肺炎克雷伯菌免疫相关表位筛选及其实验免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺炎克雷伯菌(Klebsiella Pneumoniae,K.pn)是革兰氏阴性菌,属于肠杆菌科克雷伯菌属,可在全身许多器官引发感染,但最高的发病机率在泌尿生殖道和肺部。当机体免疫力下降或者大量长期滥用抗生素引发菌群失调时导致感染,可引起脑膜炎、肺炎、泌尿系统发炎、伤口感染甚至败血症等,给临床治疗带来了许多麻烦,治疗不好则发病死亡率极高。虽然抗生素的使用,在目前可以有效治疗感染性疾病,可是当感染范围比较大,药物产生不良反应、多重耐药菌株逐年增加,而且停止使用后发生再次感染等因素,使抗生素治疗的临床使用遇到难题。由于人们对K.pn结构认识的加深,通过疫苗预防来防治K.pn侵袭增加了可行性,对于其疫苗的研究也逐渐升温,有重要的意义。
     本研究首先对肺炎克雷伯菌的粘附素MrkD蛋白是否为主要保护性抗原进行了鉴定。采用原核表达得到纯化的粘附素MrkD蛋白,通过激光共聚焦显微镜观察粘附定位,进而通过粘附抑制与粘附动力学试验证明粘附素MrkD蛋白的粘附阻断作用,最后通过免疫保护实验,最终证实了菌毛粘附素MrkD蛋白可以作为肺炎克雷伯菌的主要保护性抗原,可用作进一步的表位疫苗研究。
     为获取用于筛选粘附素MrkD蛋白B细胞表位的单克隆抗体,利用融合蛋白rMrkD作为免疫抗原,免疫BALB/c小鼠,利用淋巴细胞杂交瘤技术,采用间接ELISA筛选稳定分泌针对MrkD蛋白的单克隆抗体。经扩大培养后,制备单抗腹水,对所得单克隆抗体的效价、亲和力、特异性等进行鉴定。制备出了1株能稳定分泌抗MrkD蛋白的单克隆抗体杂交瘤细胞株E01,其中抗体亚类为IgG1,腹水效价为1:256,000,相对亲和力为0.3μg/mL,特异性反应显示,与大肠埃希菌,副伤寒沙门菌,铜绿假单胞菌,产单核细胞李斯特杆菌均无交叉反应性。为下一步筛选鉴定MrkD蛋白的B细胞表位提供基础。
     为筛选鉴定MrkD蛋白的B细胞表位,用纯化的抗MrkD蛋白的单克隆抗体作为筛选配基,对噬菌体展示随机12肽文库进行三轮生物亲和淘选,高亲和力噬菌体得以富集;通过夹心ELISA、竞争ELISA鉴定出了33个阳性噬菌体克隆,为了找到核心序列,从中挑选16个阳性克隆进行序列测定和分析。发现阳性克隆大多呈递QKTLAKSTYMSA序列,其第3、4、5、9和11位置上的T、L、A、Y、S氨基酸与MrkD氨基酸残基(148-159位)有较高同源。说明T、L、A、Y、S可能决定了此B细胞表位的抗原性质,是该B细胞表位构成的关键氨基酸。使用带有QKTLAKSTYMSA序列的C1噬菌体克隆免疫BALB/c小鼠,通过ELISA和Western-blotting分析结果证实具有刺激小鼠产生抗体的能力,从而证明了M148-159是MrkD蛋白的B细胞表位。
     对MrkD蛋白的Th细胞表位的筛选鉴定,Th细胞表位体外实验鉴定首先采用生物信息学软件预测MrkD蛋白可能的H-2d限制性Th表位,并合成表位肽,采用淋巴细胞增殖试验、流式细胞分析等实验方法进行了筛选和鉴定,获得BALB/c小鼠H-2d限制性Th细胞表位三条(M221-235,M175-189和M264-278),通过进行表位肽协同刺激试验,ELISA检测细胞因子试验,发现三个表位之间具有协同刺激效应,发现M221-235和M175-189为Th2细胞表位,M264-278为Th1细胞表位。Th细胞表位体内鉴定试验首先用已初步鉴定的表位多肽(M221-235,M175-189和M264-278)免疫BALB/c小鼠,进行淋巴细胞增殖试验来检测多肽免疫小鼠的细胞免疫应答,通过半定量RT-PCR检测多肽免疫小鼠脾淋巴细胞的细胞因子表达,发现三个表位肽能诱导机体产生特异性的CD+4 T淋巴细胞应答,表位肽致敏的淋巴细胞能识别相应多肽及rMrkD。
     在筛选鉴定得到了1个B细胞表位和3个Th细胞表位的基础上,进行了肺炎克雷伯菌表位疫苗的设计、构建及免疫原性研究,通过三组柔性氨基酸将此四个表位依次串联并进行人工合成,构建重组质粒KMepi的。重组质粒转入大肠杆菌BL21,挑取单菌落以IPTG诱导表达,SDS-PAGE电泳观察蛋白表达情况,与对照组相比在31kD与45kD之间有目的蛋白的表达。纯化的EPI蛋白能诱导机体产生特异性细胞免疫应答,表位疫苗能诱导小鼠产生特异性抗体。
     总之,本课题证实了MrkD蛋白作为主要保护性抗原,并筛选鉴定了MrkD的1个B细胞表位和3个Th表位,并对表位的免疫学特性进行了研究,在此基础上设计、构建了K.pn表位疫苗。构建的K.pn表位疫苗使包含的Th表位及B细胞表位各自发挥功能,为K.pn表位疫苗研究奠定了重要的实验基础。
Klebsiella pneumoniae is an important cause of respiratory infections and is responsible for significant morbidity and mortality in compromised individuals. Even though antibiotics are still the most effective treatment for K.pneumoniae infection, multiantibiotic resistance becomes a more pronounced problem.Thus, it is of great interest to find alternative ways to control the K.pneumoniae infection. Vaccination has become one of the most promising approaches against K.pneumoniae infection.
     Currently, most of vaccines against K.pneumoniae were reported to use native components from K.pneumoniae such as fimbriae and capsular polysaccharide and LPS.In general, these treatment are based on a natural form of the pathogen. In response to K. pneumoniae infection, the host triggers vigorous humoral and cellular immune response.Though K. pneumoniae specific antibodies have been detected at high titers both in inflamed gastricmucosa and in serum, the infection is still persistent and even for life long, suggesting that K. pneumoniae can evade both adaptive and innate immune responses and the immune responses triggered by K. pneumoniae in nature were not optimal to eliminate this pathogen.The immune responses evoked by natural infection or subunit vaccine immunization are not favorable. The immune responses should be improved and modified.Therefore, we assume that the modified immunotherapy is a feasible treatment which may be effective to combat against K. pneumoniae. This purpose can probably be achieved by artificially promoting qualitatively or quantitatively immunity different from natural infection.
     Epitope-based vaccines represent a modified immunotherapeutic approach which is based on the observation that in some instances. The potential advantages of the epitope-based approach include a specific immune response, increased safety, increased potency and breadth of rationally engineered epitopes and focusing on immune responses elicited by conserved epitopes.Accordingly, rational choices are made to isolate the components desired for the responses.The premise of these efforts is the identification of the appropriate epitopes. Phage display techniques have aroused interest as a new tool in the studies of mapping antigenic epitope since described by Smith.
     It was demonstrated that MrkD adhesin mediated K.pneumoniae to adhere human respiratory tissue.It has not been investigated that the MrkD adhesin stimulate a protective immune response in vivo. In this study, we have investigated the ability of MrkD-specific antibodies to protect against infection using the murine model of acute K.pneumoniae infection.The ability of immune sera to passively protect animals from infection was determined. Based on these observations, MrkD adhesion was selected as a potential target for treatment.Mapping the epitope of MrkD adhesion is one of the essential steps for the development of antibodies against K. pneumoniae.
     MrkD protein was expressed as a GST fusion protein in the E. coli BL21 to facilitate the purification.A pronounced band with the molecular weight of approximate 61 kDa was examined by SDS-PAGE in the supernatant of cell lysate after the induction,suggesting that the fusion protein was successfully expressed in the bacterial cells.MrkD—GST fusion protein was successfully purified by glutathione Sepharose 4B column chromatography and verified by SDS-PAGE.
     Three hybridomas, E01—E03, were established by cell fusion.All mAbs were IgG1 and showed high specificity to MrkD protein.The titer of culture supernatant was 1:1 000—1:4 000 and the titer of ascites was 1:128,000—1: 1:256,000.The antigen were used in ELISA assay to calculate the affinity of the monoclonal anti-MrkD antibody using the method given in‘Materials and methods’section.MAb E01 displayed the highest affinity of about 0.3μg/mL. Competition studies using increasing concentrations of these three mAbs as inhibitors or competitors revealed that these three mAbs compete significantly with each other, indicating that recognition epitope of these three mAbs were the same or largely overlapped.
     In order to map the epitope of MrkD antigen recognized by the mAb E01, the Ph.D.-12 library was screened with the purified mAb E01.After three rounds of biopanning, the selected phages bound to mAb were well enriched indicated by the increased recovery.Then 36 clones of the phages were randomly selected to test for their immunoreactivity with mAb E01.Among 36 clones, 33clones were positively recognized by mAb E01 while BSA was used as negative control.The DNA sequences of 16 positive clones were determined. There were eight different peptides in these 16 phage clones and most clones were the same QKTLAKSTYMSA sequence. Comparison between the protein sequence of MrkD and the dodecapeptide sequence revealed that amino acid sequences T, L, A, Y, S were conserved in MrkD(residues 148—159aa) and most positive phage clones.This result suggested that T, L, A, Y, S was the core amino acid of MrkD to form an epitope recognized by mAb E01.This notion was further confirmed by competitive inhibition ELISA.Pre-incubating mAb E01 with the recombinant phage clone C1 inhibited its binding with MrkD protein while pre-incubation with control phage, for example, phage clone C6 did not affect mAb’s binding with MrkD.
     To evaluate the immune responses of the phage clones which comprised of T L A Y S amino acids, phage clone C1 and clone C6, were chosen to immunize the BALB/c mice using the intraperitoneal administration. The serum of the mice immunized with phage clone C1 showed higher binding with pre-coated MrkD on ELISA plate while the serum of the mice immunized with phage clone C6 showed the similar low binding with MrkD as controls as M13 phage.The MrkD proteins recognized by the antisera (raised by phage clones and the controls) were verified further by Western blot analysis.The antisera of clone C1 reacted specifically with the MrkD protein (61 kDa), while the pre-immune serum, the antisera induced by C6 clone and wild type M13 phage did not.
     In order to study the immune response of BALB/c mice, the potential binding motifs for I-Ad and I-Ed in amino acid sequence of MrkD were scanned by the RANKPEP software. The I-Ad and I-Ed restricted epitopes were predicted, respectively. We selected five putative I-Ad restricted and one I-Ed restricted epitopes with higher scores. The selected peptides were synthesized and the purities of these peptides were all≥85% analyzed by high-pressure liquid chromatography.
     Having identified three CD4+ T cell epitopes in MrkD protein, we then evaluated whether lymphocytes primed by peptides could recognize naturally processec antigen. For this purpose, we immunized mice with these peptides emulsified in IFA, and assessed the responses of CD4+ T cells in vitro, as described above. Meanwhile, we evaluated the responses of CD4+ T cells isolated from mice vaccinated with PBS in IFA as negative controls. T cells from BALB/c mice immunized with peptides M221-235, M175-189, and M264-278 exhibited significant proliferation upon in vitro stimulation with respective immunizing peptide and rMrkD. Under the same conditions, T cells from the PBS injected control mice did not respond to any peptide and rMrkD (SI < 2). Thus, these peptides can evoke the CD4+ T cell response and the CD4+ T cell induced by MrkD derived peptides react to rMrkD. The FACS analyses were also performed to determine the relative percentage of CD4+ CD3+ T cells immunized with peptides. The percentage of CD4+ CD3+ T cells from mice immunized with peptides M221-235, M175-189, and M264-278 were higher than the control group treated with PBS. These results reconfirmed that the peptides can stimulate the CD4+ T cells.
     In conclusion, we have designed and constructed an epitope vaccine (KMepi) against K.pneumoniae. Although we have not assessed all the combination orders in the epitope vaccine, this study implies that epitope vaccine is a promising candidate for the development of K.pneumoniae treatment. Ongoing studies will evaluate the efficacies of other combination orders and compare the therapeutic effect of KMepi with rMrkD and K.pneumoniae lysates.
     We will also further evaluate the therapeutic effect of the epitope vaccine in mice. The data from mouse models will provide much information for the further development of therapeutic vaccines against K.pneumoniae and other pathogenic microorganism, and should lead to studies of the epitope-based vaccine for human use.
引文
[1] Gupta A. Hospital-acquired infections in the neonatal intensive care unit-- Klebsiella pneumoniae [J].Semin Perinatol. 2002 ,26(5):340-345.
    [2] Yu WL, Chuang YC, Walther-Rasmussen J. Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection, treatment and infection control[J].J Microbiol Immunol Infect. 2006 ,39(4):264-277.
    [3]Sahly H, Podschun R, Ullmann U. Klebsiella infections in the immunocompro- mised host [J].Adv Exp Med Biol. 2000;479:237-249.
    [4] Tsai MH, Lu CH, Huang CR, et al. Bacterial meningitis in young adults in southern taiwan: clinical characteristics and therapeutic outcomes[J].Infection. 2006,34(1):2-8.
    [5] Kim SH, Wei CI, Tzou YM,et al. Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma[J]. J Food Prot. 2005,68(10): 2022-2029.
    [6] Jeena P, Thompson E, Nchabeleng M, et al. Emergence of multi-drug-resistant Acinetobacter anitratus species in neonatal and paediatric intensive care units in a developing country: concern about antimicrobial policies[J]. Ann Trop Paediatr, 2001,21(3):245-251.
    [7]文细毛,任南,徐秀华,等.全国医院感染监控网医院感染病原菌分布及耐药性分析[J].中华医院感染学杂志,2002,12(4):241.
    [8] Craven DE. What is healthcare-associated pneumonia, and how should it be treated? [J] Curr Opin Infect Dis. 2006 ,19(2):153-160.
    [9] Xiong ZZ, Zhu DM, Zhang Y, et al. Extended-spectrum beta-lactamase in Klebsiella pneumoniae and Escherichia coli isolates[J]. Chin med J,2002, 82(21):1476-1479.
    [10] Coudron P E, Hanson N D, Climo M W. O ccurrence of extended spect rum and AmpC betalactamases in bloodst ream iso lates of Klebsiellap neum oniae: isolates harborplasmid mediated FOX25 and ACT21 AmpC beta-lactamases [J]. J Clin Microbiol,2003,41(2):772.
    [11]陈永林,张成林,胥哲.大熊猫克雷伯氏菌病的诊断[J].中国兽医杂志,2002,38(8):48.
    [12] Koh T H, Sng L H, Babini G S, et al. Carbapenemresistant Klebsiella pnuemoniae in Singapo reproducing IM P21 beta-lactamase and lacking an outer membrane protein [J].Antimicrob Agents Chemother,2001,45(6):1939.
    [13]彭广熊,熊焰.大熊猫肺炎克雷伯氏菌的研究现状[J].四川畜牧兽医,2000,27(113):86-87.
    [14]彭远义,等.鸡肺炎克雷伯氏菌的分离鉴定[J].西南农业大学学报,1995,17(2):166-168.
    [15]陈永林,关孚时,朱飞兵,等.引起大熊猫腹泻的克雷伯氏菌强毒株[J].中国兽医杂志,1997,31(2):34-36.
    [16]徐海圣,舒妙安.中华鳖肺炎克雷伯氏菌病的病原研究[J].浙江大学学报(理学版),2002,29(6):702-706.
    [17]陶锦华,李康然,韦平.石龟肺炎克雷伯氏菌感染的诊断与防治[J].广西畜牧兽医,2002,18(6):20-21.
    [18] Hooi SH, Hooi ST. Culture-proven bacterial keratitis in a Malaysian general hospital[J].Med J Malaysia. 2005 ,60(5):614-623.
    [19] Hooi LN, Looi I, Ng AJ. A study on community acquired pneumonia in adults requiring hospital admission in Penang[J]. Med J Malaysia, 2001, 56(3):275-284.
    [20] Daoud Z, Hakime N. Prevalence and susceptibility patterns of extended-spectrum beat- lactamase-producing Escherichia coli and K lebsiella pneumoniae in a general university hospital in Beirut, Lebanon[J]. Rev Esp Quimioter, 2003,16(2):233-238.
    [21] Fadeeva GB, Sterkhova GV, Sidorenko SV, et al. Etiology and microbiological diagnosis of nosocomial pneumonia in newborns[J]. Antibiot Khimioter, 2001,46(5):17-23.
    [22] Boukadida J, Salem N, Hannachi N, et al. Genotypic exploration of a hospital neonatal outbreak due to klebsiella pneumoniae producing extended-spectrum betalactamase [J].Arch Pediatr, 2002,9(5):463-468.
    [23] Rupp ME, Fey PD. Extended spectrum beta-lactamase(ESBL)-producing Enterobacteriaceae: considerations for diagnosis, prevention and drug treatment[J]. Drugs, 2003,63(4): 353-365.
    [24] Corkill J E, Cuevas L E, Gurgel R Q , et al. SHV 227, a novel cefo taxime-hydro lysing betalactamase, identified in Klebsiellap neum oniae isolates from a Brazilian hospital[J]. J Antimicrob Chem other,2001,47(4):463。
    [25]杨留战,等.哺乳仔猪克雷伯氏菌肺炎杆菌的调查[J].中国兽医科技,1989,(1):17-18.
    [26]张海艇.小鼠由肺炎克雷伯氏菌引发疫病的报告[J].黑龙江畜牧兽医,1998,(6):32.
    [27]朱煜兰.鸭肺炎克雷伯氏菌病的诊疗[J].中国兽医科技,1989,(12):27-28.
    [28]李桂平,衡江鸿.獭兔抗药性肺炎克雷伯氏菌病的防治[J].中国养兔杂志,1998,(2):5-6.
    [29]曹荔能.麝鼠克雷伯氏菌病的诊治[J].中国兽医科技,1989,(4):27-28.
    [30]叶惠芬,刘平陈,惠玲,等.广州地区肺炎克雷伯菌分布和耐药性调查[J].实用医学杂志,2006, 22(7):833-835.
    [31]郭定宗,胡薛英,杜有顺,等.金丝猴肺炎克雷伯氏菌及埃希氏大肠杆菌败血症的病理学观察[J].华中农业大学学报,2001,20(1):60-62.
    [32] Kliebe C, N ies B A , M eyer J F, et al. Evo lut ion of plasm id2coded resistance to broad2spect rum cephalo spo rins [J]. Antimicrob Agents Chemother, 1985, 28 (2):302.
    [33] Kariuk i S, Co rk ill J E, Revath i G, et al. Mo lecular characterizat ion of a novel plasmid encoded cefotaximase(CTX-M 212) found in clinical Klebsiella pneumoniae isolates from Kenya [J]. Antimicrob Agents Chemother, 2001,45 (7) :2141.
    [34] Poirel L , Naas T ,GuibertM ,et al. Molecular and biochemical characterization of V EB21, a novel class Aextended spectrum beta-lactamase encoded by an Escherichia coli integron gene [J].Antimicrob Agents Chem other,1999, 43 (3):573.
    [35] Gniadkow sk iM , Schneider I, Jungw irth R, et al. Ceftazidime2resistant E nterobacteriaceae iso lates from th ree Po lish ho sp itals: ident ificat ion of th ree novel TEM 2 and SHV 252 type extended spectrum beta-lactamases [J].Antimicrob Agents Chemother, 1998, 42 (3) : 514
    [36] Xiong Z, Zhu D, Zhang Y, et al. Extended spectrum betalactamase in Klebsiella pneumoniae and Escherichia coli isolates [J]. Chinmed J,2002,82(21):1476.
    [37] Bradfo rd PA , Urban C, Mariano N , et al. Imipenem resistance in Klebsiella pneumoniae is associated with the combination of ACT21, aplasmid mediated AmpC betalactamase, and the foss of an outer membrane protein[J].Antim icrob Agents Chemother,1997,41(3):563.
    [38] Papanico laou G A , M edeiro s A A , Jacoby G A , et al. Novel plasmid-mediated beta-lactamase (MIR21) conferring resistance to oxyimino and alpha-methoxy betalactams in clinical isolates of Klebsiella pneumoniae [J].Antimicrob Agents Chemother,1990,34(11):2200.
    [39] Navarova J , Kettner K, Krcmery V , et al. Am inoglycoside resistance patterns in clinical isolates of E. coli and Klebsiell asp. from Czecho slovakia and the United States[J].JHy g Epidemiol Microbiol Immunol,1989,33(4):477.
    [40] Daoud Z, Hakime N. Prevalence and susceptibility patterns of extended spectrum beta-lactamasep roducing Escherichia coli and Klebsiella pneumoniae in a general university hospital in Beirut, L ebanon [J]. Rev Esp Q uimioter, 2003, 16 (2):33.
    [41] Bercion R, MeyranM , Labia R, et al. Comparative activities of 15 beta-lactam antibiotics against 590 st rains of Klebsiellapneumoniae according to the production of beta-lactamase [J] . Pathol Biol (Paris), 1991, 39 (5):353.
    [42] Lemozy J , Sirot D, Chanal C, et al. First characterizat ion of inhibitor resistant TEM (IRT) beta-lactamases in Klebsiella pneumoniae strains [J]. Antimicrob Agents Chemother, 1995,39(11):2580.
    [43] George A M , Hall R M , Stokes H W. Multidrug-resistance in Klebsiella pneumoniae: a novel gene, ramA ,confers a multidrug resistance phenotype in Escherichia coli [J]. Microbiology,1995,141(Pt8):1909。
    [44] Cao V T , Arlet G, Ericsson B M , et al. Emergence of imipenem resistance in Klebsiella pneumoniae owing to combination of plasmid mediated CM Y24 and permeability alteration [J]. J Antimicrob Chemother, 2000, 46(6):895.
    [45] Domenech, Sanchez A , Hernandez Alles S, Martinez Martinez L , et al. Identification and characterization of a new porin gene of Klebsiella pneumoniae:its role in beta-lactam antibiotic resistance [J]. J B acteriol,1999,181(9):2726.
    [46] Poirel L , Heritier C, Podglajen I, et al. Emergence in Klebsiella pneumoniae of a chromosome encoded SHV beta-Lactamase that compromises the efficacy of imipenem [J]. Antimicrob Agents Chemother, 2003,47(2):755.
    [47] Yigit H, Queenan A M , Anderson G J , et al. Novel carbapenem hydro lyzing beta-lactamase,KPC21,from acarbapenem resistant strain of Klebsiella pneumoniae[J].Antimicrob Agents Chemother,2001,45(4):1151.
    [48] Anderl J N , F rank linM J , Stew art P S. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilmresistance to ampicillin and ciprofloxacin [J]. Antimicrob Agents Chemother,2000,44(7):1818.
    [49] de Lorenzo V, Martinez JL. Aerobactin production as a virulence factor: a reevaluation[J].Eur J Clin Microbiol Infect Dis, 1988, 7(5):621-629.
    [50] Ph ilippon A , Arlet G, Jacoby G A , et al. Plasmid determined AmpC-type beta-lactamases [J]. Antimicrob Agents Chem other,2002,46(1):1.
    [51] Piddock L J. Mechannisms of fluoroquinolone resistance:an update 1994-1998[J].Drug s,1999,58(Supp l2):211.
    [52] Schneiders T , Amyes S G, L evy S B. Role of AcrR and RamA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore [J]. Antimicrob Agents Chemother,2003,47(9):2831.
    [53] McCallum, KL, Schoenhals G, Laakso D, et al. A high-molecular-weight fraction of smooth lipopolysaccharide in Klebsiella serotype O1:K20 contains a unique O-antigen epitope and determines resistance to nonspecific serum killing[J]. Infect Immun ,1989,57(12):3816-3822.
    [54] Domenico P, Schwartz S, Cunha BA. 1989. Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate[J]. Infect Immun,1989, 57(12):3778-3782.
    [55] Sebghati, TA, Korhonen TK, Hornick DB. Characterization of the type 3 fimbrial adhesins of Klebsiella strains[J]. Infect Immun, 1998, 66(6):2887-2894.
    [56] Yan J J , KoW C, T sai S H, et al. Outbreak of infection with multidrug-resistant Klebsiella pneumoniae carryingbla IM P28 in a university medical center in Taiwan [J]. J Clin Microbiol,2001,39(12):4433.
    [57] MazzariolA , Zuliani J , Cornaglia G, et al. AcrAB efflux system: expression andcontribution to fluoroquinolone resistance in Klebsiella spp [J]. Antimicrob Agents Chem other,2002,46(12):3984.
    [58] Crowley B, EnediV J , Domenech Sanchez A. Expression of SHV 22 beta-lactamase and of reduced amounts of OmpK36 porin in Klebsiella pneum oniae results inincreased resistance to cephalo sporins and carbapenems[J]. Antimicrob Agents Chemother,2002,46(11):3679.
    [59] Loktev AV , Kuvshinov VN , Melamed NV , et al . Localization of tickborne encephali tis virus protein E antigenic determinant recognized by antihemagglutinating monoclonal antibodies using a phage-display peptide library[J ] . Vopr Virusol ,2002 ,47 (2) :31 -34.
    [60] Perham R N , Terry T D , Willis A E , et al. Engineering a peptide epitope display system on filamentous bacteriophage. FEMS Microbiol Rev , 1995 , 17 : 25
    [61] Kabha K, Schmegner J , Keisari Y, et al. SP2A enhancesphagocytosis of Klebsiella by interaction with capsular polysaccharides and alveolar macrophages[J].Am J Physiol,1997,272 (2 Pt 1):L344-L352.
    [62] Aguilar A , Merino S , Rubires X , et al. Influence of osmolarity on lipopolysaccharides and virulence of Aeromonashydrophila serotype O :34 st rains grown at 37 degrees C[J].Infect Immun , 1997 , 65 (4) : 1245-1250.
    [63] Yoshida K, Mat sumoto T , Tateda K, et al. Protection against pulmonary infection with Klebsiella pneumoniae in mice by interferon-gamma through activation of phagocytic cells and stimulation of production of other cytokines[J]. J Med Microbiol,2001,50(11):959-964.
    [64] Sahly H , Podschun R , Oelschlaeger TA , et al. Cap suleimpedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae[J].Infect Immun , 2000 , 68 (12):6744-6749. 6 Sahly H ,Ofek I , Podschun R , et al. Surfactant protein D binds selectively to Klebsiella pneumoniae lipopolysaccharides containing mannose-rich O-antigens[J].J Immunol ,2002 ,169(6):3267-3274.
    [65] Podschun R , Fischer A , Ullman U. Expression of putativevirulence factors by clinical isolates of Klebsiella planticola[J].J Med Microbiol , 2000 , 49 (2) :115-119.
    [66] Lubkow ski J, Hennecke F, Pluckthun A, et al. The structural basic of phage disply elucidated by the crystal structure of the N-terminal domain of g3p. Nat.Struct. Biol., 1998, 5: 140-147.
    [67] Pasqualini R , Arap W , cDonald DM. Probing t he st ructural and molecular diversity of tumor vasculature [ J ] . Trends Mol Med ,2002 ,8 (12) :563 - 571.
    [68] Malys N, Chang D Y, Baumann R G, et al. A bipartitebacterioplrage T4 SOC and HOC randomized peptide display Libary: detection and analysis of phage T4 terminase(gp17)and late sigma factor(gp55) interaction. J. Mol. Biol. , 2002,3l9(2): 289-304.
    [69] Daoud Z,Hakime N. Prevalence and susceptibility patterns of extended-spectrum beat-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general university hospital in Beirut,Lebanon.Rev Esp Quimioter,2003,16 (2):33- 41.
    [70] Kabha K, Nissimov L , Athamna A , et al. Relationships among capsular st ructure , phagocytosis , and mouse virulence in Klebsiella pneumoniae[J].Infect Immun, 1995,63(3):847-852.
    [71] Nassif X., Sansonetti PJ . Correlation of the virulence of Klebsiella pneumoniae K1 and K2 with the presence of a plasmid encoding aerobactin[J]. Infect Immun, 1986, 54(3):603-608.
    [72] O′Hara K. Two different types of fosfomycin resistance in clinical isolates of Klebsiella pneumoniae [J]. FEMS Microbiol Lett,1993,114(1):9.
    [73] Domenico P, Salo RJ, Cross AS, et al. Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae[J]. Infect Immun, 1994, 62(10):4495-4499.
    [74] Scott J,Smith G.Searching for peptide ligands with an epitope library.Science, 1990,240:386-390.
    [75] Zhong YW, Cheng J , Wang G, et al . Epitope mapping of hepatitis C virus non2st ructure protein f rom a 7 peptide phage library by using immobilized specific monoclonal antibody [ J ] . Zhonghua Gan Zang Bing Za Zhi ,2002 ,10 (4) :266 - 268.
    [76] McCafferty. Phage antibodies : filamentous phage displaying antibody variable domains[J ] . Nature ,1990 ,348 (6301) :552 - 554.
    [77] Jespers L S, Messens J H, De Keyser A, et al. Surface expression and ligand based selction of cDNA fused to phage geneⅥ. Biotechnology, 1995, 13:378-382.
    [78] Girlich D, Karim A , Poirel L , et al. Molecular epidemiology of an outbreak due to IRT-2 beta-lactamasep roducing strains of Klebsiella pneumoniae in a geriat ricdepartment [J]. J Antimicrob Chemother, 2000,45(4):467.
    [79] Empey KM, Rapp RP, Evans ME. The effect of an antimicrobial formulary change on hospital resistance patterns[J]. Pharmacotherapy, 2002,22(1):81-87.
    [80] Tordsson J M, Ohlsson L G, Abrahmsen L B, et al. Phageselected primate antibodies fused to superantigen for immunotherapy of malignant melanoma. Cancer lmmunol lmmunother, 2000, 48(12): 691-702.
    [81] Brusic V, Bajic VB, Petrovsky N. Computational methods for prediction of T-cell epitopes--a framework for modelling, testing, and applications. Methods, 2004, 34(4):436-443.
    [82] Yano A., Onozuka A, Asahi-Ozaki Y, et al. An ingenious design for peptide vaccines.Vaccine, 2005,23:2322-2326.
    [83] Livingston B, Crimi C, Newman M, et al. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J.Immunol, 2002,168:5499~5506.
    [84] Wang LF, Yu M. Epitope identification and discovery using phage display libraries: applications in vaccine development and diagnostics. Curr Drug Targets, 2004,5(1):1-15.
    [85] D.B. Hornick, B.L. Allen, M.A. Horn, S. Clegg. Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products. Infect. Immun 1992;60:1577–1588.
    [86] H. Lavender, J.J. Jagnow, S. Clegg. Klebsiella pneumoniae type 3 fimbria- mediated immunity to infection in the murine model of respiratory disease. Int. J. Med. Microbiol 2005;295: 153–159.
    [87] A. Clements, A. W.Jenney, et al. Targeting subcapsular antigens for prevention of Klebsiella pneumoniae infections. Vaccine 2008;26:5649-5653.
    [88] Cryz Jr, Mortimer PM, Mansfield V, Germanier R. Seroepidemiology of Klebsiella bacteremic isolates and implications for vaccine development. J Clin Microbiol 1986;23:687–90.
    [89] Sinha S, Valencia GA, Janes BK, Rosenberg JK, Whitfield C, Bender RA, et al.The Klebsiella pneumoniae O antigen contributes to bacteremia and lethality during murine pneumonia. Infect Immun 2004;72:1423-30.
    [90] Sette A, Fikes J. Epiotpe-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 2003;15:461-70.
    [91] Sbai H, Mehta A, DeGroot AS. Use of T cell epitopes for vaccine development. Curr Drug Targets Infect Disord 2001;1:303-13.
    [92] Hagen TL, Vianen W, Savelkoul HF, Heremans H, Burman WA, Woudenberg IA. Involvement of T cells in enhanced resistance to Klebsiella pneumoniae septicemia in mice treated with liposome-encapsulated muramyl tripeptide phosphatidylethanolamine or gamma interferon. Infect Immun 1998;66:1962-7.
    [93] Zisman DA, Strieter RM, Kunkel SL, Tsai WC, Wilkowski JM, Bucknell KA, et al. Ethanol feeding impairs innate immunity and alters the expression of Th1- and Th2-phenotype cytokines in murine Klebsiella pneumonia. Alcohol Clin Exp Res 1998;22:621-7.
    [94] Hornick DB, Thommandru J, Smits W, Clegg S. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae. Infect Immun 1995;63:2026– 32.
    [95] Jagnow J, Clegg S. Klebsiella pneumoniae MrkD-mediated biofilm formation on extracellular matrix and collagen coated surfaces. Microbiol 2003;149:2397–405.
    [96] Li Y, Han WY, Li ZJ, Lei LC. Klebsiella pneumoniae MrkD adhesin-mediated immunity to respiratory infection and mapping the antigenic epitope by phage display library. Microbial Pathogenesis 2009;46:144–9.
    [97] Khalil DI, Boisgerault F, Feugeas JP, Tieng V, Toubert A, Charron D. Naturally processed peptides from HLA-DQ7 (alpha1*0501-beta1*0301): influence of both alpha and beta chain polymorphism in the HLA-DQ peptide binding specificity. Eur J Immunol 1998;28:3840–9.
    [98] Fridkis HM, Neveu JM, Robinson RA, Lane WS, Gauthier L, Wucherpfennig KW, et al. Binding motifs of copolymer 1 to multiple sclerosis- and rheumatoid arthritis-associated HLA-DR molecules. J Immunol 1999;162:4697–704.
    [99] Drabner B, Reineke U, Schneider MJ, Humphreys RE, Hartmann S, Lucius R. Identification of T helper cell-recognized epitopes in the chitinase of the filarial nematode Onchocerca volvulus. Vaccine 2002;20:3685–94.
    [100] Romagnani S. Th1/Th2 cells. Inflamm Bowel Dis 1999;5:285–94.
    [101] Zisman DA, Strieter RM, Kunkel SL, Tsai WC, Wilkowski JM, Bucknell KA, Standiford TJ. Cellular immune response to Klebsiella pneumoniae antigens in patients with HLA-B27+ ankylosing spondylitis. J Rheumatol. 2000;27:1453-60.
    [102] Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004;56:405–19.
    [103] Armengol E, Wiesmuller KH, Wienhold D, Buttner M, Pfaff E, Jung G, et al. Identification of T-cell epitopes in the structural and nonstructural proteins of classical swine fever virus. J GenVirol 2002;83:551–60.
    [104] Fournel S, Neichel S, Dali H, Farci S, Maillere B, Briand JP, et al. CD4+T cells from (New Zealand Black×New Zealand White)F1 lupus mice and normal mice immunized against apoptotic nucleosomes recognize similar Th cell epitopes in the C terminus of histone H3. J Immunol 2003;171:636–44.
    [105] BenMohamed L, Bertrand G, McNamara CD, Gras-Masse H, Hammer J, Wechsler SL, et al. Identification of novel immunodominant CD4+ Th1-type T-cell peptide epitopes from herpes simplex virus glycoprotein D that confer protective immunity. J Virol 2003;77:9463–73.
    [106] Schreurs MW, Kueter EW, Scholten KB,et al. A single amino acid substitution improves the in vivo immunogenicity of the HPV16 oncoprotein E7(11-20) cytotoxic T lymphocyte epitope. Vaccine, 2005,23:4005-1010.
    [107] Gillogly ME, Kallinteris NL, Xu M, et al. Ii-Key/HER-2/neu MHC class-II antigenic epitope vaccine peptide for breast cancer. Cancer Immunol.Immunother, 2004,53:490-496.
    [108] Huebener N, Lange B, Lemmel C, et al. Vaccination with minigenes encoding for novel 'self' antigens are effective in DNA-vaccination against neuroblastoma. Cancer Lett, 2003,197:211-217.
    [109] Livingston B, Crimi C, Newman M, et al. A rational strategy to design multiepitope immunogens based on multiple Th lymphocyte epitopes. J.Immunol, 2002,168:5499~5506.
    [110]骆利敏,李明,夏虎,等.乙型肝炎病毒多表位抗原DNA疫苗的免疫原性.细胞与分子免疫学杂志,2004,20(5):517-521.
    [111]罗萍,毛旭虎,赵莉莉. KDEL修饰的HSV2 CD8+T细胞表位促进CTL效应的研究.中华男科学, 2005,11(4):252-255.
    [112] An LL, Whitton JL. A multivalent minigene vaccine, containing B-cell, cytotoxic T-lymphocyte, and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen. J.Virol, 1997,71:2292-2302.
    [113] Wang QM, Sun SH, Hu ZL, et al. Epitope DNA vaccines against tuberculosis: spacers and ubiquitin modulates cellular immune responses elicited by epitope DNA vaccine. Scand.J.Immunol, 2004,60:219-225.
    [114] Kallinteris NL, Wu S, Lu X., et al. Enhanced CD4+ T-cell response in DR4-transgenic mice to a hybrid peptide linking the Ii-Key segment of the invariant chain to the melanoma gp100(48-58) MHC class II epitope. J.Immunother, 2005,28:352-258.
    [115]石统东,吴玉章,周伟,等.多表位组合肽诱导HLA-A2+人PBMC产生抗原特异性CD8+T细胞应答的研究.第三军医大学学报,2003,25(12):1045-1048.
    [116] Sebghati, TK Korhonen, Hornick, et al. Characterization of the type 3 fimbrial adhesins of Klebsiella strains. Infection and Immunity,1998,66(6):2887-2894.
    [117] DB Hornick, BL Allen, S Clegg, et al. Adherence to respiratory epithelia by recombinant Escherichia coli expressing Klebsiella pneumoniae type 3 fimbrial gene products, Infection and Immunity,1992,60:1577-1588.
    [118] DB Hornick, J Thommandru, W Smits, and S Clegg. Adherence properties of an mrkD-negative mutant of Klebsiella pneumoniae, Infection and Immunity, 1995,63(5):2026-2032.
    [119] YJ Huang,CC Wu,HL Peng,et al.Characterization of the type 3 fimbriae with different MrkD adhesins:Possible role of the MrkD containing an RGD motif.Biochemica and Biophysical Research Communications 2006,350:537-542.
    [120] Daoud Z,Hakime N. Prevalence and susceptibility patterns of extended-spectrum beat-lactamase-producing Escherichia coli and Klebsiella pneumoniae in a general university hospital in Beirut,Lebanon.Rev Esp Quimioter,2003,16(2):33-41.
    [121] Ofek I , Mesika A , Kalina M , et al. Surfactant protein D enhances phagocytosis and killing of unencap sulated phase variants of Klebsiella pneumoniae. Infectionand Immunity, 2001 , 69(1) : 24-33.
    [122]葛新,陈锦英,吴庆刚,等.肺炎克雷伯菌表面成分对小鼠细菌感染的保护作用.微生物学通报(Microbiology),2002,29(6):55-61.
    [123]贾艳,雷连成,韩文瑜,等.猪源肺炎克雷伯菌的分离与鉴定。吉林农业大学学报(Journal of Jilin Agricultural University),2007,29(2):196-199,202.
    [124] Charland N, Nizet V, Rubens CE, et al. Streptococcus suis serotype 2 interactions with human brain microvascμLar endothelial cells. Infection and Immunity , 2000 , 68(2) : 637-643.
    [125]路菊,孙玮,陈德英.免疫荧光双重染色的激光共聚焦显微镜样品制备及观察.免疫学杂志(Immunological Journal),2007,23(3):22-26.
    [126] Sahly H , Podschun R , Oelschlaeger TA , et al. Capsule impedes adhesion to and invasion of epithelial cells by Klebsiella pneumoniae. Infection and Immunity , 2000 , 68 ( 12) : 6744-6749.
    [127] Yu WL, Chuang YC, Walther-Rasmussen J. Extended-spectrum beta-lactamases in Taiwan: epidemiology, detection,treatment and infection control.Journal of Microbiology, Immunology and Infection, 2006,39(4):264-277.
    [128]郭强忠,何林,唐曙明.117株肺炎克雷伯菌的耐药性分析.中华检验医学杂志(Chinese Journal of Laboratory Medicine), 2006,21(4):425-426.
    [129] Pichavant M , Delneste Y, Jeannin P , et al. Outer membrane protein A f rom Klebsiella pneumoniae activates bronchial epithelial cells : implication in neutrophil recruitment . Journal of Immunology ,2003 , 171 (12) : 6697-6705.
    [130] Yoshida K, Mat sumoto T , Tateda K, et al. Role of bacterial capsule in local and systemic inflammatory responses of mice during pulmonary infection with Klebsiella pneumoniae. Journal of Medical Microbiology , 2000 , 49 (11) : 1003-1010.
    [131] H Lavender, JJ Jagnow, S Clegg. Klebsiella pneumoniae type 3 fimbria-mediated immunity to infection in the murine model of respiratory disease. Journal of Medical Microbiology, 2005,295: 153-159.
    [132] BRETK.PURCELL,JANET PRUCKLER,STEVEN CLEGG.Nucleotide Sequences of the Genes Encoding Type 1 Fimbrial Subunits of Klebsiella pneumoniae and Salmonella typhimurium[J].JOURNAL OF BACTERIOLO GY,1987,169(12):5831-5834.
    [133] BRADLEY L . ALLEN , GERALD-F . GERLACH , STEVEN CLEG G.Nucleotide sequence and functions of mrk determinants necessary for expression of type 3 fimbriae in Klebsiella pneumoniae[J].Bacteriology,1991,173(2):916-920.
    [134]萨姆布鲁克J,弗里奇EF,曼尼阿蒂斯T著.金冬雁,黎孟枫译.分子克隆实验指南[M].第2版.北京:科学出版社,1995.
    [135]陈雷,成大荣,徐建生,等.大肠杆菌F1菌毛表达条件的初探[J].中国兽药杂志,2000,34(5):8-11.
    [136] PATRICK DI MARTINO,VALERIE LIVRELLI,DANIELLE SIROT,et al.A New Fimbrial Antigen Harbored by CAZ-5/SHV-4-Producing Klebsiella pneumoniae Strains Involved in Nosocomial Infections[J] . Infection and immunity,1996,64(6):2266-2273.
    [137]沈关心,周汝麟.现在免疫学实验技术(第二版)[M].湖北:湖北科学技术出版社,2002.
    [138]朱立平,陈血清.免疫学常用实验方法(第一版)[M].北京:人民军医出版社,2000.
    [139]韩文瑜、冯书章主编.现代分子病原细菌学[M].长春:吉林大学出版社,2003.
    [140]刘玉斌,苟仕今.动物免疫学实验技术[M].吉林:吉林科学技术出社,1989,326~327.
    [141]王谦.抗链霉素单克隆抗体制备与ELISA检测方法的建立:[中国优秀博硕士论文].北京:中国农业大学,2003,44~45.
    [142]肖毅,梅其炳,侯颖,等.抗PH-SA单克隆抗体相对亲和力的测定[J],细胞与分子免疫学杂志,2005,21(5):657-660.
    [143] Crissman J W and Smith G P. Gene-Ⅲprotein of filamentous phages: Evidence for a carboxyl-terminal domain with a role in morphogenesis. Virology, 1984, 132:445-455.
    [144] Tesar M , Beckmann C , Rottgen P , et al . Monoclonal antibody against pⅢof filamentous phage : an immunological tool to study pⅢfusion protein expression in phage display systems [ J ] . Immunotechnology ,1995 ,1 (1) :53 - 64.
    [145] Rosenberg A, Griffin K, Sludier F W, et al. T7 select phage display system: Apowerful new protein display system based on bacteriophage T7. Invations,1996, 6: 1-6.
    [146] Pini A , Ricci C , Bracci L. Phage display of antibody f ragments[J ] . Curr Protein Pept Sci ,2000 ,1 (2) :155 - 169.
    [147] Zhong YW, Cheng J , Wang G, et al . Epitope mapping of hepatitis C virus non2st ructure protein f rom a 7 peptide phage library by using immobilized specific monoclonal antibody [ J ] . Zhonghua Gan Zang Bing Za Zhi ,2002 ,10 (4) :266 - 268.
    [148]杨洋,雷连成,韩文瑜,贾艳,何礼洋。鸡肺炎克雷伯菌Ⅲ型菌毛A基因序列测定和分析。微生物学杂志2007,9(27)5,5-9。
    [149] Bastien N, Trudel M, Simard C. Protective immune responses induced by the immunization of mice with a recombinant bacteriophage displaying an epitope of the human respiratory syncytial virus. Virology, 1997, 234(1): 118- 122.
    [150] Zuercher A W, Miescher S M, Vogel M, et al. Oral anti-IgE immunization with epitope-displaying phage. Eur. J. Immunol., 2000, 30: 128- 135.
    [151] Deocharan B, Qing X, Beger E, et al. Antigenic: triggers and molecular targets for anti-double stranded DNA antibody. Lupus, 2002, 11(12): 865-871.
    [152] Dowd CS , Zhang W , Li C. From receptor ecognition mechanisms to bioinspired mimetic antagonist s in HIV-1/ cell docking [J ] . J Chromatogr B Biomed Sci Appl ,2001 ,753 (2) :327 - 335.
    [153] Wang Y, Rubt sov A , Heiser R , et al . Using a baculovirus display library to identify MHC class I mimotopes. Proc Natl Acad Sci USA , 2005 , 102 (7) : 2476-2481.
    [154] Machold KP , Smolen J S. Adalimumab - a new TNF-alpha antibody for t reatment of inflammatory joint disease[J ] . Expert Opin Biol Ther ,2003 ,3 (2) :351 - 360.
    [155] Bai YaWen, Feng HanQiao. Selection of stably folded proteins by phage-display with proteolysis [ J ] . European Journal of Biochemist ry ,2004 ,271 (9) :1609 - 1614.
    [156] Junjian X, Zhenyu Z, Ning D, et al. Scrccning of the antigen epitopes of basic fibroblast growth factor by phage display. J. Biochem. Mol. Biol., 2005, 38(3):290-293.
    [157] Azzazy HM , Highsmit h WE J r . Phage display technology : clinical applications and recent innovations [ J ] . Clin Biochem ,2002 , 35 (6) :425- 445.
    [158] Cheng J , Zhong Y W,Liu Y,et al . Screening and identification of a humanized single chain variable region antibody for hepatitis C virus non2st ructural 3 protein[J ] . Chin J Immunol , 2000 ,16 (4) :246.
    [159] Weetman AP. Autoimmune t hyroid disease : propagation and progression[J ] . Eur J Endocrinol ,2003 ,148 (1) :1 - 9.
    [160]房海主编.大肠埃希氏菌. [M]河北:河北科学技术出版社,1997,362~363。
    [161]周碧君.仔猪腹泻源大肠杆菌贵州株K88菌毛研究[J ].中国预防兽医学报, 2000, 22 (4) : 291-296。
    [162]王世若,王兴龙,韩文瑜.现代动物免疫学(第二版)[M]吉林:吉林科技出版社,2001。
    [163] Felici F, Luzzago A,Folgori A,et al.Mimicking of discontinuous epitope by phage-displayed peptides.ⅡSelection of clones recognized by a protective monoclonal antibody against the Bordetella pertussis toxin from phage peptide libraries. J Gene,1993,128:21-27.
    [164] Barchan D,Moshe B,Miriam C S,et al. Identification of epitopes within a highly immunogenic region of acetylcholine receptor by a phage epitope library. J Immunol,1995,155:4264-4269.
    [165] Dybwad A ,Bogen B ,Natvig JB ,et al. Peptide phage libraries can be an efficient tool for identifying antibody ligands for polyclonal antisera〔J〕. Clin Exp Immunol ,1995 ,102 (2) : 438.
    [166] Lesinski GB ,Smithson SL ,Srivastava N ,et al. A DNA vaccine encoding a peptide mimic of Streptococcus pneumoniae serotype 4 capsular polysaccharide induces specific anti-carbohydrate antibodies in Balb/ c mice〔J〕. Vaccine ,2001 :19 (13) : 1717.
    [167] Grabowska AM ,Jennings R ,Laing P ,et al. Immunisation with phage displaying peptides representing single epitopes of the glycoprotein G can give rise to partial protective immunity to HSV22〔J〕. Virology , 2000 ,269 (1): 47.
    [168]杜勇,王海涛。应用噬菌体随机肽库研究丙型肝炎病毒核心蛋白B细胞抗原表位,中华微生物学和免疫学杂志,1999,19(1):4-8.
    [169]杜勇,徐静,李敬云,等.HIV蛋白质优势B细胞抗原表位的筛选、重组表达与抗原性鉴定,微生物学报,2000,40(3):270-275.
    [170] Willis AE ,Perham RN ,Wraith D. Immunological properties of foreign peptides in multiple display on a filamentous bacteriophage〔J〕. Gene , 1993 ,128 (1) : 79.
    [171] Chan Y P,Koh C L,Lam S K,et al. Mapping of domains responsible for nucleocapsid protein-phosphoprotein interaction of Henipaviruses. J Gen Virol,2004,85:1675-1684.
    [172]沈倍奋主编.分子文库.北京:科学出版社,2001,24~52.
    [173] El Mousawi M, Tchistiakova L , Yurchenko L , et al . A vascular endothelial growth factor high affinity receptor 12specific peptide with antiangiogenic activity identified using a phage display peptide library[J ] . J Biol Chem,2003,278 (47):46681-46691.
    [174] Steward M,Vipond B I,Millar N S,et al. RNA editing in Newcastle disease virus. J Gen Virol,1993,74:2539–2547.
    [175] Dente L,Cesareni G,Micheli G,et al . Monoclonal antibodies that recognise filamentous phage : tools for phage display technology[J].Gene,1994,148(1):7- 13.
    [176] Kola A , Baensch M, Bautsch W, et al . Epitope mapping of a C5a neutralizing mAb using a combined approach of phage display,synthetic peptides and site2directed mutagenesis[J ] . Immunotechnology ,1996,2(2): 115-126.
    [177] Cook A D,Davies J M,MyersMA,et al. Mimotopes identified by phage display for the monoclonal antibody CII2C1 to type II collagen[J ]. J Autoimmun,1998,11(3):205-211.
    [178] Day M D. Atlas of protein sequence and structure. Nat biomed Res Found. Washington D C. 1978,suppl 3:2201-2204.
    [179] Sette A, Keogh E, Ishioka G, et al. Epitope identification and vaccine design for cancer immunotherapy. Curr Opin Investig Drugs 2002; 3:132-9.
    [180] Sbai H, Mehta A, DeGroot A.S. Use of T Cell Epitopes for Vaccine Development. Curr.Drug Targets.Infect.Disord 2001;1:303-313.
    [181] Sette A, Fikes J. Epitope-based vaccines: an update on epitope identification,vaccine design and delivery. Curr Opin Immunol 2003; 15:461-70.
    [182] Prinz C, Hafsi N, Voland P. Helicobacter pylori virulence factors and the host immune response: implications for therapeutic vaccination. Trends Microbiol 2003; 11:134-8.
    [183] Reche PA, Glutting JP, Zhang H, et al. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004;56:405-19.
    [184] Monneaux F, Muller S. Laboratory protocols for the identification of Th cell epitopes on self-antigens in mice with systemic autoimmune diseases. J.Immunol.Methods 2000;244:195-204.
    [185] Parent MA, Berggren KN, Mullarky IK, et al. Yersinia pestis V protein epitopes recognized by CD4 T cells Infect.Immun 2005;73:2197-2240.
    [186] Gottwein JM, Blanchard TG, Targoni OS, et al. Protective anti-Helicobacter immunity is induced with aluminum hydroxide or complete Freund's adjuvant by systemic immunization. J Infect Dis 2001; 184:308-14.
    [187] Schirle M, Weinschenk T, Stevanovic S. Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens. J.Immunol.Methods 2001; 257:1-16.
    [188] Svennerholm AM, Quiding-Jarbrink M. Priming and expression of immune responses in the gastric mucosa. Microbes Infect 2003; 5:731-9.
    [189] Oishi Y, Onozuka A, Kato H, et al. The effect of amino acid spacers on the antigenicity of dimeric peptide--inducing cross-reacting antibodies to a cell surface protein antigen of Streptococcus mutans. Oral Microbiol Immunol 2001; 16:40-4.
    [190] Foged C, Sundblad A, Hovgaard L. Targeting vaccines to dendritic cells. Pharm Res 2002; 19:229-38.
    [191] Ishioka GY, Fikes J, Hermanson G, et al. Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes. J Immunol 1999; 162:3915-25.
    [192] Nardin EH, Calvo-Calle JM, Oliveira GA, et al. A totally synthetic polyoxime malaria vaccine containing Plasmodium falciparum B cell and universal T cell epitopes elicits immune responses in volunteers of diverse HLA types. JImmunol 2001; 166:481-9.
    [193] Delmastro P, Neola A, Monaci P, et al. Immunogenicity of filamentous phage displaying peptide minotopes after oral administration. Vaccine, 1997, 15(11):1276- 1285.
    [194] A. Sette, J. Fikes, Epitope-based vaccines: an update on epitope identification, vaccine design and delivery, Curr. Opin. Immunol. 15(2003) 461–470.
    [195] A. Sette, B. Livingston, D. McKinney, E. Appella, J. Fikes, J. Sidney, M. Newman, R. Chesnut, The development of multi-epitope vaccines: epitope identification, vaccine design and clinical evaluation, Biologicals 29 (2001) 271–276.
    [196] C.C. Wilson, D. McKinney, M. Anders, S. MaWhinney, J. Forster, C. Crimi, S. Southwood, A. Sette, R. Chesnut, M.J. Newman, B.D. Livingston, Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1, J. Immunol. 171 (2003) 5611–5623.
    [197] H.L. Robinson, R.R. Amara, T cell vaccines for microbial infections, Nat. Med. 11 (2005) S25–S32.
    [198] R.M. Zinkernagel, H. Hengartner, On immunity against infections and vaccines: credo 2004, Scand. J. Immunol. 60 (2004) 9–13.
    [199] M.T. Esser, R.D. Marchese, L.S. Kierstead, L.G. Tussey, F. Wang, N. Chirmule, M.W. Washabaugh, Memory T cells and vaccines, Vaccine 21 (2003) 419–430.
    [200] B. Pulendran, R. Ahmed, Translating innate immunity into immunological memory: implications for vaccine development, Cell 124 (2006) 849–863.
    [201] V. Brusic, J.T. August, The changing field of vaccine development in the genomics era, Pharmacogenomics 5 (2004) 597–600.
    [202] J. Sloan-Lancaster, P.M. Allen, Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology, Annu. Rev. Immunol. 14 (1996) 1–27.
    [203] B.D. Evavold, J. Sloan-Lancaster, P.M. Allen, Tickling the TCR: selective T-cell functions stimulated by altered peptide ligands, Immunol. Today 14 (1993) 602–609.
    [204] A.L. Rothman, Dengue: defining protective versus pathologic immunity, J. Clin. Invest. 113 (2004) 946–951.
    [205] I.G. Ovsyannikova, R.M. Jacobson, G.A. Poland, Variation in vaccine response in normal populations, Pharmacogenomics 5 (2004) 417–427.
    [206] A. Sette, J. Sidney, Nine major HLA class I supertypes account for the vast preponderance of HLA-A and -B polymorphism, Immunogenetics 50 (1999) 201–212.
    [207] V. Brusic, V.B. Bajic, N. Petrovsky, Computational methods for prediction of T-cell epitopes—a framework for modelling, testing, and applications, Methods 34 (2004) 436–443.
    [208] K.N. Srinivasan, P. Gopalakrishnakone, P.T. Tan, K.C. Chew, B. Cheng, R.M. Kini, J.L. Koh, S.H. Seah, V. Brusic, SCORPION, a molecular database of scorpion toxins, Toxicon 40 (2002) 23–31.
    [209] A.M. Khan, A.T. Heiny, K.X. Lee, K.N. Srinivasan, T.W. Tan, J.T. August, Large-scale analysis of antigenic diversity of T-cell epitopes in dengue virus, BMC Bioinformatics 7 (2006) S4.
    [210] O. Miotto, T.W. Tan, V. Brusic, Extraction by example: induction of structural rules for the analysis of molecular sequence data from heterogeneous sources, in: M. Gallagher, J. Hogan, F. Maire (Eds.), Lecture Notes in Computer Science 3578, Springer, Berlin, 2005, pp. 398–405.