考虑空气动力效应时高速列车运行安全平稳性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着列车速度的不断提高,不仅列车空气阻力急剧增大,能耗急剧增加,还因列车在强横风环境下运行和通过隧道时,列车与空气之间的相互作用加剧,出现了一系列亟待解决的由空气动力效应引起的危及行车安全和降低旅客乘坐舒适性的问题。因此,高速列车—空气相互作用问题是一个关系高速铁路安全运行的重要工程技术问题,也是我国高速铁路发展必须解决的关键技术问题之一。
     针对列车在横风环境下和隧道内高速运行时的空气动力学问题,本文采用数值计算方法,综合考虑列车、轨道和隧道等因素,对明线上和隧道内,高速列车与空气之间相互作用以及空气动力对列车运行安全性和舒适性的影响进行了研究。
     在任意拉格朗日—欧拉框架下,以Navier-Stokes方程和k-ε两方程湍流模型为基础,采用有限体积法建立了列车空气动力学数值计算模型;基于车辆—轨道耦合动力学理论,建立了列车—轨道耦合系统动力学分析模型;采用任意拉格朗日—欧拉方法(ALE)处理列车与空气间存在的运动边界,实现了车辆系统动力学与计算流体力学之间的结合,建立了高速列车—空气相互作用模型。
     采用上述研究思路与计算方法,对高速列车以不同速度运行、受不同横风作用时的流场特性、气动力特性及列车动力学响应进行了详细的数值计算,分析了横风速度和行车速度对列车横向气动力、升力、侧滚力矩、点头力矩、摇头力矩及列车表面压力分布的影响,给出了不同运行工况下列车周围流场的速度和压力分布特征。研究了横风对高速列车动力学响应的影响规律,结果表明,横风环境下,从脱轨系数、轮重减载率、倾覆系数和轮轨横向力这些安全性指标来看,头车是整个列车编组中安全性最低的。根据高速列车运行安全性相关限定标准,以头车的安全性指标研究了不同横风风速下平地上高速列车的最高安全运行速度。研究表明:以头车轮重减载率作为列车运行安全性指标时,得到的列车最高安全运行速度最小;使用倾覆系数作为列车安全运行的控制指标时,得到的列车最高安全运行速度是最大的;在倾覆系数达到危险限值时,脱轨系数、轮重减载率和轮轨横向力均早已超标,故由倾覆系数计算得到的最高安全运行速度是过于宽松的;以轮轨横向力作为评价指标得到的最高安全运行速度位于由轮重减载率和脱轨系数评判得到的最高安全运行速度之间。
     针对大阻塞比双线隧道内列车横向气动性能恶化的现象,以日本山阳新干线隧道为研究对象,综合考虑隧道结构、轨道结构、车辆结构等因素,从列车流线型头部长度、车体截面宽度、车体底部结构、隧道阻塞比、线间距等影响因素入手,详细分析了它们对列车横向气动性能的影响。应用列车—空气相互作用模型,对列车在山阳隧道内高速运行时的气动力特性和横向振动特性进行了数值模拟,结果表明:尾车的横向振动要比中间车的横向振动剧烈;相对于车体的其他运动,车体摇头运动显得更加突出;这些结果与新干线列车在山阳隧道中运行时出现的现象相似。与横风环境下头车气动性能最差的情况不同的是,隧道内,不论是从脱轨系数、轮重减载率还是从倾覆系数来衡量,气动力对尾车安全性能的影响最为严重。
With the improvement of train speed, not only energy consumption increases sharply as to the increasing drag, but also the interaction between train and air is aggravated when the train cruising inside tunnels or under strong cross-winds. A series of aerodynamic problems deteriating running safety and ride comfort arise and demand a prompt solution. As a result, the interaction between high-speed train and air becomes an important engineering problem related to safe operation of high-speed railway, and it is a key technical problem which must be solved in the development of high-speed railway in China.
     For the issue of the high-speed train aerodynamics in cross-winds or inside tunnels, research on interaction between high-speed train and air and the influence of aerodynamic forces on train running safety and ride comfort have been carried out by numerical method by taking the train, track and tunnel structures into consideration.
     Under the arbitrary Lagrangian-Eulerian framework, the numerical model for train aerodynamics is set up by the Finite Volume Method (FVM) based on Navier-Stokes equation and k-εtwo equation turbulence models; On the basis of vehicle-track coupled dynamics, the numerical model for train-track coupled dynamics has been set up; The moving boundary between train and air is dealt with the arbitrary Lagrangian-Eulerian method (ALE); A co-simulation of Vehicle System Dynamics (VSD) and Computational Fluid Dynamics (CFD) has been realized and finally the numerical model for interaction between high-speed train and air is set up.
     The characteristics of flow field, aerodynamic forces, and vehicle dynamic response under different wind speeds and train speeds have been studied by the above mentioned method. Analysis has been carried on how aerodynamic forces and moments change according to wind speed and train speed. The velocity and pressure distribution around the train has been studied. The effect of cross-winds on the dynamic performance of high-speed train has also been studied in this paper. The results show that the heading car has the lowest security among the train judged whether by derailment coefficient, reduction ratio of wheel-load, overturning coefficient or by wheel/rail lateral force. The critical speed of high-speed train is studied according to the heading car's safety index. The critical speed judged by reduction ratio of wheel-load is the minimum and over-conservative. The critical speed judged by overturning coefficient is the maximum and over-loose. In the results derailment coefficient, reduction ratio of wheel-load, and wheel/rail lateral force exceed their criterion value before the overturning coefficient reaches the dangerous limit. The critical speed judged by wheel/rail lateral force lies between the critical speed judged by reduction ratio of wheel-load and the critical speed judged by derailment coefficient.
     Numerical simulation has been carried on the characteristics of the aerodynamic forces and aggravated lateral vibration inside Sanyo tunnels by the numerical model for high-speed train and air. The results indicate that the lateral acceleration of the end car is larger than the middle car's; Corresponding to other motion mode of car body, the heading mode of car body becomes more prominent, these results are similar with the phenomena existing in the Shinkansen train operation inside Sanyo tunnels. Different from the situation that the heading car has the worst aerodynamic performance under cross-winds, the end car has the worst aerodynamic performance in the Sanyo tunnels judged whether by derailment coefficient, reduction ratio of wheel-load, or by overturning coefficient. Taking the length of streamlined train head, the width of car body, the bottom structure of car body, the tunnel block ratios, line interval, etc. into consideration, the effect of these factors on the train lateral aerodynamic performance has also been studied.
引文
1. Fijimoto, H. and Miyamoto, M. The vibration of the tail car in a coupled train. Transactions of the Japan Society of Mechanical Engineers.1987,53 (494):2110-2114
    2. Fijimoto, H. and Miyamoto, M. Lateral vibration and its decreasing measure of a Shinkansen train. Proc.14th Iavsd Symposium, Ann Arbor, USA,1996:188-199
    3. 高广军,田红旗,姚松,刘堂红,毕光红.兰新线强横风对车辆倾覆稳定性的影响.铁道学报,2004,26(4):36-40
    4. 田红旗.列车空气动力学.中国铁道出版社,2007
    5. C. J. Baker and M. Sterling. Current and Recent International Work on Railway Aerodynamics. Rail Safety and Standards Board Report. Birmingham,2003
    6. Raghu S. Raghunathan, H. D. Kim, T. Setoguchi. Aerodynamics of high-speed railway train. Progress in Aerospace Sciences.2002,38 (2002):469-514
    7. Joseph A Schetz.高速列车空气动力学.力学进展.2003,33(3):404-423
    8. 陆冠东.高速列车的空气动力学问题.铁道车辆.2006,44(10):1-4
    9. Ashmed S.R., Gawthorp R.G., Machrodt P.A.公路和铁路车辆空气动力学.空气动力学及噪声.1996:7-27
    10. 前田达夫.新干线高速化的气动力学问题.商福昆译.空气动力学和噪声.1996:88-90
    11. Hibrich H.D.(德).高速列车的某些气动力学问题—特别考虑到列车会车、隧道行驶和风暴的情况,董锡明译.空气动力学和噪声.1996,46-50
    12. ORE C149专业委员会.高速列车通过隧道产生的问题,黄奕锦译.空气动力学和噪声.1996,91-128
    13. 刘应清,雷波,雷兵.列车在隧道中行驶的空气动力学现象.研究报告.西南交通大学风工程中心.1991年12月
    14.#12
    15. 藤井昌隆,藤井俊茂,村石尚.强风时の运転规制の历史.铁道総研报告,1995,9(3):43-48
    16. 前田达夫,種本勝二.横风に对する车両の空力特性.铁道総研报告,1995,9(3):31-36
    17. 種本勝二,铃木実,前田达夫.横风に对する车両の空気力学的特性风洞実验.铁道総研报告,1999,13(12):47-52
    18. 牧野宏美.台风13号宫崎で竜巻3人死亡100人けが特急も横転.每日新闻,2006
    19. 刘庆宽,杜彦良,乔富贵.日本列车横风和强风对策研究.铁道学报.2008,30(1):82-88
    20. Diedrichs, Ben. Studies of Two Aerodynamics Effects on High-Speed Trains Crosswind Satbility and Discomforting Car Body Vibrations Inside Tunnels. Royal Institute of Technology Doctoral Thesis,2006
    21. R.G. Gawthorpe. Wind effects on ground transportation. Journal of Wind Engineering and Industrial Aerodynamics.1994,52 (1994):73-92
    22. T. Johnson. Strong wind effects on railway operations-16th October 1987. Journal of Wind Engineering and Industrial Aerodynamics.1996,60 (1996):251-266
    23. Heine, C., Eisenlauer, M. and Matchke, G.2001. Unsteady Wake Simulation-last Car oscillations of High Speed Trains. Rapide. Project Funded by the European commission under the industrial and materials technologies programme (brite-EuRam Ⅲ). BRPR-CT97-0603
    24. Ishihara, T., Utsunomiya, M., Sakuma, Y. and Shimomura, T.1997. An investigaton of lateral vibration caused by aerodynamic continuous force on high-speed train running within tunnels. WCRR 1997. Florence,531-538
    25. Ueki,K.,Nakade, K. and Fujimoto, H.1999. Lateral vibration of middle cars of Shinkansen train in tunnel section (Analyzing of running characteristics of test train due to gap flow induced model). Vehicle System Dynamics Supplement 33,749-761
    26. Nakatani, K., Nakanishi, M., Maeda, T., Kikuchi, K. and Oto, H. Countermeasures to reduce low-frequency oscillation generated by high-speed Shinkansen train. WCRR 1997, Florence,491-497
    27. H. Takai. Maintenance of long-wave track irregularity on Shinkansen. RTRI Report, 1989,3(4):13-20
    28. H. Fujimoto and M. Miyamoto. A study of lateral dynamic behavior of rail vehicle in curves. Transactions of the Japan Society of Mechanical Engineers,1991, 58(548):1067-1074
    29. Suzuki, M., Nakade, K. and Fujimoto, H. Study on interaction between vehicle dynamics and aerodynamic force on High Speed Train in tunnel. RTRI Report.2001, 15(5):19-24
    30. Nakade, K., Suzuki, M. and Fujimoto, H. Interaction between vehicle vibration and aerodynamic force on High Speed Train running in tunnel. Vehicle System Dynamics Supplement 2004,41:717-723
    31. Suzuki, M. An experimental study on aerodynamics force acting on train in tunnel. International Symposium on Speed-up and Service Technology for Railway and Maglev Systems. (STECH'03). Tokyo JAPAN.2003, Japan Society of Mechanical Engineering(JSME),2003:395-397
    32. M. Suzuki and H. Fujimoto. A wind tunnel test on vehicle vibration in tunnel. Proceedings of J-RAIL2002.2002:307-308
    33. Suzuki, M. Aerodynamics force acting on train in tunnel. RTRI Report.2000, 14(9):37-42
    34. Suzuki, M. Unsteady Aerodynamics force acting on High Speed Trains in tunnel. RTRI Report.2001,14(9):37-42
    35. Diedrichs, B., Berg, M., Stichel,S. and Krajnovic, S. Vehicle dynamics of a high-speed Passenger car due to aerodynamics inside tunnels. Proceedings of the IMECH E Part F Journal of Rail and Rapid Transit,2007,221(4):527-545
    36. B. Diedrichs, M. Berg, and S. Krajnovic. Large Eddy Simulations of a typical European high-speed train inside tunnels.2004 SAE World Congress, Detroit,2004
    37. J.M. Copley. The three-dimensional flow around railway trains. Journal of Wind Engineering and Industrial Aerodynamics.1987,26(1):21-52
    38. T.W. Chiu, A two-dimensional second-order vortex panel method for the flow in a cross-wind over a train and other two-dimensional bluff bodies. Journal of wind engineering and industrial aerodynamics.1991,37:43-64
    39. Chiu T.W., Squire L.C. An experimental study of the flow over a train in a crosswind at a large yaw angle up to 90°. Journal of wind engineering and industrial aerodynamics.1992,45:47-74
    40. Chiu T.W. Prediction of the aerodynamic loads on a railway train in a cross-wind at large yaw angles using an integrated two-and three-dimensional source/vortex panel method..Journal of wind engineering and industrial aerodynamics.1995,57:19-39
    41. Baker C. J. Train aerodynamic forces and moments from moving model experiments. Journal of Wind Engineering and Industrial Aerodynamics.1986,24 (3):227-251
    42. Baker C. J. Ground vehicles in high cross winds. Part Ⅰ:steady aerodynamic forces. Journal of Fluids and Structures.1991,5:69-90
    43. Baker C. J. Ground vehicles in high cross winds. Part Ⅱ:unsteady aerodynamic forces. Journal of Fluids and Structures.1991,5:91-111
    44. Baker C. J. Ground vehicles in high cross winds. Part Ⅲ:The interaction of aerodynamic forces and the vehicle system. Journal of Fluids and Structures.1991, 5:221-241
    45. Baker C. J., and N. Humphreys. Assessment of the adequacy of various wind tunnel techniques to obtain aerodynamic data for ground vehicles in cross winds. Journal of Wind Engineering and Industrial Aerodynamics.1996,60:49-68
    46. Baker C. J. The effects of high winds on vehicle behaviour. Conference on Bridge Aerodynamics, Copenhagen,1998,267-282
    47. Baker C. J., F. Lopez-Calleja, J. Jones, and J. Munday. Measurements of the cross wind forces on trains. Journal of Wind Engineering and Industrial Aerodynamics.2004, 92:547-563
    48. Cooper R. Tests on a 1/5th scale APT-P in the MIRA wind tunnel. British Rail Research Division Technical Memorandum TMAERO 28,1978
    49. Cooper R. Wind tunnel tests on a 1/25th scale APT-P model. British Rail Research Division Technical Memorandum TMAERO 43,1982
    50. R.K. Cooper. The probability of trains overturning in high winds, Proc.5th Int. Conf. on Wind Engineering, Fort Collins, CO, USA, Pergamon,1979,1185-1194
    51. Khier W, Breuer M, Durst F. Flow structure around trains under side wind conditions:a numerical study. Computers&Fluids.2000,29(2):179-195
    52. Khier,W., Breuer, M., and Durst, F. Numerical computation of 3-D turbulent flow around high-speed trains under side wind conditions. TRANSAERO-a European initiative on transient aerodynamics for railway system optimization, Springer-Verlag, 2002,75-84
    53. Fauchier C., Devehat Le E., Gregoire R. Numerical study of the turbulent flow around the reduced-scale model of an inter-Regio. In TRANSAERO-A European initiative on transient aerodynamics for railway system optimization. Springer-Verlag,2002,61-74
    54. Aita S., Tabbat A. CFD aerodynamics of the French high speed train. SAE 920343. 1992,85-99
    55. Sanquer Stephane, Barre Christian, Dufresne DE Virel Marc, Cleon Louis-Marie. Effect of cross winds on high-speed trains:development of a new experimental methodology. Journal of Wind Engineering and Industrial Aerodynamics.2004, 92:535-545
    56. N. Paradot, B. Angel, P. E. Gautier and L. M. Cleon. Numerical Simulation and Experimental Investigation of the Side Loading on a High Speed Train. Procedings of
    the ERCOFTAC International Symposium on Engineering Turbulence Modelling and Measurements. Italy,2005, ETMM6-Sardinia,2005:657-666
    57. Paradot N., Talotte C., Garem H., Delville J., Bonnet J. A comparison of the numerical simulation and experiment investigation of the flow around a high speed train. Proceedings of the 2002 ASME Joint U.S.-European Fluids Engineering Conference. 2002
    58. Krajnovic Sinisa, Hemida Hassan, and Diedrichs, Ben:Time-Dependent Simulations for the Directional Stability of High Speed Trains under the Influence of Cross Winds or Cruising Inside Tunnels. Fluid Dynamics Applications in Ground Transportation: Simulation, a primary delepment tool in the automotive industry, Lyon, France,2005
    59. Krajnovic, Sinisa; Hemida, Hassan:on The Aerodynamics of High Speed Trains using Computer Simulations. Proceedings of the EURNEX-ZEL 2007,15th International Symposium, towards more competitive European rail systems, Zilina, Zlovakia,2007
    60. Krajnovic, Sinisa:Numerical Simulation of the Flow Around an ICE2 Train Under the Influence of a Wind Gust. International Conference on Railway Engineering 2008 (IET ICRE2008), Challenges for Railway Transportation in Information Age, China,2008
    61. Hemida, Hassan; Krajnovic, Sinisa:Parallel CFD Computations of Cross-Wind Stability on an ICE2 Train. PARA'06:Workshop on State-of-the-art in Scientific and Parallel Computing, Sweden,2006,1-4
    62. Hemida, Hassan; Krajnovic, Sinisa:Numerical Study of the Unsteady Flow Structures Around Train-Shaped Body Subjected to Side Winds. ECCOMAS CFD 2006. The Netherlands,2006,1-14
    63. Hemida, H. Large-eddy simulation of the flow around simplified high-speed trains under side wind conditions. Chalmers University of Technology Doctoral Thesis.2006: 19-35
    64. Hemida, Hassan; Krajnovic, Sinisa; Davidson, Lars:Large-Eddy Simulation of the Flow Around a Simplified High Speed Train Under the Influence of a Cross-Wind. 17th AIAA Computational Fluid Dynamic conference. Canada,2005
    65. Hemida, Hassan; Krajnovic, Sinisa:Exploring the Flow Around a Generic High-Speed Train Under the Influence of Side Winds Using LES. Fourth International Symposium on Computational Wind Engineering. Japan,2006
    66. B. Diedrichs, M. Berg, S. Stichel, and S. Krajnovic. Vehicle dynamics of a high-speed passenger car due to aerodynamics inside tunnels. IMechE,2007,221(F):527-545
    67. B. Diedrichs, M. Berg, and S. Krajnovic. Large Eddy Simulations of a typical European high-speed train inside tunnels. SAE World Congress, SAE Paper No. 2004-01-0229, Detroit, USA,2004
    68. Diedrichs, B., Berg, M., and Krajnovi'c, S. Large eddy simulation of the flow around high-speed trains cruising inside tunnels. In European Congress on Computational Methods in Applied Sciences and Engineering, Jyvaskyla,2004
    69. Diedrichs, Ben; Krajnovic, Sinisa; Berg, Mats:On Tail Vibrations of Very High-Speed Trains Cruising inside Tunnels. Engineering Applications of Computational Fluid Mechanics.2008,2(1):51-75
    70. B. Diedrichs,M. Sima, A. Orellano, and H. Tengstrand Crosswind stability of a high-speed train on a high embankment IMechE 2007,221(F):205-225
    71. B. Diedrichs. On computational fluid dynamics modelling of crosswind effects for high-speed rolling stock. IMechE,217(F):203.226,2003
    72. Diedrichs, B., Ekequist, M., Stichel, S., and Tengstrand, H. Quasi-static modelling of wheelrail reactions due to crosswind effects for various types of high-speed rolling stock. IMechE,2004,218(F):133-148
    73. Minoru Suzuki, Katsuji Tanemoto, Tatsuo Maeda. Aerodynamic characteristics of train/vehicles under cross winds. Journal of Wind Engineering and Industrial Aerodynamics 2003,91(2003):209-218
    74. Suzuki, M., Studies on the flow around a train in tunnel. Proceedings of conference on modeling fluid flow (CMFF'03), The 12th Intl. Conf. on Fluid Flow Technologies, Hungary,2003,702-703
    75. Masahiro Suzuki. An aerodynamic design of high-speed train for reducing flow-induced vibration in tunnel. ECCOMAS 2004, Jyvaskyla,2004
    76. Masahiro Suzuki. Unsteady aerodynamic force action on High Speed Trains in Tunnel. QR of TRRI.2001,42(2):89-93
    77. Suzuki Masahiro, Nakade Koji, Fujimoto Hiroshi. Study on Interaction between Vehicle Dynamics and Aerodynamic Force on High-Speed Train in Tunnel. Nippon Kikai Gakkai Ryutai Kogaku Bumon Koenkai Koen Ronbunshu.2001, 79(1011):803-806
    78. Nakade Koji, Suzuki Masahiro, and Fujimoto Hiroshi. Interaction between Vehicle Vibration and Aerodynamic Force on High-Speed Train Running in Tunnel Vehicle System Dynamics Supplement.2004,41:717-723
    79. A.Carrarini. Coupled Multibody-Aerodynamic Simulation of High-Speed Trains Manoeuvres. PAMM · Proc. Appl. Math. Mech.2003,2:114-115
    80. A.Carrarini. Reliability based analysis of the crosswind stability of railway vehicles. Journal of Wind Engineering and Industrial Aerodynamics.95 (2007):493-509
    81. A.Carrarini. Reliability based analysis of the crosswind stability of railway vehicles. Thesis for doctoral degree. Berlin,2006:40-90
    82. 张小钢.高速列车湍流绕流三维数值模拟研究.西南交通大学博士论文.1997年5月
    83. 张小钢,刘应清.具有地面效应的高速列车湍流绕流数值模拟研究.西南交通大学学报,1997,2:150-153
    84. 张小钢,刘应清,赵海恒.高速列车经过路边建筑时的非定常湍流绕流数值模拟研究.铁道学报.1998,20(2):87-92
    85. 张小钢.高速列车优化外形的数值分析.西南交通大学学报,1996,31(3):256-261
    86. 李人宪.列车三维紊态外流场的数值模拟研究.西南交通大学博士论文.1998年9月
    87. Li Renxian, Liu Yingqing. Pressure distribution characters of flow field around high-speed train. Journal of Southwest Jiaotong University.2000,8(2):114-122
    88. 李人宪,翟婉明.磁浮列车横风稳定性的数值分析.交通运输工程学报.2001,1(1):99-101
    89. 李人宪,刘应清.高速列车紊态外流场的数值模拟.应用力学学报.2001,1:69-73
    90. 杨忠超.基于EBE策略的列车三维紊态外流场有限元法并行计算研究.西南交通大学博士论文.2002年4月
    91. 武青海,周宏伟,朱勇更.高速列车湍流流场数值仿真计算探讨.铁道学报.2002,24(3):99-103
    92. 毕海权,雷波,张卫华.TR磁浮列车气动力特性数值计算研究.铁道学报.2004,26(4):51-54
    93. Haiquan Bi, Bo Lei. Modeling the performance of air conditioning units based on fuzzy neural network. Proceedings of the 4th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings.2001,10:517-524
    94. 毕海权,雷波,张卫华.TR磁浮列车湍流外流场数值计算.西南交通大学学报.2005,40(1):5-8
    95. 毕海权,雷波,张卫华.自然风对高速磁浮列车气动特性的影响.中国铁道科学.2007,28(2):65-70
    96. 毕海权.高速磁悬浮列车空气动力特性及会车压力波研究.西南交通大学博士论文,2004年7月
    97. 祝志文,陈政清.横风中双层客车车辆的风荷载研究.国防科技大学学报.2001,23(5):117-121
    98. 祝志文,陈政清.单、双层客车车辆在铁路桥梁上的横向气动力特性.中南工业大学学报.2001,32(4):410-413
    99. 祝志文,陈政清.YZ22型车辆与铁路T型简支梁桥的风荷载研究.湖南大学学报,2001,28(1):93-97
    100. 祝志文.桥梁风效应的数值方法及应用.中南大学博士论文,2002年5月
    101.#12
    102. 福地合一,林田千秋,西泽正一,土屋恂.横风にょる列転倒の静力学的检讨.铁道技术研究报告,1973,(6):1-42
    103. 余部事故技术调查委员会.余部事故技术调查委员会告书.东京,财団法人铁道総合技术研究所,1988
    104. 日比野有,石田弘明.车両の転覆限界风速に関する静解析法.铁道総研报告,2003,17(4):39-44
    105. 高广军.强侧风作用下列车运行安全性研究.中南大学博士论文,2008年4月
    106. 王永冠,陈康.横风对高速动车曲线通过性能的影响.西南交通大学学报,2005,40(2):224-227
    107. 陈康,罗赞.横风对液力传动动车直线运行性能的影响.铁道车辆,2003,(6):22-24
    108. 任尊松,徐宇工,王璐雷,邱英政.强侧风对高速列车运行安全性影响研究.铁道学报.2006,28(6):46-50
    109. 宋洋,任尊松.强侧向风作用下的高速列车动力学性能研究.铁道车辆,2006,44(10):4-7
    110. 翟婉明.车辆—轨道垂向耦合动力学[D].成都:西南交通大学博士学位论文,1991
    111. 翟婉明.车辆—轨道垂向系统的统一模型及其耦合动力学原理[J].铁道学报,1992,14(3):10-21
    112. Zhai Wanming, Sun Xiang. A Detailed Model for Investigating Vertical Interaction between Railway Vehicle and Track. Vehicle System Dynamics,1994, 23(Supplement):603-615
    113. 翟婉明.车辆—轨道耦合动力学.第一版,北京:中国铁道出版社,1997
    114. 翟婉明.车辆—轨道耦合动力学.第二版,北京:中国铁道出版社,2002
    115. 翟婉明.车辆—轨道耦合动力学.第三版.北京:中国铁道出版社,2007
    116. Cooper R. K.. The effect of cross-wind on trains. In:Proceedings of Aerodynamics of Transportation, ASME-CSME Conference,18-20 June, Niagara,1979.127-151
    117. 刘宏友.高速列车中的关键动力学问题研究.成都:西南交通大学,2003
    118. 蔡成标.高速铁路列车—线路—桥梁耦合振动理论及应用研究.成都:西南交通大学博士学位论文,2004
    119. 王开文.车轮接触点迹线及轮轨基础几何参数的计算.西南交通大学学报,1984,1:89-99
    120. 陈果.车辆—轨道耦合系统随机振动分析.成都:西南交通大学博士学位论文,2000
    121. 德国联邦铁路城际特别快车ICE技术任务书.铁道部科技司,西南交通大学,1993
    122. Zhai Wan-ming. Two simple fast integration methods for large-scale dynamic problems in engineering. International Journal for Numerical Methods in Engineering,1996, 39(24):4199-4214
    123. 翟婉明.非线性结构动力分析的Newmark预测—校正积分模式.计算结构力学及其应用,1990,7(2):51-58
    124. 翟婉明,黄志辉.列车动力学的非线性数值分析方法.西南交通大学学报,1991,1:82-90
    125. GB 5599—85,铁道车辆动力学性能评定和试验鉴定规范,1985
    126.TB/T 2360—93,铁道机车动力学性能试验鉴定方法及评定标准,1993
    127.95J01—L,高速试验列车动力车强度及动力学性能规范,1995
    128.95J01—M,高速试验列车客车强度及动力学规范,1995
    129. 铁道部科学研究院机辆所译.既有线铁路运营提速试验手册.解释.国外高速列车译文集,1997
    130. 铁道部科学研究院译.脱轨研究专集.铁路行车安全译文集,1998
    131. 詹斐生.平稳性指标的历史回顾(上).铁道机车车辆,1994,第4期
    132. 詹斐生.平稳性指标的历史回顾(中).铁道机车车辆,1995,第1期
    133. 詹斐生.平稳性指标的历史回顾(下).铁道机车车辆,1995,第2期
    134. ISO 2631(E)-1974, Guide for evaluation of human exposure to whole-body
    135. ISO 2631-2001,Mechanical vibration and shock-Evaluation of human exposure to whole-body, Part4:Guidelines for the evaluation of the effects of vibration and rotational motion on passenger and crew comfort in fixed-guideway transport system
    136. ENV 12299- 1999,Railway applications-Ride comfort for passenger-Measurement and evaluation
    137. 潘文全.流体力学基础.北京:机械工业出版社,1982
    138. 苏铭德,黄素逸.计算流体力学基础.北京:清华大学出版社,1997
    139. 王启杰.对流传热传质分析.西安:西安交通大学出版社,1991
    140. 张兆顺,崔桂香,许春晓.湍流理论与模拟.北京:清华大学出版社,2005
    141. 杨本洛.湍流及理论流体力学的理性重构.上海:上海交通大学出版社,2003
    142. Ferziger J.H. High-level simulation of turbulent flows. Computational methods for turbulent flows, transonic and viscous flows.Wshington DC:hemisphere,1983:93-182
    143. Orszag S.A. Numerical simulation of turbulent flows. In:Frost W, Moulden T.H., eds. Handbook of turbulence. New York:Plenum Press,1997:281-313
    144. Markatos N.C. The mathematical modeling of turbulence flows. Appl math modeling, 1986,10:190-220
    145. Mo in P., Kim J. Numerical investigation of turbulent channel flow. Journal of fluid mech.1982,118:341-377
    146. Chapman D.R. Computational aerodynamics development and outlook. AIAA J.1979, 17:1293-1313
    147. Shumann U. Subgrid scale model for finite difference simulation of turbulent flow in plane channel and annuli. J Comput Phys.1975,18:376-404
    148. 章梓雄,董曾南.粘性流体力学.北京:清华大学出版社,1998
    149. 费祥麟主编.高等流体力学.西安:西安交通大学出版社,1989
    150. 蔡树棠,刘宇陆.湍流理论.上海:上海交通大学出版社,1993
    151. 张兆顺.湍流.北京:国防工业出版社,2002
    152. Favre A. The mechanics of turbulence. Gordon and Breach,1964
    153. P. Bradshaw, T. Cebeci, J.H. Whitelaw, Enginnering Calculation Methods for Turbulent Flow. Academic Press, London,1981
    154. 陶文铨.数值传热学(第2版).西安:西安交通大学出版社,2001:339-350
    155. Kolovandin B.A., Valutin I.A. Statistical transfer theory in non-homogeneous turbulence. Int J Heat Mass Transfer.1972,15:2371-2388
    156. Launder B.E., Spalding B.E. Lectures in mathematical models for turbulence. London: Academic Press,1972:78-115
    157. 吴子牛.计算流体力学基本原理.北京:科学技术出版社,2001:69-76
    158. Launder B.E., Spalding D.B. The numerical computation of turbulent flows. Comput Mechods Appl Mech Eng.1974,3:269-289
    159. Ramadhyani S. Two-equation and second-moment turbulence models for convective
    heat transfer. In:Minkowycz W.J., Sparrow E.M. eds.Advances in numerical heat transfer. Washington DC. Taylor & Francis.1997,1:171-199
    160. YANG Ji-zhong, ZHAI Wan-ming, and BI Hai-quan. Analysis of wind/vehicle interaction in cross-wind considering fluid-solid interaction effect. Proceeding of the First International Symposium on Innovation & Sustainability of Modern Railway 2008, Nanchang, China,2008, China Railway Publishing House,2008:617-622.
    161. 杨吉忠,毕海权,翟婉明.基于ALE方法的列车横风绕流动力学分析.铁道学报.2009,31(2):120-124
    162. Noh W. F. CEL A time-dependent two-space dimensional coupled Eulerian-Lagrangian code. Methods in Computational Physics.1964,3:123-144
    163. A. A. Amsden,C. W. Hirt, and YAQUI. An Arbitrary Lagrangian-Eulerian Computer program for fluid flow at all speeds.Report LA-5100, Los Alamos Scientific Laboratory, Los Alamos, NM,1973
    164. C. W. Hirt, A. A. Amsden, and J. L. Cook. An Arbitrary Lagrangian-Eulerian Computing Method for All Flow Speeds. Journal of Computational Physics.1974, 14:227-253
    165. Pracht W.E. Calculating three-dimensional fluid flows at all flow speeds with an Eulerian-Lagrangian computation mesh. J.Comput. Phys.1975,17:132-159
    166. Amsden A.A., Ruppel H.M.,et al. SALE-3D:A simplified ALE computer program for calculating three-dimensional fluid flow. Loa Alamos Scientific Laboratory, Los Alamos, NM,1981
    167. Donea J., Fasolr Stellap, et al. Lagrangian and Eulerian finite element techniques for transient fluid-structure interaction problems, Trans. SMIRT-4, Paper B1/2, USA, 1977,15-19
    168. Nitikitpaiboon C. and Bathe K.J. An arbitrary Lagrangian-Eulerian velocity potential formulation for fluid-structure interaction. Computers and Structures.1993, 47:871-891
    169. Y.W. Chang, H.Y. Chu, J. Gvildys, C.Y. Wang, Evaluation of Lagrangian, Eulerian, arbitrary Lagrangian-Eulerian methods for fluid-structure interaction problems in HCDA analysis, in:Argone Nat. Lab.5th Int. Conf. on Struct. Mech. in Reactor Technology (SMIRT 5), Berlin, Germany,1979
    170. W. K. Liu, D. C. Ma, Computer implementation aspects for fluid-structure interaction problems, Computer Methods in Applied Mechanics and Engineering,1982, 31:129-148
    171. T.Nomura, T.J.R.Hughes, An arbitrary Lagrangian-Eulerian finite element method for interaction of fluid and a rigid body, Comput. Methods Appl. Mech. Engrg.1992, 95:115-138
    172. J.Sarrate, A.Huerta, J.Donea, Arbitrary Lagrangian-Eulerian Formulation for fluid-rigid body interaction, Comput. Methods Appl. Mech. Engrg.2001,190:3171-3188
    173. 蒋莉,沈孟育.求解流体与结构相互作用问题的ALE有限体积方法.水动力学研究与进展.2000,15(2):148-155
    174. 沈世钊,武岳.膜结构风振响应中的流固耦合效应进展.建筑科学与工程学报.2006,23(1):1-9
    175. Huerta A. and Liu W.K. Viscous flow with large free surface motion. Comput. Meths. Appl. Mech. Engrg.1988,69:277-324
    176. Benson D.J. An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput. Meths. Appl. Mech. Engrg,1989,72:305-350
    177. Haber R. B. and Hariandja B. H. An arbitrary Lagrangian-Eulerian finite element approach to large deformation frictional contact. Computers & Structures.1985, 20:193-201
    178. Schreurs P. J.G. and Veidpaus F.E., et al. Simulation of Froming processes using the arbitrary Eulerian-Lagragian formulation. Comput. Meths. Appl. Mech. Engrg.1986, 58:19-36
    179. 张雄,陆明万,王建军.任意拉格朗口—欧拉描述法研究进展.计算力学学报.1997,14(1):91-102
    180. 李保卫,苍大强,Y.Sahai.任意欧拉—拉格朗口耦合框架下三维非定态可压缩流体流动的数值模拟.1999,18(2):87-90
    181. Winslow A. M. "Equipotential" Zoning of two-dimensional meshes. UCRL-7312, Lawrence Radiation Laboratory.1963
    182. Winslow A. M. and Barton R. T. Rescaling of equipotential smoothing. UCID-19486, Lawrence Livermore National Laboratory, Livermore, CA,1982
    183. Giuliani S. An algorithm for continuous rezoning of the hydrodynamic grid in arbitrary Lagrangian-Eulerian computer codes. Nucl. Engrg. Design.1982,72:205-212
    184. Ponthon J.P. A method to reduce cost of mesh deformation in Eulerian-Lagrangian formulation. Modeling of Metal Forming Processes.1988:65-74
    185. Schreurs P. J.G. and Veidpaus F.E. An arbitrary Eulerian-Lagrangian finite element model for simulation of geometrical non-linear hyperelastic and elasto-plastic deformation processes. J.F.T. Pittman et al. eds. Numerical Methods in Industiral Forming Processess, Pinerridge Press, Swansea, U.K.1982:501-509
    186. 王军利,白俊强,詹浩.非结构动网格在三维可动边界问题中的应用研究.航空计算技术.2005,35(3):12-16
    187. 郭正,李晓斌,瞿章华,等.用非结构动网格方法模拟有相对运动的多体绕流.空气动力学学报.2001,19(3):310-316
    188. 钮珍南,诸乾康,张伯寅,工厚雄.沙漠大风地区铁路路堤风荷载模拟实验研究.空气动力学学报.1994,12(1):76-81
    189. 葛盛昌,尹永顺.新疆铁路风区列车安全运行标准现场试验研究.铁道技术监督.2006,34(4):9-11
    190. 京沪高速铁路技术研究总体组.京沪高速铁路侧向风、强降雨对行车的影响及安全限值的调查研究.北京:铁道科学研究院,2002
    191. Gawthorpe, R.G, Train drag reduction from simple design changes, International Journal of Vehicle Design, Technological Advances in Vehicle Design Series, SP3, Impact of Aerodynamics on Vehicle Design,1983,342-353
    192. Peters, J. L. Aerodynamics of very high speed trains and maglev vehicles:State of the art and future potential. Proc. Int. Ass. Vehicle Design, SP3, Impact of Aerodynamics on Vehicle Design,1983,308-341
    193. 工开云,司道林,陈忠华.高速列车轮轨动态相互作用特征.交通运输工程学报.2008,8(5):15-18
    194. 温竹茵,周质炎,高速列车隧道的空气动力学效应及解决措施.2003上海国际隧道工程研讨会.上海国际隧道工程研讨会论文集
    195. 工小松,葛耀君,吴定俊.非赫兹接触下轮轨接触蠕滑力的计算.铁道学报.2007,29(4):96-100