几种重要的细胞分泌蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分泌蛋白(secretory protein)参与细胞信号的传导、细胞增殖、分化和凋亡的调控、生物体的发育等重要生命过程。了解不同发育、生长时期和不同生理、病理条件下及不同类型细胞分泌蛋白表达的特点对认识生命过程具有重要意义。分泌蛋白质组的研究有助于我们找到直接与特定生理或病理状态相关的生物分子,并且为从分子水平上认识疾病的发生和发展过程提供理论依据,也为设计作用于特定靶分子(target molecule)的药物筛选奠定基础。本研究选择了几种不同的原代细胞和细胞系为研究的模式材料,利用蛋白质组学技术对分泌蛋白进行研究,进行了分泌蛋白组的方法学,表达谱,以及特异性的生物标志物的相关研究。
     首先,开展大规模的蛋白质组研究的必备条件是高分辨蛋白质分离技术和高通量、高灵敏度的鉴定技术。因此在本研究的第二章我们首先优化了窄范围pH梯度胶的二维电泳(2-DE)的分离条件,并利用优化后的参数,建立了鼻咽癌分泌蛋白质2-DE表达谱。随后探索了胶内蛋白质鉴定的策略,建立了基于2-DE,自动切胶和自动酶解基础上的高通量胶上蛋白质点鉴定技术。
     其次,利用在第二章鼻咽癌分泌蛋白质组研究中所摸索出来的分泌蛋白质纯化与富集策略,我们开展了嗅鞘细胞分泌蛋白质组表达谱的研究。所不同的是我们采用了优化的一维凝胶电泳和液相色谱串联质谱联合的复杂蛋白质混合物鉴定技术。嗅鞘细胞是一种特殊类型的星型胶质细胞,它兼具了胶质细胞和雪旺式细胞的一些特点。据报道将嗅鞘细胞移植到损伤的中枢神经系统部位可以刺激其不同程度的再生,髓鞘再生和功能恢复。在本论文第三章的研究中,我们应用了SDS-PAGE胶分离与高通量液相串联质谱结合的蛋白质组学技术鉴定嗅鞘细胞条件培养基中的分泌蛋白,同时辅以在线的基因功能分类体系(Gene ontology)来对这些蛋白进行生物学功能预测和研究。我们在嗅鞘细胞条件培养基中鉴定到了168个非冗余蛋白并根据它们的生物学功能来进行分类,其中的大部分蛋白与神经分化和神经再生相关的。非标定量蛋白质组学分析被应用在嗅鞘细胞分泌蛋白质组与胶质细胞分泌蛋白质组的活性组分差异比较研究中,通过蛋白质鉴定的总次数比较(Spectral counting,半定量),我们找到了23个蛋白质在嗅鞘细胞分泌蛋白中上调,14个蛋白质在胶质细胞分泌蛋白中上调。蛋白质印迹法验证了载脂蛋白-E和胰岛素样生长因子结合蛋白质-2等5个在嗅鞘细胞分泌中上调的蛋白。因此,我们认为本实验不但首次大量的鉴定了嗅鞘细胞分泌蛋白质组中的与神经生长和再生相关的蛋白,而且为嗅鞘细胞条件培养基对于中枢神经系统修复的多方面调控作用提供了一些实验证据。
     总而言之,通过本研究论文,我们建立了大规模的人鼻咽癌细胞系分泌蛋白质组表达谱以及嗅鞘细胞和星形胶质细胞的分泌蛋白质组表达谱。据我们目前所知,我们所鉴定的嗅鞘细胞分泌蛋白质表达谱的蛋白质数据是目前国际上最大的一个溴鞘细胞蛋白质数据库。其次,本研究从蛋白质组学的不同策略出发,建立起了一套行之有效的基于2-DE和1-DE凝胶电泳技术与质谱连用的分泌蛋白质组研究策略,可以有效的对于不同类型的细胞分泌蛋白质组进行富集和简化分析体系,并且实现潜在的疾病标志物的发掘。该体系将同样的适用于其他的肿瘤或疾病相关的蛋白质标志物的研究。
Secretory protein is involved in cell signal transduction, cell proliferation, differentiation/apoptosis, the organism's development and other important life processes. The understanding of the secretory protein expression characteristics of different growth period and different physiological or pathological conditions is of great significance. Secreted proteome research will not only help us to find the specific physiological /pathological condition related to biological molecules directly, and understanding of disease occurrence of molecular level or provide a theoretical basis for the development process, but also for the design of the role of specific target molecules and lay the foundation for drug discovery. This study selected several different types of primary cells and cell lines to study the model material, proteomics technology was used to study the secreted protein, it also carried out a secretory protein group methodology, expression profiling, as well as specific biomarkers of related research.
     First of all, we carry out a large-scale proteome research as a prerequisite for high-resolution protein separation techniques and high-throughput, high sensitivity identification technology. Therefore, in the second chapter of this study, we optimized the narrow range pH gradient two-dimensional gel electrophoresis (2-DE) separation conditions, and the use of the parameters being optimized to establish a nasopharyngeal secretion of 2-DE protein expression profiling. We then explored the in-gel protein identification strategy, which established based on high-throughput 2-DE, automatic cutting and automatic in-gel digestion of gel protein spots identification technology.
     Secondly, we take the advantage of the analysis of nasopharyngeal secreted proteins purification and enrichment strategy in the second chapter, and launched the olfactory ensheathing cells secreted protein expression profile studies. The difference of this chapter is that we use an optimized one-dimensional gel electrophoresis and liquid chromatography tandem mass spectrometry combined protein mixture identification technology. Olfactory ensheathing cells are a special type of glial cell which have characteristics of both astrocytes and Schwann cells. They express a high level of growth factors which play a very important role as neuronal support. In this study, ID-shotgun proteomics followed with gene ontology analysis was used to screen proteins present in the conditioned medium from primary culture rat olfactory ensheathing cells. One hundred and sixty eight non-redundant proteins were identified, the majority of which were never before reported to be produced by olfactory ensheathing cells. Furthermore, extracellular proteins were classified based on their biological and molecular functions, most of which were involved in neuronal differentiation and development. Moreover, we carried out semi-quantitative proteomic analysis to identify the active components of the olfactory ensheathing cells secretome that different from astrocytes. Spectral counting analysis revealed that twenty-three proteins were up-regulated in olfactory ensheathing cells whereas fourteen were up-regulated in astrocytes. Changes of the expression level of secreted proteins were further confirmed by western blot. In conclusion, this study provided a large number of proteins involved in neuronal development and regeneration in the olfactory ensheathing cell secretome and it may shed light on the role of extracellular matrix proteins from conditioned medium in the repairing process of central nervous system.
     In total, through the research papers, we have established a large-scale human nasopharyngeal carcinoma cell line secreted proteome expression profile, as well as olfactory ensheathing cells and astrocytes secreted proteome expression profile. As far as we know, our olfactory ensheathing cells secreted protein expression profile data is now the largest international database of olfactory ensheathing cells secreted protein. Moreover, this study of different strategies starting from the proteomics research has established a set of effective technology based on 2-DE and 1-DE gel electrophoresis and mass spectrometry used in conjunction with the secretion proteome research strategy can be effective for the different types of cells to secrete the protein group enrichment and simplify the analysis system, and realize potential markers of disease discovered. This secreted proteins research system will be equally applicable to other tumors or disease-related protein markers.
引文
1. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature.2001;409(6822):860-921.
    2. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science.2001;291(5507):1304-51.
    3. Pandey A, Mann M. Proteomics to study genes and genomes. Nature.2000;405(6788):837-46.
    4. Mann M, Hendrickson RC, Pandey A. Analysis of proteins and proteomes by mass spectrometry. Annu Rev Biochem.2001;70:437-73.
    5. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, et al. Global analysis of protein expression in yeast. Nature.2003;425(6959):737-41.
    6. Hathout Y. Approaches to the study of the cell secretome. Expert Rev Proteomics. 2007;4(2):239-48.
    7. Walter P, Blobel G. Translocation of proteins across the endoplasmic reticulum Ⅲ. Signal recognition protein (SRP) causes signal sequence-dependent and site-specific arrest of chain elongation that is released by microsomal membranes. J Cell Biol.1981;91(2 Pt 1):557-61. PMCID:2111983.
    8. Seelenmeyer C, Wegehingel S, Tews I, Kunzler M, Aebi M, Nickel W. Cell surface counter receptors are essential components of the unconventional export machinery of galectin-1. J Cell Biol. 2005;171(2):373-81. PMCID:2171196.
    9. Backhaus R, Zehe C, Wegehingel S, Kehlenbach A, Schwappach B, Nickel W. Unconventional protein secretion:membrane translocation of FGF-2 does not require protein unfolding. J Cell Sci. 2004;117(Pt 9):1727-36.
    10. Nickel W. The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. Eur J Biochem.2003;270(10):2109-19.
    11. Wolters DA, Washburn MP, Yates JR,3rd. An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem.2001;73(23):5683-90.
    12. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics. Proteomics.2004;4(12):3665-85.
    13. Nam MH, Heo EJ, Kim JY, Kim SI, Kwon KH, Seo JB, et al. Proteome analysis of the responses of Panax ginseng C. A. Meyer leaves to high light:use of electrospray ionization quadrupole-time of flight mass spectrometry and expressed sequence tag data. Proteomics.2003;3(12):2351-67.
    14. Han DK, Eng J, Zhou H, Aebersold R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol. 2001;19(10):946-51.PMCID:1444949.
    15. Julka S, Regnier F. Quantification in proteomics through stable isotope coding:a review. J Proteome Res.2004;3(3):350-63.
    16. Wu WW, Wang G, Baek SJ, Shen RF. Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel-or LC-MALDI TOF/TOF. J Proteome Res.2006;5(3):651-8.
    17. Huang CM. In vivo secretome sampling technology for proteomics. Proteom Clin Appl. 2007;1(9):953-62.
    18. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides:SignalP 3.0. J Mol Biol.2004;340(4):783-95.
    19. Hiller K, Grote A, Scheer M, Munch R, Jahn D. PrediSi:prediction of signal peptides and their cleavage positions. Nucleic Acids Research.2004;32:W375-W9.
    20. Bendtsen JD, Jensen LJ, Blom N, von Heijne G, Brunak S. Feature-based prediction of non-classical and leaderless protein secretion. Protein Eng Des Sel.2004;17(4):349-56.
    21. Klee EW, Carlson DF, Fahrenkrug SC, Ekker SC, Ellis LBM. Identifying secretomes in people, pufferfish and pigs. Nucleic Acids Research.2004;32(4):1414-21.
    22. Chen YJ, Zhang Y, Yin YB, Gao G, Li SG, Jiang Y, et al. SPD-a web-based secreted protein database. Nucleic Acids Research.2005;33:D169-D73.
    23. Grimmond SM, Miranda KC, Yuan Z, Davis MJ, Hume DA, Yagi K, et al. The mouse secretome: Functional classification of the proteins secreted into the extracellular environment. Genome Research. 2003;13(6B):1350-9.
    24. Bushell KM, Sollner C, Schuster-Boeckler B, Bateman A, Wright GJ. Large-scale screening for novel low-affinity extracellular protein interactions. Genome Research.2008;18(4):622-30.
    25. Diehl HC, Stuhler K, Klein-Scory S, Volmer MW, Schoneck A, Bieling C, et al. A catalogue of proteins released by colorectal cancer cells in vitro as an alternative source for biomarker discovery. Proteom Clin Appl.2007;1(1):47-61.
    26. Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Molecular & Cellular Proteomics.2006;5(1):157-71.
    27. Dupont A, Tokarski C, Dekeyzer O, Guilhot AL, Amouyel P, Rolando C, et al. Two-dimensional maps and databases of the human macrophage proteome and secretome. Proteomics.2004;4(6):1761-78.
    28. Shah P, Atwood JA, Orlando R, El Mubarek H, Podila GK, Davis MR. Comparative Proteomic Analysis of Botrytis cinerea Secretome. Journal of Proteome Research.2009;8(3):1123-30.
    29. Yamashita R, Fujiwara Y, Ikari K, Hamada K, Otomo A, Yasuda K, et al. Extracellular proteome of human hepatoma cell, HepG2 analyzed using two-dimensional liquid chromatography coupled with tandem mass spectrometry. Molecular and Cellular Biochemistry.2007;298(1-2):83-92.
    30. Kulasingam V, Diamandis EP. Proteomics analysis of conditioned media from three breast cancer cell lines. Molecular & Cellular Proteomics.2007;6(11):1997-2011.
    31. Huang CM, Ananthaswamy HN, Barnes S, Ma YL, Kawai M, Elmets CA. Mass spectrometric proteomics profiles of in vivo tumor secretomes:Capillary ultrafiltration sampling of regressive tumor masses. Proteomics.2006;6(22):6107-16.
    32. Mbeunkui F, Fodstad O, Pannell LK. Secretory protein enrichment and analysis:An optimized approach applied on cancer cell lines using 2D LC-MS/MS. Journal of Proteome Research. 2006;5(4):899-906.
    33. Chevallet M, Diemer H, Van Dorssealer A, Villiers C, Rabilloud T. Toward a better analysis of secreted proteins:the example of the myeloid cells secretome. Proteomics.2007;7(11):1757-70.
    34. Pellitteri-Hahn MC, Warren MC, Didier DN, Winkler EL, Mirza SP, Greene AS, et al. Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells. J Proteome Res.2006;5(10):2861-4.
    35. Zwickl H, Traxler E, Staettner S, Parzefall W, Grasl-Kraupp B, Karner J, et al. A novel technique to specifically analyze the secretome of cells and tissues. Electrophoresis.2005;26(14):2779-85.
    36. Sanderson CM. A new way to explore the world of extracellular protein interactions. Genome Res. 2008; 18(4):517-20.
    37. Welsh JB, Sapinoso LM, Kern SG, Brown DA, Liu T, Bauskin AR, et al. Large-scale delineation of secreted protein biomarkers overexpressed in cancer tissue and serum. Proc Natl Acad Sci U S A. 2003;100(6):3410-5. PMCID:152306.
    38. Wilkins MR, Appel RD, Van Eyk JE, Chung MC, Gorg A, Hecker M, et al. Guidelines for the next 10 years of proteomics. Proteomics.2006;6(1):4-8.
    39. Guerrera IC, Kleiner O. Application of mass spectrometry in proteomics. Biosci Rep. 2005;25(1-2):71-93.
    40. Kratchmarova I, Kalume DE, Blagoev B, Scherer PE, Podtelejnikov AV, Molina H, et al. A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol Cell Proteomics.2002; 1(3):213-22.
    41. Goldshmidt O, Zcharia E, Abramovitch R, Metzger S, Aingom H, Friedmann Y, et al. Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis. Proc Natl Acad Sci U S A.2002;99(15):10031-6. PMCID:126619.
    42. Dombkowski AA, Cukovic D, Novak RF. Secretome analysis of microarray data reveals extracellular events associated with proliferative potential in a cell line model of breast disease. Cancer Lett.2006;241(1):49-58.
    43. Antelmann H, Tjalsma H, Voigt B, Ohlmeier S, Bron S, van Dijl JM, et al. A proteomic view on genome-based signal peptide predictions. Genome Res.2001;11(9):1484-502.
    44. Volmer MW, Radacz Y, Hahn SA, Klein-Scory S, Stuhler K, Zapatka M, et al. Tumor suppressor Smad4 mediates downregulation of the anti-adhesive invasion-promoting matricellular protein SPARC: Landscaping activity of Smad4 as revealed by a "secretome" analysis. Proteomics.2004;4(5):1324-34.
    45. Lou X, Xiao T, Zhao K, Wang H, Zheng H, Lin D, et al. Cathepsin D is secreted from M-BE cells: its potential role as a biomarker of lung cancer. J Proteome Res.2007;6(3):1083-92.
    46. Marouga R, David S, Hawkins E. The development of the DIGE system:2D fluorescence difference gel analysis technology. Anal Bioanal Chem.2005;382(3):669-78.
    47. Hirano H, Kawasaki H, Sassa H. Two-dimensional gel electrophoresis using immobilized pH gradient tube gels. Electrophoresis.2000;21(2):440-5.
    48. Lilley KS, Friedman DB. All about DIGE:quantification technology for differential-display 2D-gel proteomics. Expert Rev Proteomics.2004;1(4):401-9.
    49. Volmer MW, Stuhler K, Zapatka M, Schoneck A, Klein-Scory S, Schmiegel W, et al. Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics.2005;5(10):2587-601.
    50. Graumann J, Dunipace LA, Seol JH, McDonald WH, Yates JR, 3rd, Wold BJ, et al. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol Cell Proteomics. 2004;3(3):226-37.
    51. Kislinger T, Gramolini AO, MacLennan DH, Emili A. Multidimensional protein identification technology (MudPIT):technical overview of a profiling method optimized for the comprehensive proteomic investigation of normal and diseased heart tissue. J Am Soc Mass Spectrom. 2005;16(8):1207-20.
    52. Mauri P, Scarpa A, Nascimbeni AC, Benazzi L, Parmagnani E, Mafficini A, et al. Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology:a strategy for identification of novel cancer markers. FASEB J.2005;19(9):1125-7.
    53. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol.1999;17(10):994-9.
    54. Schrimpf SP, Meskenaite V, Brunner E, Rutishauser D, Walther P, Eng J, et al. Proteomic analysis of synaptosomes using isotope-coded affinity tags and mass spectrometry. Proteomics. 2005;5(10):2531-41.
    55. Khwaja FW, Svoboda P, Reed M, Pohl J, Pyrzynska B, Van Meir EG. Proteomic identification of the wt-p53-regulated tumor cell secretome. Oncogene.2006;25(58):7650-61.
    56. Mann M. Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol. 2006;7(12):952-8.
    57. Gronborg M, Kristiansen TZ, Iwahori A, Chang R, Reddy R, Sato N, et al. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics. 2006;5(1):157-71.
    58. Engwegen JY, Gast MC, Schellens JH, Beijnen JH. Clinical proteomics:searching for better tumour markers with SELDI-TOF mass spectrometry. Trends Pharmacol Sci.2006;27(5):251-9.
    59. Currid CA, O'Connor DP, Chang BD, Gebus C, Harris N, Dawson KA, et al. Proteomic analysis of factors released from p21-overexpressing tumour cells. Proteomics.2006;6(13):3739-53.
    60. Poon TC. Opportunities and limitations of SELDI-TOF-MS in biomedical research:practical advices. Expert Rev Proteomics.2007;4(1):51-65.
    61. Lipson AC, Widenfalk J, Lindqvist E, Ebendal T, Olson L. Neurotrophic properties of olfactory ensheathing glia. Exp Neural.2003;180(2):167-71.
    62. Woodhall E, West AK, Chuah MI. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res Mol Brain Res.2001;88(1-2):203-13.
    63. Reynolds BA, Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science.1992;255(5052):1707-10.
    64. Huang H, Chen L, Xi H, Wang H, Zhang J, Zhang F, et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients:a controlled pilot study. Clin Transplant. 2008;22(6):710-8.
    65. Devon R, Doucette R. Olfactory ensheathing cells myelinate dorsal root ganglion neurites. Brain Res.1992;589(1):175-9.
    66. Franklin RJ. Obtaining olfactory ensheathing cells from extra-cranial sources a step closer to clinical transplant-mediated repair of the CNS? Brain.2002;125(Pt 1):2-3.
    67. DeLucia TA, Conners JJ, Brown TJ, Cronin CM, Khan T, Jones KJ. Use of a cell line to investigate olfactory ensheathing cell-enhanced axonal regeneration. Anat Rec B New Anat. 2003;271(1):61-70.
    68. Gorg A, Postel W, Gunther S. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis.1988;9(9):531-46.
    69. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis.2000;21(6):1037-53.
    70. Cordwell SJ, Nouwens AS, Verrills NM, Basseal DJ, Walsh BJ. Subproteomics based upon protein cellular location and relative solubilities in conjunction with composite two-dimensional electrophoresis gels. Electrophoresis.2000;21(6):1094-103.
    71. Wildgruber R, Harder A, Obermaier C, Boguth G, Weiss W, Fey SJ, et al. Towards higher resolution:two-dimensional electrophoresis of Saccharomyces cerevisiae proteins using overlapping narrow immobilized pH gradients. Electrophoresis.2000;21(13):2610-6.
    72. Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science.1989;246(4926):64-71.
    73. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem.1988;60(20):2299-301.
    74. Hoving S, Gerrits B, Voshol H, Muller D, Roberts RC, van Oostrum J. Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics.2002;2(2):127-34.
    75. Kulasingam V, Diamandis EP. Proteomics analysis of conditioned media from three breast cancer cell lines:a mine for biomarkers and therapeutic targets. Mol Cell Proteomics.2007;6(11):1997-2011.
    76. Sardana G, Marshall J, Diamandis EP. Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium. Clin Chem.2007;53(3):429-37.
    77. Wu CC, Chien KY, Tsang NM, Chang KP, Hao SP, Tsao CH, et al. Cancer cell-secreted proteomes as a basis for searching potential tumor markers:nasopharyngeal carcinoma as a model. Proteomics. 2005;5(12):3173-82.
    78. Trost M, Wehmhoner D, Karst U, Dieterich G, Wehland J, Jansch L. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics. 2005;5(6):1544-57.
    79. Thouvenot E, Lafon-Cazal M, Demettre E, Jouin P, Bockaert J, Marin P. The proteomic analysis of mouse choroid plexus secretome reveals a high protein secretion capacity of choroidal epithelial cells. Proteomics.2006;6(22):5941-52.
    80. McClelland CM, Gullick WJ. Proteomic identification of secreted proteins as surrogate markers for signal transduction inhibitor activity. Br J Cancer.2007;96(2):284-9. PMCID:2360009.
    81. Zvonic S, Lefevre M, Kilroy G, Floyd ZE, DeLany JP, Kheterpal I, et al. Secretome of primary cultures of human adipose-derived stem cells:modulation of serpins by adipogenesis. Mol Cell Proteomics.2007;6(1):18-28.
    82. Pardo M, Garcia A, Antrobus R, Blanco MJ, Dwek RA, Zitzmann N. Biomarker discovery from uveal melanoma secretomes:identification of gp100 and cathepsin D in patient serum. J Proteome Res. 2007;6(7):2802-11.
    83. Zhang Q, Zhang Z, Wang C, Xiao Z, Yu Y, Yang F, et al. Proteome analysis of the transformation potential of the Epstein-Barr virus-encoded latent membrane protein 1 in nasopharyngeal epithelial cells NP69. Mol Cell Biochem.2008;314(1-2):73-83.
    84. Chevallet M, Diemer H, Van Dorssealer A, Villiers C, Rabilloud T. Toward a better analysis of secreted proteins:the example of the myeloid cells secretome. Proteomics.2007;7(11):1757-70. PMCID: 2386146.
    85. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem.1976;72:248-54.
    86. Neuhoff V, Arold N, Taube D, Ehrhardt W. Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G-250 and R-250. Electrophoresis.1988;9(6):255-62.
    87. Katayama H, Tabata T, Ishihama Y, Sato T, Oda Y, Nagasu T. Efficient in-gel digestion procedure using 5-cyclohexyl-1-pentyl-beta-D-maltoside as an additive for gel-based membrane proteomics. Rapid Commun Mass Spectrom.2004;18(20):2388-94.
    88. Krogh AL, B.; Heijne, G.; Sonnhammer, E. L. Predicting transmembrane protein topology with a hidden Markov model:application to complete genomes. J Mol Biol.2001;305(3):567-80.
    89. Kyte J, Doolittle RF. A simple method for displaying the hydropathic character of a protein. J Mol Biol.1982;157(1):105-32.
    90. Saika S, Minamide A, Tanaka T, Miyamoto T, Okada Y, Kawashima Y, et al. Expression of involucrin by ocular surface epithelia of patients with benign and malignant disorders. Curr Eye Res. 2000;21(5):877-85.
    91. Fujiwara RT, Vale AM, Franca da Silva JC, da Costa RT, Quetz Jda S, Martins Filho OA, et al. Immunogenicity in dogs of three recombinant antigens (TSA, LeIF and LmSTI1) potential vaccine candidates for canine visceral leishmaniasis. Vet Res.2005;36(5-6):827-38.
    92. Carmon KS, Loose DS. Wnt7a interaction with Fzd5 and detection of signaling activation using a split eGFP. Biochem Biophys Res Commun.2008;368(2):285-91. PMCID:2277340.
    93. Cha JH, Brooke JS, Ivey KN, Eidels L. Cell surface monkey CD9 antigen is a coreceptor that increases diphtheria toxin sensitivity and diphtheria toxin receptor affinity. J Biol Chem. 2000;275(10):6901-7.
    94. Schraufstatter IU, Ma M, Oades ZG, Barritt DS, Cochrane CG. The role of Tyr13 and Lys 15 of interleukin-8 in the high affinity interaction with the interleukin-8 receptor type A. J Biol Chem. 1995;270(18):10428-31.
    95. Vaskova M, Mejstrikova E, Kalina T, Trka J, Stary J, Hrusak O. CD27 expression in malignant and normal human B precursors:a confirmed phenomenon. Reply to Nilsson and colleagues. Exp Hematol. 2006;34(5):573; author reply 4.
    96. Niitsu N, Okamoto M, Honma Y, Nakamine H, Tamaru JI, Nakamura S, et al. Serum levels of the nm23-H1 protein and their clinical implication in extranodal NK/T-cell lymphoma. Leukemia. 2003;17(5):987-90.
    97. Hanssen E, Reinboth B, Gibson MA. Covalent and non-covalent interactions of betaig-h3 with collagen Ⅵ. Beta ig-h3 is covalently attached to the amino-terminal region of collagen Ⅵ in tissue microfibrils. J Biol Chem.2003;278(27):24334-41.
    98. Ripani E, Sacchetti A, Corda D, Alberti S. Human Trop-2 is a tumor-associated calcium signal transducer. Int J Cancer.1998;76(5):671-6.
    99. Han J, Jenq W, Kefalides NA. Integrin alpha2betal recognizes laminin-2 and induces C-erb B2 tyrosine phosphorylation in metastatic human melanoma cells. Connect Tissue Res.1999;40(4):283-93.
    100. Frey B, Munoz LE, Pausch F, Sieber R, Franz S, Brachvogel B, et al. The immune reaction against allogeneic necrotic cells is reduced in Annexin A5 knock out mice whose macrophages display an anti-inflammatory phenotype. J Cell Mol Med.2009;13(7):1391-9.
    101. Corbett JM, Dunn MJ, Posch A, Gorg A. Positional reproducibility of protein spots in two-dimensional polyacrylamide gel electrophoresis using immobilised pH gradient isoelectric focusing in the first dimension:an interlaboratory comparison. Electrophoresis.1994;15(8-9):1205-11.
    102. Kyte JD, R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982,157:105-32.
    103. Bernsel A, Viklund H, Falk J, Lindahl E, von Heijne G, Elofsson A. Prediction of membrane-protein topology from first principles. Proc Natl Acad Sci U S A.2008;105(20):7177-81.
    104. Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377-391.
    105. Graziadei PP, Levine RR, Monti Graziadei GA (1979) Plasticity of connections of the olfactory sensory neuron:regeneration into the forebrain following bulbectomy in the neonatal mouse. Neuroscience 4:713-727.
    106. Ramon-Cueto A, Avila J (1998) Olfactory ensheathing glia:properties and function. Brain Res Bull 46:175-187.
    107. Bunge MB, Pearse DD (2003) Transplantation strategies to promote repair of the injured spinal cord. J Rehabil Res Dev 40:55-62.;
    108. Fairless R, Barnett SC (2005) Olfactory ensheathing cells:their role in central nervous system repair. Int J Biochem Cell Biol 37:693-699.
    109. Santos-Benito FF, Ramon-Cueto A (2003) Olfactory ensheathing glia transplantation:a therapy to promote repair in the mammalian central nervous system. Anat Rec 271B:77-85.;
    110. Riddell JS, Enriquez-Denton M, Toft A, Fairless R, Barnett SC (2004) Olfactory ensheathing cell grafts have minimal influence on regeneration at the dorsal root entry zone following rhizotomy. Glia 47:150-167.,2004).
    111. Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, Zhang J, Zhang F, Gu Z, Li Y, Song Y, Hao W, Pang S, Sun J (2003) Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 116:1488-1491.;
    112. Mackay-Sim A (2005) Olfactory ensheathing cells and spinal cord repair. Keio J Med 54:8-14.).
    113. Au E, Roskams AJ (2002) Culturing olfactory ensheathing glia from the mouse olfactory epithelium. Methods Mol Biol 198:49-54.
    114. Au E, Roskams AJ (2003) Olfactory ensheathing cells of the lamina propria in vivo and in vitro. Glia 41:224-236.).
    115. Ao, Q.; Wang, A. J.; Chen, G. Q.; Wang, S. J.; Zuo, H. C.; Zhang, X. F., Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Med Hypotheses 2007,69, (6),1234-7.
    116. Srivastava, N.; Seth, K.; Khanna, V. K.; Ansari, R. W.; Agrawal, A. K., Long-term functional restoration by neural progenitor cell transplantation in rat model of cognitive dysfunction: co-transplantation with olfactory ensheathing cells for neurotrophic factor support. Int J Dev Neurosci 2009,27, (1),103-10.
    117. Lipson, A.C., Widenfalk, J., Lindqvist, E., Ebendal, T., Olson, L.,2003. Neurotrophic properties of olfactory ensheathing glia. Exp. Neurol.180,167-171.
    118. Woodhall, E., West, A.K., Chuah, M.I.,2001. Cultured olfactory ensheathing cells express nerve growth factor, brain-derived neurotrophic factor, glia cell line-derived neurotrophic factor and their receptors. Brain Res. Mol. Brain Res.88 (1-2),203-213.
    119. M.I. Chuah, R. Teague, Basic fibroblast growth factor in the primary olfactory pathway:mitogenic effect on ensheathing cells, Neuro-regenerative adultscience 88 (1999) 1043-1050.
    120. M.I. Chuah, C. Au, Cultures of ensheathing cells from neonatal rat olfactory bulbs, Brain Res.601 (1993)213-220.
    121. Guizzetti M. and Costa L. G. (1996) Inhibition of muscarinic receptor stimulated glial cell proliferation by ethanol. J. Neurochem.67,2236.
    122. Moore, N. H.; Costa, L. G.; Shaffer, S. A.; Goodlett, D. R.; Guizzetti, M., (2009)Shotgun proteomics implicates extracellular matrix proteins and protease systems in neuronal development induced by astrocyte cholinergic stimulation. J Neurochem,108, (4),891-908.
    123. R. Cao, X. Li, Z. Liu, X. Peng, W. Hu, X. Wang, P. Chen, J. Xie and S. Liang, Integration of a two-phase partition method into proteomics research on rat liver plasma membrane proteins, J. Proteome Res.5 (2006), pp.634-642.
    124. L. Zhang, X. Wang, X. Peng, Y. Wei, R. Cao, Z. Liu, J. Xiong, X. Ying, P. Chen and S. Liang, Immunoaffinity purification of plasma membrane with secondary antibody superparamagnetic beads for proteomic analysis, J. Proteome Res.6 (2007), pp.34-43
    125. P. Chen, X. Li, Y. Sun, Z. Liu, R. Cao, Q. He, M. Wang, J. Xiong, J. Xie, X. Wang and S. Liang, Proteomic analysis of rat hippocampal plasma membrane:characterization of potential neuronal-specific plasma membrane proteins, J. Neurochem.98 (2006), pp.1126-1140
    126. J. Kyte, R.F. Doolittle, A simple method for displaying the hydropathic character of a protein, J. Mol. Biol.157 (1982) 105-132..
    127. M. Ashburner, C.A. Ball, J.A. Blake, M. Ringwald, G.M. Rubin, G. Sherlock (2000) Gene ontology:tool for the unification of biology. The Gene Ontology Consortium, Nat.Genet.25 25-29.
    128. Zhang B., Schmoyer D., Kirov S. and Snoddy J. (2004) GOTree Machine (GOTM):a web-based platform for interpreting sets of interesting genes using Gene Ontology hierarchies. BMC Bioinformatics,5.16
    129. Kang, R.; Wan, J..; Yates, J. R.,3rd; Davis, N. G.; El-Husseini, A.(2008) Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature,456, (7224),904-9.
    130. Chen J. Z., Ryu S. Y., Gharib S. A., Goodlett D. R. and Schnapp L. M.(2008) Exploration of the normal human bronchoalveolar lavage Fluid proteome. Proteomics Clin. Appl.4,585.
    131. Jannick Dyrl(?)v Bendtsen, Henrik Nielsen, Gunnar von Heijne and S(?)ren Brunak. (2004) Improved prediction of signal peptides:SignalP 3.0. J. Mol. Biol.,340:783-795.
    132. Henrik Nielsen, Jacob Engelbrecht, S(?)ren Brunak and Gunnar von Heijne. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10:1-6.
    133. Pearson K, Liu M, Shen L, Tso P, Davidson WS. (2005)Bacterial expression and characterization of rat apolipoprotein E. Protein Expr Purif. Jun;41(2):447-53.
    134. El-Khattabi, I.; Gregoire, F.(2003)Isocaloric maternal low-protein diet alters IGF-I, IGFBPs, and hepatocyte proliferation in the fetal rat. Am J Physiol Endocrinol Metab 285, (5), E991-E1000.
    135. Leaver, S.G., Harvey, A.R., Plant, G.W.(2006) Adult olfactory ensheathing glia promote the long-distance growth of adult retinal ganglion cell neurites in vitro. Glia 53 (5),467-476.
    136. Lipson, A.C., Widenfalk, J., Lindqvist, E., Ebendal, T., Olson, L.(2003) Neurotrophic properties of olfactory ensheathing glia. Exp. Neurol.180,167-171.
    137. Ruitenberg, M.J., Levison, D.B., Lee, S.V., Verhaagen, J., Harvey, A.R., Plant, G.W.(2005)NT-3 expression from engineered olfactory ensheathing glia promotes spinal sparing and regeneration. Brain 128,839-853.
    138. Lopez-Vales, R., Fores, J., Navarro, X., Verdu, E. (2007) Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. Glia 55, 303-311.
    139. Lima, C., Pratas-Vital, J., Escada, P., Hasse-Ferreira, A., Capucho, C., Peduzzi, J.D.(2006)Olfactory mucosa autografts in human spinal cord injury:a pilot clinical study. J. Spinal Cord Med.29,191-206
    140. Boyd, J. G.; Jahed, A.; McDonald, T. G.; Krol, K. M.; Van Eyk, J. E.; Doucette, R.; Kawaja, M. D. (2006)Proteomic evaluation reveals that olfactory ensheathing cells but not Schwann cells express calponin. Glia,53, (4),434-40.
    141. Au, E.; Richter, M. W.; Vincent, A. J.; Tetzlaff, W.; Aebersold, R.; Sage, E. H.; Roskams, A. J., SPARC from olfactory ensheathing cells stimulates Schwann cells to promote neurite outgrowth and enhances spinal cord repair. J Neurosci 2007,27, (27),7208-21.
    142. Ming Lu and Hongyun Huang (2003)Olfactory ensheathing cells transplantation in the treatment of spinal cord injury research, Chin J Neurosurg, Vol 19, No.4
    143. Ya-Zhou Wang, Jin-Hong Meng, Hao Yang, Na Luo, Xi-Ying Jiao, Gong Ju (2003)Differentiation-inducing and protective effects of adult rat olfactory ensheathing cell conditioned medium on PC12 cells. Neuroscience Letters, Volume 346, Issues 1-2,31 July, Pages 9-12,
    144. Ruitenberg, M. J.; Vukovic, J.; Sarich, J.; Busfield, S. J.; Plant, G. W., (2006) Olfactory ensheathing cells:characteristics, genetic engineering, and therapeutic potential. J Neurotrauma,23, (3-4),468-78.
    145. Mingmei Wu, Bing Hou, Hao Yang, Na Luo, Xi-Ying Jiao, Kwok-Fai So, Gong Ju, Si-Wei You (2007) Neuroprotective effects of transplanted olfactory ensheathing cells on axotimized retinal ganglion cells in adult rats.Neuroscience Research, Volume 58, Supplement 1, Page S90
    146. Rojas-Mayorquin, A. E.; Torres-Ruiz, N. M.; Gudino-Cabrera, G.(2008) Microarray analysis of striatal embryonic stem cells induced to differentiate by ensheathing cell conditioned media. Dev Dyn, 237, (4),979-94.
    147. Barnett, S. C., Olfactory ensheathing cells:unique glial cell types? (2004) J Neurotrauma 21, (4), 375-82.
    148. Crawford, F et al.(2009)APOE-genotype dependent hippocampal and cortical responses totraumatic brain injury. Neuroscience
    149. Jiang, Qingguang et al. (2008)ApoE promotes the proteolytic degradation of Abeta. Neuron,58 (5): 681-93
    150. Up-regulation of low-density lipoprotein receptor expression in the ischemic core and the peri-ischemic area after transient MCA occlusion in rats. (2005)Brain Res. Mol. Brain Res.
    151. McMichael, Gai L et al. Association between Apolipoprotein E genotype and cerebral palsy is not confirmed in a Caucasian population.(2008)Hum Genet,124 (4):411-6
    152. Chesik, Daniel et al., Enhanced production and proteolytic degradation of insulin-like growth factor binding protein-2 in proliferating rat astrocytes. (2004)J Neurosci Res,77 (3):354-62
    153. Breese, C R et al., Expression of insulin-like growth factor-1 (IGF-1) and IGF-binding protein 2 (IGF-BP2) in the hippocampus following cytotoxic lesion of the dentate gyrus. (1996)J Comp Neurol, 369 (3):388-404
    154. Esposito, C et al., The antifibrogenic effect of hepatocyte growth factor (HGF) on renal tubular (HK-2) cells is dependent on cell growth. (2009) Growth Factors:1
    155. Nie, Q. H.; Duan, G. R.; Luo, X. D.; Xie, Y. M.; Luo, H.; Zhou, Y. X.; Pan, B. R., Expression of TIMP-1 and TIMP-2 in rats with hepatic fibrosis. (2004)World J Gastroenterol,10, (1),86-90.
    156. Aigelsreiter, A.; Janig, E.; Lackner, C.; Zatloukal, K.; Denk, H., Clusterin expression in cholestasis, hepatocellular carcinoma and liver fibrosis. (2009) Histopathology,54, (5),561-70.
    157. Debure, L.; Vayssiere, J. L.; Le Drean, Y.; Michel, D., Intracellular clusterin causes juxtanuclear aggregate formation and mitochondrial alteration. (2003)J Cell Sci,116, (Pt 15),3109-21.
    158. Wiggins, A. K.; Shen, P. J.; Gundlach, A. L., Delayed, but prolonged increases in astrocytic clusterin (ApoJ) mRNA expression following acute cortical spreading depression in the rat:evidence for a role of clusterin in ischemic tolerance. (2003)Brain Res Mol Brain Res,114, (1),20-30.
    159. Zhao, X.; Tang, R.; Xiao, Z.; Shi, Y.; Chen, W.; Liu, J.; Tang, W.; Zhang, J.; He, L., An investigation of the dihydropyrimidinase-like 2 (DPYSL2) gene in schizophrenia:genetic association study and expression analysis. (2006)Int J Neuropsychopharmacol,9, (6),705-12.
    160. Patrakitkomjorn, S.; Kobayashi, D.; Kaibuchi, K.; Saya, H.; Araki, N., Neurofibromatosis type 1 (NF1) tumor suppressor, neurofibromin, regulates the neuronal differentiation of PC12 cells via its associating protein, CRMP-2. (2008) J Biol Chem,283, (14),9399-413.
    161. Morishita, M.; Otsuka, Y.; Matsukawa, N.; Suzuki, H.; Nakazawa, H.; Maki, M.; Katou, H.; Ueda, R.; Ojika, K., Specific binding of 1251-hippocampal cholinergic neurostimulating peptide (HCNP) to rat brain membranes:characterization and regional distribution. (2003)Brain Res,965, (1-2),194-202.
    162. Seifert, J. L.; Som, S.; Hynds, D. L., Differential activation of Rac1 and RhoA in neuroblastoma cell fractions. (2009)Neurosci Lett,450, (2),176-80.
    163. Song, B. K.; Geisert, G. R.; Vazquez-Chona, F.; Geisert, E. E., Jr., Temporal regulation of CD81 following retinal injury in the rat. (2003)Neurosci Lett,338, (1),29-32.
    164. Kim, H.; Ha, C. M.; Park, S. K.; Kang, S. S.; Kim, K.; Lee, B. J., Ontogeny and the possible function of a novel epidermal growth factor-like repeat domain-containing protein, NELL2, in the rat brain. (2002) J Neurochem,83, (6),1389-400.
    165. Hwang, E. M.; Kim, D. G.; Choi, W. S.; Hong, S. G.; Park, J. Y., Alternative splicing generates a novel non-secretable cytosolic isoform of NELL2. (2007)Biochem Biophys Res Commun,353, (3), 805-11.
    166. Nakadate, K.; Sakakibara, S.; Ueda, S., Attractin/mahogany protein expression in the rodent central nervous system. (2008) J Comp Neurol,508, (1),94-111.
    167. Muto, Y.; Sato, K., Pivotal role of attractin in cell survival under oxidative stress in the zitter rat brain with genetic spongiform encephalopathy. (2003) Brain Res Mol Brain Res,111,(1-2),111-22.
    168. Sottile, J.; Hocking, D. C., Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. (2002)Mol Biol Cell,13, (10),3546-59.
    169. Sanagi, T.; Yabe, T.; Yamada, H., Gene transfer of PEDF attenuates ischemic brain damage in the rat middle cerebral artery occlusion model. (2008)J Neurochem,106, (4),1841-54.
    170. Yabe, T.; Sanagi, T.; Schwartz, J. P.; Yamada, H., Pigment epithelium-derived factor induces pro-inflammatory genes in neonatal astrocytes through activation of NF-kappa B and CREB. (2005) Glia,50, (3),223-34.