing motor axon-hindlimb projection pathway. J Neurosci,1994.14(12):p.7331-46.
    38. Kuzmenko, Y.S., et al., Characteristics of smooth muscle cell lipoprotein binding proteins (p105/p130) as T-cadherin and regulation by positive and negative growth regulators. Biochem Biophys Res Commun,1998.246(2):p. 489-94.
    39. Lee, S.W., H-cadherin, a novel cadherin with growth inhibitory functions and diminished expression in human breast cancer. Nat Med,1996.2(7):p. 776-82.
    40. Toyooka, S., et al., DNA methylation profiles of lung tumors. Mol Cancer Ther,2001.1(1):p.61-7.
    41. Kim, D.S., et al., Aberrant methylation of E-cadherin and H-cadherin genes in nonsmall cell lung cancer and its relation to clinicopathologic features. Cancer,2007.110(12):p.2785-92.
    42. Brock, M.V., et al., DNA methylation markers and early recurrence in stage I lung cancer. N Engl J Med,2008.358(11):p.1118-28.
    43. Vuillemenot, B.R., J.A. Hutt, and S.A. Belinsky, Gene promoter hypermethylation in mouse lung tumors. Mol Cancer Res,2006.4(4):p. 267-73.
    44. Kawakami, M., et al., Involvement of H-cadherin (CDH13) on 16q in the region of frequent deletion in ovarian cancer. Int J Oncol,1999.15(4):p. 715-20.
    45. Drusco, A., et al., Knockout mice reveal a tumor suppressor function for Testin. Proc Natl Acad Sci U S A,2005.102(31):p.10947-51.
    46. Tatarelli, C, et al., Characterization of the human TESTIN gene localized in the FRA7G region at 7q31.2. Genomics,2000.68(1):p.1-12.
    47. Huang, W., et al., [Expression and clinical significance of TESTIN in primary gastric cancer]. Ai Zheng,2008.27(9):p.984-8.
    48. Ibanez de Caceres, I., et al., Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res,2004.64(18):p.6476-81.
    49. Hoque, M.O., et al., Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res,2004.64(15):p.5511-7.
    50. Waki, T., et al., Age-related methylation of tumor suppressor and tumor-related genes:an analysis of autopsy samples. Oncogene,2003.22(26): p.4128-33.
    51. Christensen, B.C., et al., Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context. PLoS Genet,2009.5(8):p. e1000602.
    52. Shi, Y.F., M. Hao, and Z.M. Ding, Study on ascite of ovarian cancer. Zhonghua Fu Chan Ke Za Zhi,2000.35(9):p.551-3.
    53.朱景德,DNA甲基化及其在肿瘤分子诊断中的前景Chinese Journal of Laboratory Medicine,2005;28:678-83(07).
    54. Qiu, H., et al., Frequent hypermethylation and loss of heterozygosity of the testis derived transcript gene in ovarian cancer. Cancer Sci.
    1. Mandel, P. and P. Metais, [Not Available.]. C R Seances Soc Biol Fil,1948. 142(3-4):p.241-3.
    2. Leon, S.A., et al., Free DNA in the serum of cancer patients and the effect of therapy. Cancer Res,1977.37(3):p.646-50.
    3. Stroun, M., et al., Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology,1989.46(5):p.318-22.
    4. Sorenson, G.D., et al., Soluble normal and mutated DNA sequences from single-copy genes in human blood. Cancer Epidemiol Biomarkers Prev,1994. 3(1):p.67-71.
    5. Vasioukhin, V., et al., Point mutations of the N-ras gene in the blood plasma DNA of patients with myelodysplastic syndrome or acute myelogenous leukaemia. Br J Haematol,1994.86(4):p.774-9.
    6. Kirk, G.D., et al., Ser-249 p53 mutations in plasma DNA of patients with hepatocellular carcinoma from The Gambia. J Natl Cancer Inst,2000.92(2):p. 148-53.
    7. Jackson, P.E., et al., Specific p53 mutations detected in plasma and tumors of hepatocellular carcinoma patients by electrospray ionization mass spectrometry. Cancer Res,2001.61(1):p.33-5.
    8. Shao, Z.M., et al., p53 mutation in plasma DNA and its prognostic value in breast cancer patients. Clin Cancer Res,2001.7(8):p.2222-7.
    9. Frickhofen, N., et al., Rearranged Ig heavy chain DNA is detectable in cell-free blood samples of patients with B-cell neoplasia. Blood,1997.90(12):p. 4953-60.
    10. Taback, B., et al., Prognostic significance of circulating microsatellite markers in the plasma of melanoma patients. Cancer Res,2001.61(15):p.5723-6.
    11. Taback, B., et al., Circulating DNA microsatellites:molecular determinants of response to biochemotherapy in patients with metastatic melanoma. J Natl Cancer Inst,2004.96(2):p.152-6.
    12. Taback, B., et al., Microsatellite alterations detected in the serum of early stage breast cancer patients. Ann N Y Acad Sci,2001.945:p.22-30.
    13. Beau-Faller, M., et al., Plasma DNA microsatellite panel as sensitive and tumor-specific marker in lung cancer patients. International journal of cancer Journal international du cancer,2003.105(3):p.361-70.
    14. Rogers, A., et al., Relative increase in leukemia-specific DNA in peripheral blood plasma from patients with acute myeloid leukemia and myelodysplasia. Blood,2004.103(7):p.2799-801.
    15. Wong, I.H., et al., Aberrant p15 promoter methylation in adult and childhood acute leukemias of nearly all morphologic subtypes:potential prognostic implications. Blood,2000.95(6):p.1942-9.
    16. Hibi, K., et al., Molecular detection of p16 promoter methylation in the serum of patients with esophageal squamous cell carcinoma. Clin Cancer Res,2001. 7(10):p.3135-8.
    17. Yang, H.J., et al., Detection of hypermethylated genes in tumor and plasma of cervical cancer patients. Gynecol Oncol,2004.93(2):p.435-40.
    18. Kawakami, K., et al., Hypermethylated APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst,2000.92(22):p. 1805-11.
    19. Usadel, H., et al., Quantitative adenomatous polyposis coli promoter methylation analysis in tumor tissue, serum, and plasma DNA of patients with lung cancer. Cancer Res,2002.62(2):p.371-5.
    20. Ibanez de Caceres, I., et al., Tumor cell-specific BRCAI and RASSFIA hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res,2004.64(18):p.6476-81.
    21. Collins, Y, et al., Methylation of death-associated protein kinase in ovarian carcinomas. Int J Gynecol Cancer,2006.16 Suppl 1:p.195-9.
    22. Li, Q.R., P.S. Liu, and J.B. Feng, Detection of aberrant methylation of RASSFIA gene in the tissue and the serum from ovarian tumor patients and its clinical significance. Chinese Journal of Cancer Prevention and Treatment,2008.15: 374-8(5).
    23. Li, Q.R., P.S. Liu, and Y. Zhang, Aberrant methylation of the RASSF1A gene in tissues and serums of ovarian cancer patients and its clinical significance. Journal of Shandong University(Health Science).2007.45:1046-9(10).
    24. Ma, L., F.R. Liu, and S.L. Zhang, Detection of circulating hypermethylated tumor-specific RASSF1A DNA in ovarian cancer patients. Zhonghua Bing Li Xue Za Zhi,2005.34(12):p.785-7.
    25. Nawroz, H., et al., Microsatellite alterations in serum DNA of head and neck cancer patients. Nat Med,1996.2(9):p.1035-7.
    26. Jahr, S., et al., DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res,2001.61(4):p.1659-65.
    27. Giacona, M.B., et al., Cell-free DNA in human blood plasma:length measurements in patients with pancreatic cancer and healthy controls. Pancreas, 1998.17(1):p.89-97.
    28. Fournie, G.J., et al., Plasma DNA as a marker of cancerous cell death. Investigations in patients suffering from lung cancer and in nude mice bearing human tumours. Cancer Lett,1995.91(2):p.221-7.
    29. Racila, E., et al., Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci U S A,1998.95(8):p.4589-94.
    30. Komeda, T., et al., Sensitive detection of circulating hepatocellular carcinoma cells in peripheral venous blood. Cancer,1995.75(9):p.2214-9.
    31. Kar, S. and B.I. Carr, Detection of liver cells in peripheral blood of patients with advanced-stage hepatocellular carcinoma. Hepatology,1995.21(2):p.403-7.
    32. Miyazono, F., et al., Molecular detection of circulating cancer cells during surgery in patients with biliary-pancreatic cancer. Am J Surg,1999.177(6):p. 475-9.
    33. Sidransky, D., Nucleic acid-based methods for the detection of cancer. Science, 1997.278(5340):p.1054-9.
    34. Stroun, M. and P. Anker, Nucleic acids spontaneously released by living frog auricles. Biochem J,1972.128(3):p.100P-101P.
    35. Anker, P., M. Stroun, and P.A. Maurice, Spontaneous release of DNA by human blood lymphocytes as shown in an in vitro system. Cancer Res,1975.35(9):p. 2375-82.
    36. Anker, P. and M. Stroun, Circulating DNA in plasma or serum. Medicina (B Aires),2000.60(5 Pt 2):p.699-702.
    37. Shapiro, B., et al., Determination of circulating DNA levels in patients with benign or malignant gastrointestinal disease. Cancer,1983.51(11):p.2116-20.
    38. Dennin, R.H., DNA of free and complexed origin in human plasma: concentration and length distribution. Klin Wochenschr,1979.57(9):p.451-6.
    39. Stroun, M., et al., Isolation and characterization of DNA from the plasma of cancer patients. Eur J Cancer Clin Oncol,1987.23(6):p.707-12.
    40. Juckett, D.A. and B. Rosenberg, Actions of cis-diamminedichloroplatinum on cell surface nucleic acids in cancer cells as determined by cell electrophoresis techniques. Cancer Res,1982.42(9):p.3565-73.
    41. Laktionov, P.P., et al., Cell-surface-bound nucleic acids:Free and cell-surface-bound nucleic acids in blood of healthy donors and breast cancer patients. Ann N YAcad Sci,2004.1022:p.221-7.
    42. Chelobanov, B.P., et al., Isolation of nucleic acid binding proteins:an approach for isolation of cell surface, nucleic acid binding proteins. Ann N Y Acad Sci, 2004.1022:p.239-43.
    43. Goessl, C., et al., Microsatellite analysis of plasma DNA from patients with clear cell renal carcinoma. Cancer Res,1998.58(20):p.4728-32.
    44. Hoque, M.O., et al., Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res,2004.64(15):p.5511-7.
    45. Sozzi, G, et al., Detection of microsatellite alterations in plasma DNA of non-small cell lung cancer patients:a prospect for early diagnosis. Clin Cancer Res,1999.5(10):p.2689-92.
    46. Silva, J.M., et al., Persistence of tumor DNA in plasma of breast cancer patients after mastectomy. Ann Surg Oncol,2002.9(1):p.71-6.
    47. Silva, J.M., et al., Tumor DNA in plasma at diagnosis of breast cancer patients is a valuable predictor of disease-free survival. Clin Cancer Res,2002.8(12):p. 3761-6.
    48. Sharma, G, et al., CpG hypomethylation of MDRI gene in tumor and serum of invasive ductal breast carcinoma patients. Clin Biochem.43(4-5):p.373-9.
    49. Ellinger, J., et al., CpG island hypermethylation of cell-free circulating serum DNA in patients with testicular cancer. The Journal of urology,2009.182(1):p. 324-9.
    50. Muller, H.M., et al., Prognostic DNA methylation marker in serum of cancer patients. AnnN Y Acad Sci,2004.1022:p.44-9.
    51. Widschwendter, A., et al., DNA methylation in serum and tumors of cervical cancer patients. Clin Cancer Res,2004.10(2):p.565-71.
    52. Vis, A.N., et al., Feasibility of assessment of promoter methylation of the CD44 gene in serum of prostate cancer patients. Mol Urol,2001.5(4):p.199-203.
    53. Goessl, C, et al., Fluorescent methylation-specific polymerase chain reaction for DNA-based detection of prostate cancer in bodily fluids. Cancer Res,2000. 60(21):p.5941-5.
    54. Ziegler, A., U. Zangemeister-Wittke, and R.A. Stahel, Circulating DNA:a new diagnostic gold mine? Cancer Treat Rev,2002.28(5):p.255-71.
    1. Ayantunde, A.A. and S.L. Parsons, Pattern and prognostic factors in patients with malignant ascites:a retrospective study. Annals of oncology:official journal of the European Society for Medical Oncology/ESMO,2007.18(5): p.945-9.
    2. Runyon, B.A., Care of patients with ascites. N Engl J Med,1994.330(5):p. 337-42.
    3. Guan, Y.P., The diagnosis and differential diagnosis of malignant ascites. Digestive Disease and Endoscopy,2007; 1:5-10(10).
    4. Selvaggi, S.M., Diagnostic pitfalls of peritoneal washing cytology and the role of cell blocks in their diagnosis. Diagn Cytopathol,2003.28(6):p. 335-41.
    5. Zuna, R.E. and A. Behrens, Peritoneal washing cytology in gynecologic cancers:long-term follow-up of 355 patients. J Natl Cancer Inst,1996.88(14): p.980-7.
    6. Guan, Y.P., The diagnosis and differential diagnosis of malignant ascites. Digestive Disease and Endoscopy,2007; 1:5-10.
    7. Shen-Gunther, J. and R.S. Mannel, Ascites as a predictor of ovarian malignancy. Gynecol Oncol,2002.87(1):p.77-83.
    8. Zeimet, A.G., et al., Ascitic interleukin-12 is an independent prognostic factor in ovarian cancer. J Clin Oncol,1998.16(5):p.1861-8.
    9. Shi, Y.F., M. Hao, and Z.M. Ding, Study on ascite of ovarian cancer. Zhonghua Fu Chan Ke Za Zhi,2000.35(9):p.551-3.
    10. Kosary, C.L., FIGO stage, histology, histologic grade, age and race as prognostic factors in determining survival for cancers of the female gynecological system:an analysis of 1973-87 SEER cases of cancers of the endometrium, cervix, ovary, vulva, and vagina. Semin Surg Oncol,1994. 10(1):p.31-46.
    11. Holm-Nielsen, P., Pathogenesis of ascites in peritoneal carcinomatosis. Acta Pathol Microbiol Scand,1953.33(1):p.10-21.
    12. Feldman, G.B., et al., The role of lymphatic obstruction in the formation of ascites in a murine ovarian carcinoma. Cancer Res,1972.32(8):p.1663-6.
    13. Enck, R.E., Malignant ascites. Am J Hosp Palliat Care,2002.19(1):p.7-8.
    14. Smith, E.M. and G.C. Jayson, The current and future management of malignant ascites. Clinical oncology (Royal College of Radiologists (Great Britain)),2003.15(2):p.59-72.
    15. Sartori, S., et al., Evaluation of a standardized protocol of intracavitary recombinant interferon alpha-2b in the palliative treatment of malignant peritoneal effusions. A prospective pilot study. Oncology,2001.61(3):p. 192-6.
    16. Nagy, J.A., et al., Pathogenesis of ascites tumor growth:vascular permeability factor, vascular hyperpermeability, and ascites fluid accumulation. Cancer Res,1995.55(2):p.360-8.
    17. Zebrowski, B.K., et al., Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol,1999.6(4):p.373-8.
    18. Parsons, S.L., S.A. Watson, and R.J. Steele, Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. European journal of surgical oncology:the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology,1997. 23(6):p.526-31.
    19. Bezwoda, W.R., et al., Treatment of malignant ascites due to recurrent/refractory ovarian cancer:the use of interferon-alpha or interferon-alpha plus chemotherapy in vivo and in vitro. Eur J Cancer,1991. 27(11):p.1423-9.
    20. Rath, U., et al., Effect of intraperitoneal recombinant human tumour necrosis factor alpha on malignant ascites. Eur J Cancer,1991.27(2):p.121-5.
    21. Puls, L.E., et al., The prognostic implication of ascites in advanced-stage ovarian cancer. Gynecol Oncol,1996.61(1):p.109-12.
    22. Tay, J.S., E.M. Tapen, and P.G. Solari, Malignant eccrine spiradenoma. Case report and review of the literature. Am J Clin Oncol,1997.20(6):p.552-7.
    23. Ahmed, F.Y., et al., Natural history and prognosis of untreated stage I epithelial ovarian carcinoma. J Clin Oncol,1996.14(11):p.2968-75.
    24. Song, S.Q., et al., The prognostic significance of ascites in patients with epithelial ovarian cancer. China Oncology,1999.9(5-6):p.411-3.
    25. Bolis, G., et al., Survival of women with advanced ovarian cancer and complete pathologic response at second-look laparotomy. Cancer,1996.77(1): p.128-31.
    26. Muller, H.M., et al., Analysis of methylated genes in peritoneal fluids of ovarian cancer patients:a new prognostic tool. Clin Chem,2004.50(11):p. 2171-3.
    27. Ibanez de Caceres, I., et al., Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res,2004.64(18):p.6476-81.
    28. Hoque, M.O., et al., Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res,2004.64(15):p.5511-7.
    29. He, X.M., X. Yang, and H. Li,卵巢恶性肿瘤的腹腔细胞学调查.Sichuan Journal of Cancer Control 1997; 10:21-4(3).
    30. He, X.M., et al.,妇癌患者腹腔冲洗液的相关因素Journal of practical obstetrics and gynecology,1998.14(4):p.214-6.
    1. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics,2007. CA Cancer J Clin 2007; 57:43-66.
    2. Piver MS. Prophylactic Oophorectomy:Reducing the U.S. Death Rate from Epithelial Ovarian Cancer. A Continuing Debate. Oncologist 1996; 1:326-30.
    3. Colombo N, Van Gorp T, Parma G, et al. Ovarian cancer. Crit Rev Oncol Hematol 2006; 60:159-79.
    4. American Cancer Society, Cancer Facts & Figures 2009, American Cancer Society, Atlanta,2009.
    5. Chu CS, Rubin SC. Screening for ovarian cancer in the general population. Best Pract Res Clin Obstet Gynaecol 2006; 20:307-20.
    6. Berek JS, N.F. Hacker. Practical Gynecological Oncology,2nd edn, Academic Press, Baltimore,1994.
    7. Wolffe AP, Matzke MA. Epigenetics:regulation through repression. Science 1999; 286:481-6.
    8. Bai VU, Kaseb A, Tejwani S, et al. Identification of prostate cancer mRNA markers by averaged differential expression and their detection in biopsies, blood, and urine. Proc Natl Acad Sci U S A 2007; 104:2343-8.
    9. Hoque MO, Begum S, Topaloglu O, et al. Quantitative detection of promoter hypermethylation of multiple genes in the tumor, urine, and serum DNA of patients with renal cancer. Cancer Res 2004; 64:5511-7.
    10. Ibanez de Caceres I, Battagli C, Esteller M, et al. Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients. Cancer Res 2004; 64:6476-81.
    11. Giacona MB, Ruben GC, Iczkowski KA, Roos TB, Porter DM, Sorenson GD. Cell-free DNA in human blood plasma:length measurements in patients with pancreatic cancer and healthy controls. Pancreas 1998; 17:89-97.
    12. Stroun M, Lyautey J, Lederrey C, Olson-Sand A, Anker P. About the possible origin and mechanism of circulating DNA apoptosis and active DNA release. Clin Chim Acta 2001; 313:139-42.
    13. Stroun M, Anker P, Maurice P, Lyautey J, Lederrey C, Beljanski M. Neoplastic characteristics of the DNA found in the plasma of cancer patients. Oncology 1989;46:318-22.
    14. Fleischhacker M, Schmidt B. Circulating nucleic acids (CNAs) and cancer-a survey. Biochim Biophys Acta 2007; 1775:181-232.
    15. Brose K, Bland KS, Wang KH, et al. Slit proteins bind Robo receptors and have an evolutionarily conserved role in repulsive axon guidance. Cell 1999; 96: 795-806.
    16. Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000;404:725-8.
    17. Takeuchi T, Misaki A, Liang SB, et al. Expression of T-cadherin (CDH13, H-Cadherin) in human brain and its characteristics as a negative growth regulator of epidermal growth factor in neuroblastoma cells. J Neurochem 2000; 74:1489-97.
    18.Drusco A, Zanesi N, Roldo C, et al. Knockout mice reveal a tumor suppressor function for Testin. Proc Natl Acad Sci U S A 2005; 102:10947-51.
    19. Dallol A, Da Silva NF, Viacava P, et al. SLIT2, a human homologue of the Drosophila Slit2 gene, has tumor suppressor activity and is frequently inactivated in lung and breast cancers. Cancer Res 2002; 62:5874-80.
    20. Miyamoto K, Asada K, Fukutomi T, et al. Methylation-associated silencing of heparan sulfate D-glucosaminyl 3-O-sulfotransferase-2 (3-OST-2) in human breast, colon, lung and pancreatic cancers. Oncogene 2003; 22:274-80.
    21. Toyooka KO, Toyooka S, Virmani AK, et al. Loss of expression and aberrant methylation of the CDH13 (H-cadherin) gene in breast and lung carcinomas. Cancer Res 2001; 61:4556-60.
    22. Dallol A, Morton D, Maher ER, Latif F. SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Res 2003; 63:1054-8.
    23. Jin J, You H, Yu B, et al. Epigenetic inactivation of SLIT2 in human hepatocellular carcinomas. Biochem Biophys Res Commun 2009; 379:86-91.
    24. Mueller W, Nutt CL, Ehrich M, et al. Downregulation of RUNX3 and TES by hypermethylation in glioblastoma. Oncogene 2007; 26:583-93.
    25. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR:a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 1996;93:9821-6.
    26. Baylin SB, Belinsky S A, Herman JG Aberrant methylation of gene promoters in cancer-concepts, misconcepts, and promise. J Natl Cancer Inst 2000; 92: 1460-1.
    27. Sambrook J, D.W. Russell. Molecular cloning:A Laboratory Manual, third ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY,2001.
    28. Makarla PB, Saboorian MH, Ashfaq R, et al. Promoter hypermethylation profile of ovarian epithelial neoplasms. Clin Cancer Res 2005;11:5365-9.
    29. Kawakami M, Staub J, Cliby W, Hartmann L, Smith DI, Shridhar V. Involvement of H-cadherin (CDH13) on 16q in the region of frequent deletion in ovarian cancer. Int J Oncol 1999; 15:715-20.
    30. Tobias ES, Hurlstone AF, MacKenzie E, McFarlane R, Black DM. The TES gene at 7q31.1 is methylated in tumours and encodes a novel growth-suppressing LIM domain protein. Oncogene 2001; 20:2844-53.
    31. Esteller M, Sanchez-Cespedes M, Rosell R, Sidransky D, Baylin SB, Herman JG Detection of aberrant promoter hypermethylation of tumor suppressor genes in serum DNA from non-small cell lung cancer patients. Cancer Res 1999; 59: 67-70.
    32. Sanchez-Cespedes M, Esteller M, Wu L, et al. Gene promoter hypermethylation in tumors and serum of head and neck cancer patients. Cancer Res 2000; 60: 892-5.
    33. Hibi K, Robinson CR, Booker S, et al. Molecular detection of genetic alterations in the serum of colorectal cancer patients. Cancer Res 1998; 58:1405-7.
    34. Sidransky D. Emerging molecular markers of cancer. Nat Rev Cancer 2002; 2: 210-9.
    35. Laird PW. The power and the promise of DNA methylation markers. Nat Rev Cancer 2003; 3:253-66.