中国大鲵基础生物学及其进化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国大鲵(Andrias davidianus)俗称娃娃鱼,隶属有尾目、隐鳃鲵科、大鲵属,是我国特有的濒危有尾两栖类动物,也是世界现存两栖类中体型最大的古老动物,曾广泛分布于我国中南部各省。有尾类是扩散能力较差的脊椎动物,它们对水环境的依赖程度较大,克服不同阻碍的能力也较差,因此它们的分布区的大小在一定程度上反映它们的地质年龄和演化历史,在两栖类动物中分布最广的类群可能是一个最古老的类群。中国大鲵在我国分布跨越不同的气候带和不同的水系,是现存有尾目动物中分布最广的一个物种,这说明了中国大鲵漫长的进化历史和位于两栖类中原始类群的地位。中国大鲵还被认为是研究脊椎动物一些新出现的解剖结构进化速率和方式的模式系统,因此它在研究陆生四足类动物系统演化中具有重要的科学价值。本文从形态解剖学、细胞生物学和分子生物学等方面对中国大鲵在有尾两栖类中的进化地位进行了较系统的研究,主要内容如下:
     1.从形态解剖学方面对中国大鲵的骨骼系统、呼吸系统、心血管系统、生殖系统和胚胎发育作进一步的研究,并利用已有研究资料对有尾两栖类动物各个系统的特征进行分析比较,以便能更加准确地了解中国大鲵在有尾两栖类中的系统演化地位。中国大鲵在形态结构上具有很多独特的地方,保留了很多在进化过程中的痕迹。中国大鲵骨骼系统中的原始特征包括犁骨齿列的“ω”状圆弧形,保留相当完整的麦氏软骨,脊椎骨属双凹形,荐椎分化尚不明显,肩带和腰带多软骨,髂骨与荐肋连接位置不固定,且通过软骨相连,这决定了其后肢对身体的支持作用仍很有限。中国大鲵的附肢骨也表现出这种过渡类型的原始性,如其后肢的体位更加类似于鱼类,后肢向后伸展,且在趾间有蹼,适应在水中游动,四肢在水中的使用多于在陆地上。
     中国大鲵无明显咽部,呼吸通道和食物通道在口腔处形成交叉。呼吸道仅为短的喉头气管室,喉头和气管的分化不明显,喉头气管室后面直接与肺囊相连,吸气主要是通过口腔抽吸压入空气到肺部,呼气时腹壁肌肉收缩,压迫气体从肺部排出,但是体腔没有分隔,肋骨不完善,肺也没有出现高度肌组织化。所以,中国大鲵的这种呼气能力还是比较原始的。因为生活于水环境下太多的浮力会成为一个问题,而肺的存在会使浮力增加,中国大鲵的肺有部分简化,它通过身体前后摇摆的运动和皱褶的皮肤表面来增加气体交换。中国大鲵个体发育过程中出现带鳃的幼体阶段和用肺呼吸的成体阶段,心血管结构的演变重现了其进化过程中从水生到陆生的这个过程。成体心房中出现了纵隔,但是它的房间隔有很多孔洞,使左右心房的血液能够混合。中国大鲵只有一个心室,但心室内壁具有多为前后延伸的肌肉小梁,能够在一定程度上减少左右心房来的血液的混合。动脉圆锥中有纵向的脊状螺旋瓣,可以大致区分这两类含氧量不同的血液而将它们分送肺循环和体循环。成体有四对动脉弓,与鱼类相似,并且它还保留有颈动脉导管、波氏导管、后主静脉和腹壁静脉。
     中国大鲵精巢内各级生精细胞从基底到管腔不遵循精原细胞、初级精母细胞、次级精母细胞、精子细胞和精子的排列方式,而是同步发育的生精细胞成团分布,这与硬骨鱼精细管的生精上皮排列方式相似,是一种比较原始的小叶型精巢。中国大鲵的前肾被精巢替代,精巢通过一些输出小管直接与泌尿系统的中肾管相连,因之中肾管输精兼输尿。大多数的有尾两栖类进行体内受精,而中国大鲵与两栖类中的原始种类(小鲵科Hynobiidae和鳗螈科Sirenidae)一样是进行体外受精的。中国大鲵的卵裂方式与其他两栖类不同,而与辐鳍亚纲的鲟科鱼相似。
     2.从细胞生物学的角度对中国大鲵精子超微结构、染色体核型和基因组大小进行了研究。中国大鲵的精子由头部、颈部和尾部三部分构成。与其他有尾两栖类精子结构相比在尾部缺失线粒体,尾部中轴为圆柱形,没有顶体钩。在所有进行体内受精的有尾类动物中,精子的产生与泄殖腔腺相关联,相应的精子颈部较长,而在体外受精的种类精子颈部较短并且没有泄殖腔腺。中国大鲵进行体外受精,精子颈部也较短,但是出现了泄殖腔腺,这说明它处在从体外受精向体内受精过渡的一种中间阶段。
     中国大鲵具有2n=60条染色体,整个染色体组由15对大染色体和15对微小染色体组成。大染色体包括3对大型的中部着丝粒染色体,3对亚中部着丝粒染色体,9对端部着丝粒染色体。微小染色体包括9对中部和亚中部着丝粒染色体,6对端部着丝粒染色体。使用流式细胞仪测定了中国大鲵的基因组大小数据(41.66pg2C)。并且利用已有研究资料从染色体数目、形状和基因组大小方面对中国大鲵在有尾两栖中的进化地位进行了研究。
     3.从分子生物学角度对中国大鲵的同工酶和线粒体基因进行了研究。对中国大鲵六种组织三种同工酶(LDH,EST,SOD)进行了研究,旨在了解中国大鲵遗传物质的特征,为中国大鲵特殊的演化地位提供生化表型的遗传标志,并探讨了中国大鲵LDH同工酶在两栖类种群中的演化。
     利用Genebank上收集到的有尾两栖类和一些代表性脊椎动物的线粒体基因组全序列,主要利用分子生物学实验手段,运用支序系统学与分子进化生物学理论及分析方法展开系统发育的研究。建立起系统发育关系树,在此基础上,阐述现存的种属分类问题,并进一步探讨中国大鲵的起源和在有尾两栖类中的进化地位。
Chinese giant salamander(Andrias davidianus), also known as "baby-fish", which belonged to Caudata, Cryptobrachidae, Andrias Tschudi, is the largest living amphibian in the world, and also our country's rare and endangered endemic species. Due to their low dispersal ability, high dependence on water environment, and poor performance in overcoming various barriers, the range of Caudata's distribution reflects their geological age and evolutionary history to some extent, that is, the species which occurs most widely may be the most ancient. Thus, Chinese giant salamander, the most widely distributed in the living amphibians with tails, used to be located in the central and south China across different climate zones and water areas, showing their primitive taxonomy and long evolutionary history. In addition, Chinese giant salamander is regarded as a model system for the research on the evolutionary rate and pattern of newly-arising vertebrate anatomic structures, and of significant scientific value for the study on phylogeny of terrestrial tetrapoda. This paper provide comprehensive evidence about the evolutionary status of Chinese giant salamander in Caudata from the perspective of morphological anatomy, cytological biology, molecular biology and so on, and the major results are as follows:
     1. To know more exactly about the phylogenetic position in Caudata of Chinese giant salamander, further research was carried out on the embryonic development and morphological anatomy about skeletal system, respiratory system, cardiovascular system, and reproductive system, which was compared with systematic characteristics of Caudata in previous studies. Chinese giant salamander possessed many distinctive morphological structures, as well as some evolutionary trace. For instance, primitive characters of skeletal systems were observed, likeω-shaped vomerine tooth, completely reserved Maxwell cartilage, biconcave vertebra, and almost undifferentiated sacral vertebra. In addition, pectoral girdle and pelvic girdle were mostly consist of gristle, and the joint of iliac bone and sacral rib wasn't fixed which were connected through the cartilage, resulting in the limited support to body of posterior limbs. Furthermore, appendage bone of Chinese giant salamander also exhibited primitiveness of transitional type. Posterior limbs with webbed-toes, of which body position resembled that of fish, stretched backward and adapted to moving about in the water. Four limbs of Chinese giant salamander were used more in water, rather than in land.
     No obvious pharyngeal was found in Chinese giant salamander, and then respiratory passage, namely short laryngo-tracheal chamber and esophagus intersected at oral cavity. Differentiation between larynx and trachea wasn't clear, and the back of laryngo-tracheal chamber interconnected with lung sac directly. Air was pressed into pulmonary during inspiration by buccal pump, while squeezed out during expiration by the contraction of abdominal wall muscle. The existence of pulmonary would gain buoyant force, while too much buoyant force prove to be a problem for the living in aquatic environment. Pulmonary of Chinese giant salamander was partially simplified, however, gas exchange could be strengthened through wrinkled surface of skin and the movement of body back and forth. Body cavity with no division, defective rid, pulmonary without highly specialized muscle tissue, all contributed to the fact that respiratory function of Chinese giant salamander was fairly original.
     Individual development of Chinese giant salamander experienced two stages:larval stage with gill and lung-breathing adult stage. The structural succession of its cardiovascular replayed the evolutionary process from hydrophilous to terricolous. The adult cardiac atrium Mediastinum occurred in was divided by interatrial septum with some holes in it, causing the mix of blood. Only one heart chamber was observed in Chinese giant salamander, however, trabecula existed on the inner wall of heart chamber, most stretching back and forth and capable of reducing the interfusion of blood more or less. Longitudinal carinate spiral valve in the arterial cone could approximately distinguish two kind of blood with different oxygen content, and distributed them into pulmonary circulation and systemic circulation, separately. The adults had four pairs of arterial arcades the same as fish, and also retained carotid duct, Botalli ductus, posterior cardinal vein, and vena epigastrica.
     The anterior portion of the kidney was replaced by testis linked with urinary system by mesonephric duct, which served as both seminal duct and urine duct. Despite that the great majority of amphibians with tails conducted in vivo fertilization, Chinese giant salamanders was in vitro fertilization as well as some ancient species of amphibians (Hynobiidae and Sirenidae). In addition, the way of cleavage of Chinese giant salamanders differed with other amphibians, but presented similarity with that of Acipenseridae in ray-finned fishes.
     2. Combining previous data, genome size, chromosome number and karyotype, and microstructure and ultrastructure of gonads were studied to determine the phylogenetic position of Chinese giant salamanders.
     Genome size (C value) was measured using the flow cytometer. The number and karyotype of chromosomes were examined, and the result indicated that the chromosome number of Chinese giant salamanders was 2n=60. The whole chromosome set was composed of 15 pairs of large chromosomes and 15 pairs of microchromosomes, respectively, Of which, large chromosomes contained 3 pairs of metacentric,3 pairs of submetacentric and 9 pairs of telocentric chromosomes, and microchromosomes included 9 pairs of metacentric and submetacentric chromosomes and 6 pairs of telocentric chromosomes.
     Spermatogenic cells of Chinese giant salamanders at different stages developed synchronously and joined together into a mass, resembling the arrangement of seminiferous epithelium of seminiferous tubule in Osteichthyes, but showing great difference from the normal alignment of spermatogenic cells, that is, spermatogonia, primary spermatocytes, secondary spermatocytes, spermatids and spermatzoa lying from base layer to lumen. Testis of Chinese giant salamanders proved to be a microphyll type, comparatively original.
     The spermatzoon of Chinese giant salamanders consisted of head, neck piece, and tail. Compared to other amphibians, the spermatzoon of Chinese giant salamanders lacked of acrosomal barb, mitochondria in the tail absent, axial fiber cylinder-shaped. In all the Caudata fertilized in vivo, the generation of sperm was related to cloacal gland, correspondingly, the neck of sperm was long. In contrast, there was no cloacal gland in the species fertilized in vitro, and neck of sperm was short. Chinese giant salamanders conducted in vitro fertilization, neck of sperm was short, but had cloacal gland. All the evidence suggested that Chinese giant salamanders had stayed at the intermediate stage from in vivo fertilization to in vitro fertilization.
     3. Isoenzymes and mitochondrion genome of Chinese giant salamander were analyzed using molecular biology methods in this paper. To know more about the genetic characteristics of Chinese giant salamander, study on three isoenzymes (LDH, EST, SOD) in six tissues was conducted, which could serve as genetic markers of biochemical characteristics. At the same time, the development of LDH was also discussed in the population of amphibians.
     Based on analysis and comparison of complete sequences of mitochondrion genome derived from Genebank of Caudata and some typical vertebrates, phylogenetic development of Chinese giant salamander was investigated by means of molecular biology experimental methods, under the guidance of cladistics and molecular evolution biology. In addition, phylogenetic tree was constructed to elaborate the issue of species classification, and inquire further into the origin of Chinese giant salamander and its evolutionary status in amphibians.
引文
1. Gao, K.Q.,N.H. Shubin. Earliest known crown-group salamanders. [J] Nature, 2003,422(6930):424-8.
    2. Wake, D.,A. Larson. Multidimensional analysis of an evolving lineage. [J] Science(Washington),1987,238(4823):42-42.
    3. Wake, D. Homoplasy: the result of natural selection, or evidence of design limitations? [J] American Naturalist,1991:543-567.
    4. Shubin, N., D. Wake, et al. Morphological variation in the limbs of Taricha granulosa (Caudata: Salamandridae):evolutionary and phylogenetic implications. [J] Evolution,1995,49(5):874-884.
    5. 四川省生物研究所两栖爬行动物研究室.中国两栖动物系统检索.[M].北京:科学出版社,1977:93.
    6. 章克家,王小明等.大鲵保护生物学及其研究进展.[J]生物多样性,2002(03):291-297.
    7. 叶昌嫒,费梁等.中国珍稀及经济两栖动物.[M].成都:四川科学技术出版社,1993.
    8. 杨大同.云南两栖类志.[M].北京:中国林业出版社,1991.
    9. 阳爱生,刘国钧.大鲵人工繁殖研究简报.[J]湖南水产科技,1978(04):29.
    10. 陈广城.黔东武陵山区大鲵的资源现状.[J]淡水渔业,1988(01):33-38.
    11. 刘国钧.我国的稀有珍贵动物——大鲵.[J]动物学杂志,1989(03):43-45.
    12. 胡小龙.安徽大别山区大鲵的生态研究.[J]安徽大学学报(自然科学报),1987(01):69-73.
    13. 阳爱生,卞伟等.大鲵性腺发育的组织学观察.[J]动物学报,1981(03):240-247.
    14. 刘东来,吴中伦等.中国的自然保护区.[M].上海:上海科学技术出版社,1996.
    15. 黄成才,杨帆.湖南省大鲵救护中心总体设计.[J]中南林业调查规划,2000(01):37-40.
    16. H gmander, J.,X. Gui. Biodiversity Action Plan for Hunan Province, People\s Republic of China. [J] Forestry Department of Hunan & Mets hallitus, Forest and Park Service,2000.
    17. 邱幼祥,杨安峰.中国大鲵的骨学研究.[J]北方大学学报(自然科学版),1986(06):69-87.
    18. 肖汉兵,刘鉴毅,林锡芝,杨焱清.大鲵消化系统的解剖学观察.[J]动物学杂志,1995(06).
    19. 李丕鹏.大鲵和山溪鲵甲状腺和肾上腺的观察.[J]动物学杂志,1990(06):34-36.
    20. 周海燕,杨楚彬等.大鲵雄性生殖系统的组织学和超微结构研究.[J]科学技术与工程,2004(03):187-192.
    21. 杨楚彬,罗凯坤等.大鲵输卵管的基本组织结构及其发育变化.[J]湖南师范大学自然科学学报,2003(01):64-68.
    22. 高武.中国大鲵呼吸系统的解剖.[J]北京师范学院自然科学学报,1987(01):55-60.
    23. 霍军,程会昌.大鲵部分器官组织学观察.[J]郑州牧业工程高等专科学校学报,2003(03):163-164.
    24. 肖汉兵,刘鉴毅,林锡芝,杨焱清.养殖条件下大鲵性腺周年变化的研究.[J]淡水渔业,1995(03).
    25. 李骏珉.大鲵繁殖盛期的初步探索.[J]水生生物学报,2003(02):211-213.
    26. 张育辉,刘全宏等.中国大鲵卵母细胞发育的显微和超微结构.[J]动物学报,1999(01):15-22.
    27. 赖勤.大鲵卵巢发育和输卵管组织学结构的研究.[J]湖南教育学院学报,2001(03):159-164.
    28. 邓凤姣,肖汉兵等.大鲵精子入卵过程的扫描电镜观察.[J]武次才学学报(自然群学版),1998(06):742-744.
    29. Murphy, R., J. Fu, et al. Genetic variability among endangered Chinese giant salamanders, Andrias davidianus. [J] Molecular Ecology,2000, 9(10):1539-1547.
    30. 赵尔宓,胡其雄.中国有尾两栖动物的研究.[M].成都:四川科学技术出版社,1984.
    31. Morescalchi, A., G. Odierna, et al. Karyological relationships between the Cryptobranchid salamanders. [J] Cellular and Molecular Life Sciences,1977, 33(12):1579-1581.
    32. ZHU, B., Z. FENG, et al. The karyotype of the caudate amphibian Andrias davidianus. [J] Hereditas,2002,136(1):85-88.
    33. 刘江东,黄晓等.刺鳅性染色体的细胞遗传学确定证据.[J]武汉大学学报(自然科学版),1999(02).
    34. 李树深.两栖动物的染色体及其进化.[J]动物学杂志,1991,26(2):47-52.
    35. 王德寿,吴天利等.鱼类性别决定及其机制的研究进展.[J]西南师范大学学报(自然科学版),2000(03):296-304.
    36. Charnov, E.,J. Bull. When is sex environmentally determined? [J] 1977.
    37. Zhang, P., Y. Chen, et al. The complete mitochondrial genome of the Chinese giant salamander, Andrias davidianus(Amphibia:Caudata). [J] Gene,2003, 311:93-98.
    38. Wake, D.,N. zeti. Evolutionary relationships in the family Salamandridae. [J] Copeia,1969,1969(1):124-137.
    39. 马克勤.極北小鲵骨骼的研究.[J]东北师大学报(自然科学版),1964(01):79-88.
    40. 张服基.巴鲵骨骼的解剖.[J]两栖爬行动物学报,1985(1):17-24.
    41. 邱幼祥.东方蝾螈的骨骼解剖学.[J]两栖爬行动物学报,1986,5(4):295-298.
    42. 吴翠蘅.中国大鲵的外形及骨骼解剖.[J]动物学杂志,1982(01):11-16.
    43. 马连第,马德坤.东北小鲵的体形与骨骼观察.[J]动物学杂志,1987(06):14-17.
    44. 沈端文.有斑肥螈的骨骼系统.[J]蛇蛙研究丛书,1990(1):53-59.
    45. 范三川.无斑肥源的骨骼系统.[J]黔南民族师专学报,1999,19(3):35-41.
    46. 李松.尾斑瘰螈的骨骼系统.[J]六盘水师专学报,2000,12(1):5-10.
    47. 王丽文,赵艳艳等.爪鲵骨骼系统的研究.[J]四川动物,2004(03):172-177.
    48. 陈彬,王跃招.介绍一种透明骨骼标本染色法.[J]生物学通报,2002(04):57.
    49. 佐藤井岐雄.日本产有尾类总说.1943.
    50. Meszoely, C. North American fossil cryptobranchid salamanders. [J] American Midland Naturalist,1966:495-515.
    51. 余平静,赵尔宓.贵州疣螈骨骼系统的研究.[J]四川动物,2007,26(1):133-136.
    52. Benton, M. Vertebrate palaeontology. Wiley-Blackwell,2005.
    53. Strickberger, M. Evolution.3"'ed.2000, Sudbury, Mass.:Jones and Bartlett.
    54. Romer, A.,T. Parsons. The vertebrate body. [J] 1970.
    55. 程红,黄世强.中国大鲵侧线器官的研究.[J]动物学报,1995(03):235-242.
    56. Brainerd, E.,A. Dumka. Mechanics of lung ventilation in an aquatic salamander, Amphiuma tridactylum. [J] Am. Zool,1995,35:20A.
    57. Brainerd, E., J. Ditelberg, et al. Lung ventilation in salamanders and the evolution of vertebrate air-breathing mechanisms. [J] Biological Journal of the Linnean Society,1993,49(2):163-183.
    58. Brett, S.,G. Shelton. Ventilatory mechanisms of the amphibian, Xenopus laevis; the role of the buccal force pump. [J] Journal of Experimental Biology,1979, 80(1):251.
    59. Brainerd, E. New perspectives on the evolution of lung ventilation mechanisms in vertebrates. [J] Experimental Biology Online,1999,4(2):1-28.
    60. Deyst, K.,K. Liem. The muscular basis of aerial ventilation of the primitive lung of Amia calva. [J] Respiration physiology,1985,59(2):213-223.
    61. Reese, A. Anatomy of Cryptobranchus allegheniensis. [J] American Naturalist,1906,40(472):287-326.
    62. 管汀鹭,黄丹青等.金鱼精巢的细胞结构与精子的发生和形成.[J]水生生物学报,1990,14(3):233-237.
    63. Larson, A. A molecular perspective on the evolutionary relationships of the salamander families. [J] Evolutionary biology,1991,25:211-277.
    64. Salthe, S. Courtship patterns and the phylogeny of the urodeles. [J] Copeia, 1967,1967(1):100-117.
    65. 杨道德,沈猷慧.东方蝾螈繁殖生态的研究.[J]动物学研究,1993(03):215-220.
    66. 曲韵芳.东方蝾塬Cynops orentalis(David)排精和纳精的初步观察.[J]动物学杂志,1964(2):77-78.
    67. 田应洲,孙爱群等.贵州疣螈繁殖习性的观察.[J]动物学杂志,1997(01).
    68. 方俊九,陈生等.极北鲵的产卵过程的观察.[J]两栖爬行动物学报,1984,3(3):67-69.
    69. Wolterstoff, W.,W. Herre. Die Gattungen der Wassermolche der Familie Salamandridae. [J] Archive Naturgesch, Leipzig,1935,4:217-229.
    70. Boulenger, G. A monograph of the South Asian, Papuan, Melanesian and Australian frogs of the genus Rana. [J] Records of the Indian Museum,1920, 20:1-226.
    71. H¨1BENER, H. Ranodon sibiricus, ein sibi-rischer Bach-salamander. [J] Aquarienund Terrarien Zeitschr,1960,13:23-25.
    72. David, H.,G. Freytag. Submikroskopische Befunde an der Urodelenleber. [J] Acta Biol. Med. Germ.,1963,10:663-672.
    73. Thiesmeier, B.,C. Hornbero. Paarung,Gortflanzung und Larvalentwicklung von Pachytriton sp.(Pachytriton A)nebst Bemerkungen zur Taxonomic der Gattung. [J] Salamandra,1997,33(2):97-110.
    74. Salthe, S.,J. Mecham. Reproductive and courtship patterns. [J] Physiology of the Amphibia,1974,2:309-521.
    75. Arnold, S. The evolution of courtship behavior in salamanders. [M]. Michigan: University of Michigan.,1972.
    76. Arnold, S. The evolution of courtship behavior in New World salamanders with some comments on Old World salamandrids. [J] The reproductive biology of amphibians,1977:141-183.
    77. 谢锋,费梁等.有尾类繁殖行为生态学研究现状和未来.1999.
    78. 刘洪柏,宋苏祥,et al.施氏鲟的胚胎及胚后发育研究.[J]中国水产科学2000(03):5-10.
    79. Boulet, A.,M. Capecchi. Multiple roles of Hoxall and Hoxdll in the formation of the mammalian forelimb zeugopod. [J] Development,2004, 131(2):299.
    80. Suzuki, M.,A. Kuroiwa. Transition of Hox expression during limb cartilage development. [J] Mechanisms of development,2002,118(1-2):241-245.
    81. Hinchliffe, J.,D. Johnson. The development of the vertebrate limb. Oxford university press New York,1986.
    82. Holmgren, N. On the tetrapod limb-again. [J] Acta Zool,1942,30:485-508.
    83. Shubin, N.,P. Alberch. A morphogenetic approach to the origin and basic organization of the tetrapod limb. [J] Evolutionary biology,1986,20:319-387.
    84. 杨万喜.日本沼虾精子在真虾部Caridea生殖进化中地位的研究.[J]东海海洋,1998(04).
    85. Yang, W. CHANGES OF GOLGI APPARATUS DURING SPERMATOGENESIS OF MACROBRACHIUM NIPPONENSE. [J] ACTA ZOOLOGICA SINICA,1998,4.
    86. 赵尔宓.中国濒危动物红皮书:两栖类和爬行类.[M].北京:科学出版社,1998.
    87. Wang, X.M., K.J. Zhang, et al. The decline of Chinese giant salamander Andrias davidanus and implication for its conservation. [J] Oryx,2004, 38(2):197-202.
    88. Townsend, D., M. Stewart, et al. Internal fertilization in an oviparous frog. [J] Science (New York, NY),1981,212(4493):469.
    89. Wake, M. The reproductive biology of Nectophrynoides malcolmi (Amphibia: Bufonidae), with comments on the evolution of reproductive modes in the genus Nectophrynoides. [J] Copeia,1980,1980(2):193-209.
    90. Grandison, A.,S. Ashe. The distribution, behavioural ecology and breeding strategy of the pygmy toad, Mertensophryne micranotis(Lov.). [J] Bulletin of the British Museum(Natural History). Zoology. London,1983,45(2):85-93.
    91. Mattei, X. Spermatozoon ultrastructure and its systematic implications in fishes. [J] Canadian Journal of Zoology,1991,69(12):3038-3055.
    92. Hecht, M.,J. Edwards. The methodology of phylogenetic inference above the species level. [J] Major patterns in vertebrate evolution,1977,14.
    93. Regal, P. Feeding specializations and the classification of terrestrial salamanders. [J] Evolution,1966,20(3):392-407.
    94. Jamieson, B., M. Lee, et al. Ultrastructure of the spermatozoon of the internally fertilizing frog Ascaphus truei (Ascaphidae:Anura: Amphibia) with phylogenetic considerations. [J] Herpetologica,1993,49(1):52-65.
    95. Selmi, M., R. Brizzi, et al. Sperm morphology of salamandrids(Amphibia, Urodela):implications for phylogeny and fertilization biology. [J] Tissue and Cell,1997,29(6):651-664.
    96. Nicander, L. Comparative studies on the fine structure of vertebrate spermatozoa. [J] Comparative spermatology,1970:47-56.
    97. Picheral, B. Structural, comparative, and functional aspects of spermatozoa in urodeles.1979:Urban & Schwarzenberg.
    98. Baker, C. Spermatozoa and spermateleosis in the Salamandridae with electron microscopy of Diemictylus. [J] J. Tenn. Acad. Sci,1966,41(1):1-25.
    99. 郑中华,谢锋等.镇海棘螈的精子结构.[J]动物学报2004(04):622-629.
    100. Kuramoto, M. Scanning electron microscopic studies on the spermatozoa of some Japanese salamanders (Hynobiidae, Cryptobranchidae, Salamandridae). [J] Japanese Journal of Herpetology,1995,16(2):49-58.
    101. Sperone, E., A. Bonacci, et al. Male reproductive system in the Italian newt Lissotriton italicus (Peracca 1898)(Amphibia, Urodela):ultrastructural and morphological study with description of spermiogenesis, spermatozoon and spermatophore. [J] Zoomorphology,2009,128(2):183-195.
    102. Wortham Jr, J., J. Murphy, et al. Scanning electron microscopy of some salamander spermatozoa. [J] Copeia,1982,1982(1):52-60.
    103. Sever, D.,N. Kloepfer. Spermathecal cytology of Ambystoma opacum (Amphibia: Ambystomatidae) and the phylogeny of sperm storage organs in female salamanders. [J] Journal of Morphology,1993,217:115-115.
    104. Baker, C. Spermatozoa of Amphiumae:spermateleosis, helical motility and reversibility. [J] J Tennessee Acad Sci,1962,37:23-39.
    105. Baker, C. Spermatozoa and spermateleosis in Cryptobranchus and Necturus. [J] J Tennessee Acad Sci,1963,38:1-11.
    106. 郑中华,江建平等.龙洞山溪鲵精子的超微结构.[J]动物学报,2005(04):703-709.
    107. WERNER, G. CHANGES IN THE SPERMATOZOON DURING FERTILIZATION IN TR1TURUS HELVETIC US RAZ.1975:Pergamon.
    108. Sever, D., L. Rania, et al. Annual cycle of sperm storage in spermathecae of the red-spotted newt, Notophthalmus viridescens (Amphibia: Salamandridae). [J] Journal of Morphology,1996,227(2):155-170.
    109. Werner, G. On the development and structure of the neck in urodele sperm. [J] Comparative Spermatology, Baccetti B. ed., Academic Press, New-York, London,1970:85-91.
    110. Jamieson, B. Evolution of tetrapod spermatozoa with particular reference to amniotes. [J] Advances in Spermatozoal Phylogeny and Taxonomy, 1995:343-358.
    111. Barker, K.,C. Baker. Urodele spermateleosis: A comparative electron microscope study. [M]. New York: Academic Press,1970:81-87.
    112. Lommen, M. Development of the ring during spermiogenesis of a salamander. [J] J Microscop (Paris),1970,9:785.
    113. Russell, L., R. Brandon, et al. Spermatophores of the salamander Ambystoma texanum. [J] Tissue and Cell,1981,13(3):609-621.
    114. Kobayashi, W. Electron microscopic observation of the breakdown of cortical vesicles in the chum salmon egg. [J] Journal of the Faculty of Science, Hokkaido University: Zoology,1985:87.
    115. 刘筠,张轩杰.鱼类精子结构和相应的卵子类型.[J]湖南师范大学自然科学学报,1992(02):168-174.
    116. 姚世鸿.论染色体进化与生物进化的关系.[J]生物学通报,1991(01):7-9.
    117. 李鸿昌.有趣的染色体数字.[J]生物学通报,增刊I,1983(1):72.
    118. Green, D.,S. Sessions. Karyology and cytogenetics. [J] Amphibian Biology, 2007,7.
    119. Spolsky, C., C. Phillips, et al. Gynogenetic reproduction in hybrid mole salamanders(genus Ambystoma). [J] Evolution,1992:1935-1944.
    120. Bogart, J. Genetics and systematics of hybrid species. [J] Reproductive biology and phylogeny of Urodela,2003,1:109-134.
    121. Bi, K.,J. Bogart. Identification of intergenomic recombinations in unisexual salamanders of the genus by genomic in situ hybridization (GISH). [J] Cytogenetic and Genome Research,2006,112(3-4):307-312.
    122. Morescalchi, A. Amphibia. [J] Cytotaxonomy and vertebrate evolution, 1973:233-348.
    123. Morescalchi, A. Chromosome evolution in the caudate Amphibia. [J] Evol. Biol,1975,8:339-387.
    124. Green, D. Supernumerary chromosomes in amphibians.1991, Academic Press. 333-358.
    125. Sessions, S.,J. Wiktorowski. Population cytogenetics of the Plethodontid salamander Eurycea wilderae. [J] The biology of plethodontid salamanders, 2000:327.
    126. Wiens, J., R. Bonett, et al. Ontogeny discombobulates phylogeny: paedomorphosis and higher-level salamander relationships. [J] Systematic Biology,2005,54(1):91-110.
    127. 杨玉华.中国有尾两栖类九个种的核型研究,从水到陆——刘承钊教授诞辰九十周年纪念文集,赵尔宓,1990,中国林业出版社:北京.150-158.
    128.杨玉华,赵尔宓.雄性山溪鲵和北方山溪鲵减数分裂染色体及染色体组.四川科学技术出版社,1984.
    129. 徐宁,魏刚等.贵州产绿臭蛙核型、C-带和银带研究.[J]贵州科学1993(01):19-22.
    130. 马连第,高薏等.千山产东北小鲵的染色体组型.[J]动物学杂志,1992(06):35-37.
    131. Zhao, W.G., X.L. Liu, et al. Preliminary study on the karyotype of Onychodactylus fischeri. [J] Natural Sciences Journal of Harbin Normal University,1991,7(2):78-82.
    132. Yang, Y.H., Q.X. Hu, et al. Studies on the karyotype of Xenobius melanongchus and its phylogentic significance. [J] Acta Herpetologica Sinica, 1986,5(2):94-97.
    133. 王秀玲,吴敏.新疆北鲵染色体组型的初步观察.[J]动物学杂志,1996(06).
    134. Wang, X., J. Fang, et al. Preliminary observations on karyotype of Salamandrella keyserlingii. [J] Acta Herpetol Sinica,1983,2:19-22.
    135. Zhu, J.M.,L.H. Wei. The karyotypes,C-banding and indirect immunoperoxidase staining in Cynops orientalis and Pachytriton brevipes. [J] Acta Biologiae Experimentalis Sinica,1981,14(3):281-291.
    136. Gu, X. A COMPARATIVE STUDY ON KARYOTYPES, C-BANDS OF FOUR SPECIES OF SALAMANDRIDAE FROM GUIZHOU. [J] ACTA ZOOLOGICA SINICA,2000:01.
    137. Gu, X.,X.D. Gao. A Study of the karyotype and c2bands of Paramesotriton caudopunelatus. [J] Hereditas (Beijing),1997,19(1):13-15.
    138. Zhang, J.M., A.H. Wang, et al. Investigation on the karyotypes of Salamaders Triturodes chinesis and Pachytrition brevipes. [J] Wen zhou Yi xue yuan Xue bao,1985,15(1):26-31.
    139. Licht, L.,L. Lowcock. Genome size and metabolic rate in salamanders. [J] Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology,1991,100(1):83-92.
    140. Bachmann, K. Feulgen slope determinations of urodele nuclear DNA amounts. [J] Histochemistry and Cell Biology,1970,22(4):289-293.
    141. Edstrom, J.,J. Kawiak. Microchemical deoxyribonucleic acid determination in individual cells. [J] Journal of Cell Biology,1961,9(3):619.
    142. Olmo, E. Quantitative variations in the nuclear DNA and phylogenesis of the Amphibia. [J] Caryologia,1973,26(1):43-68.
    143. Mirsky, A.,H. Ris. The desoxyribonucleic acid content of animal cells and its evolutionary significance. [J] The Journal of General Physiology,1951, 34(4):451.
    144. Olmo, E. Further data on the genome size in the urodeles. [J] Italian Journal of Zoology,1974,41(1):29-33.
    145. TIERSCH, T.,R. CHANDLER. Chicken erythrocytes as an internal reference for analysis of DNA content by flow cytometry in grass carp. [J] Transactions of the American Fisheries Society,1989,118(6):713-717.
    146. Capriglione, T., E. Olmo, et al. Cytofluorometric DNA base determination in vertebrate species with different genome sizes. [J] Basic and applied histochemistry,1987,31 (2):119.
    147. Morescalchi, A., G. Gargiulo, et al. Notes on the chromosomes of some Amphibia. [J] Journal of Herpetology,1970,4(1):77-79.
    148. Vinogradov, A. Genome size and GC-percent in vertebrates as determined by flow cytometry:the triangular relationship. [J] Cytometry Part A,1998, 31(2):100-109.
    149. Sessions, S.,A. Larson. Developmental correlates of genome size in plethodontid salamanders and their implications for genome evolution. [J] Evolution,1987,41(6):1239-1251.
    150. Sessions, S.,J. Kezer. Evolutionary cytogenetics of bolitoglossine salamanders (family Plethodontidae). [J] Amphibian Cytogenetics and Evolution, 1991:89-130.
    151. Mueller, R., T. Ryan Gregory, et al. Genome size, cell size, and the evolution of enucleated erythrocytes in attenuate salamanders. [J] Zoology,2008, 111(3):218-230.
    152. Hally, M., E. Rasch, et al. Cytophotometric evidence of variation in genome size of desmognathine salamanders. [J] Histochemistry and Cell Biology,1986, 85(3):185-192.
    153. Hartman, T.,D. Southern. Genome reorganization from polyteny to polyploidy in the nurse cells found in onion fly (Delia antiqua) and cabbage root fly (Delia radicum) ovaries (Diptera, Anthomyiidae). [J] Chromosome Research, 1995,3(5):271-280.
    154. Sessions, S., M. St ck, et al. Cytogenetic analysis of the Asian Plethodontid salamander, Karsenia koreana: Evidence for karyotypic conservation, chromosome repatterning, and genome size evolution. [J] Chromosome Research,2008,16(4):563-574.
    155. Sexsmith, L. DNA values and karyotypes of amphibia.1968, University of Toronto.
    156. Horner, H.,H. Macgregor. C value and cell volume:their significance in the evolution and development of amphibians. [J] Journal of Cell Science,1983, 63(1):135.
    157. Mizuno, S.,H. Macgregor. Chromosomes, DNA sequences, and evolution in salamanders of the genus Plethodon. [J] Chromosoma,1974,48(3):239-296.
    158. Lizana, M., R. Martin-Sanchez, et al. Determination of cellular DNA content of Iberian salamanders by flow cytometry. [J] Amphibia-Reptilia,2000, 21(4):411-418.
    159. Litvinchuk, S., J. Rosanov, et al. Correlations of geographic distribution and temperature of embryonic development with the nuclear DNA content in the Salamandridae (Urodela, Amphibia). [J] Genome,2007,50(4):333-342.
    160. Edstrom, J.,J. Gall. The base composition of ribonucleic acid in lampbrush chromosomes, nucleoli, nuclear sap, and cytoplasm of Triturus oocytes. [J] Journal of Cell Biology,1963,19(2):279.
    161. Becak, W., M. Becak, et al. Interspecific variability of DNA content in Amphibia. [J] Cellular and Molecular Life Sciences,1970,26(2):204-206.
    162. Ullerich, F. DNA-content and chromosome structure in Amphibia. [J] Chromosoma,1970,30(1):1.
    163. Litvinchuk, S., L. Borkin, et al. Geographic differentiation in newts (Triturus) of eastern Europe:genome size, allozymes, and morphology. [J] Herpetologia Petropolitana. Edited by N. Ananjeva, and O. Tsinenko, SEH, St. Petersburg, 2005:57-60.
    164. Litvinchuk, S., J. Rosanov, et al. Natural autotriploidy in the Danube newt, Triturus dobrogicus (Salamandridae). [J] Russ. J. Herpetol,2001,8(1):74-76.
    165. 周光宇.有关同工酶分析的几个问题.[J]植物生理学通讯,1983(01):1-4.
    166. Prakash, S., R. Lewontin, et al. A molecular approach to the study of genic heterozygosity in natural populations IV. Patterns of genic variation in central, marginal and isolated populations of Drosophila pseudoobscura. [J] Genetics, 1969,61(4):841.
    167. 葛颂.酶电泳资料和系统与进化植物学研究综述.[J]武汉植物学研究,1994(01).
    168. 熊全沫.同工酶电泳数据的分析及其在种群遗传学上的应用.[J]遗传,1986,8(1):1-5.
    169. 胡能书,万贤国.同工酶技术及其应用.[M].长沙:湖南科学出版社,1985.
    170. 朱蓝菲.鱼类同工酶和蛋白质的聚丙烯酰胺梯度凝胶电泳法.[J]水生生物学报,1992(02):183-185.
    171. 吴力钊,王祖熊.草鱼同工酶基因座位多态性的初步研究.[J]水生生物学报,1988(02):116-124.
    172. WHITT, G. A unique lactate dehydrogenase isozyme in the teleost retina. [J] Vision in fishes: new approaches in research: [lectures],1975,1000:459.
    173. 李大筠.山蝠和黑斑蛙乳酸脱氢酶同工酶及血糖浓度的季节变化.[J]生理学报1994,46(3):276-272.
    174. Allibone, R., T. Crowl, et al. Isozyme analysis of Galaxias species(Teleostei: Galaxiidae) from the Taieri River, South Island, New Zealand:a species complex revealed. [J] Biological Journal of the Linnean Society,1996, 57(2):107-127.
    175. 潘伟槐,祝尧荣等.日本沼虾(Macrobrachium nipponense)成体组织三种同工酶的研究.[J].绍兴文理学院学报(自然科学版),2001(10):43-46.
    176. 田应洲,谷晓明.贵州两种拟小鲵乳酸脱氢酶同工酶(LDH)的电泳分析.[J]贵州科学2001(03):50-52.
    177. Matsui, M., N. Yoshikawa, et al. Phylogenetic relationships of two Salamandrella species as revealed by mitochondrial DNA and allozyme variation(Amphibia: Caudata: Hynobiidae). [J] Molecular phylogenetics and evolution,2008,48(1):84-93.
    178. Tominaga, A., M. Matsui, et al. Genetic differentiations of Hynobius naevius (Amphibia, Hynobiidae) as revealed by allozyme analysis. [J] Biochemical Systematics and Ecology,2005,33(9):921-937.
    179. 谷晓明,田应洲.贵州5种蝾螈几种组织中乳酸脱氢酶同工酶(LDH)的电泳分析.[J]贵州师范大学学报(自然科学版),2000(03):35-37.
    180. 徐晋麟,马学海.黑爪异鲵LDH同工酶谱系的研究.[J]动物学报,1996(02):182-188.
    181. 余平.两种蝾螈LDH,MDH同工酶的比较研究.[J]两栖爬行动物学研究, 1993((1,2辑)):150-153.
    182. 张辉,吴清江.中国林蛙乳酸脱氢酶多基因系统及基因间连锁关系的研究.[J]遗传学报,1996(01).
    183. Zardoya, R.,A. Meyer. The complete nucleotide sequence of the mitochondrial genome of the lungfish (Protopterus dolloi) supports its phylogenetic position as a close relative of land vertebrates. [J] Genetics,1996,142(4):1249.
    184. Zardoya, R.,A. Meyer. The Complete DNA Sequence of the Mitochondrial Genome of a"Living Fossil,"the Coelacanth (Latimeria chalumnae). [J] Genetics,1997,146(3):995.
    185. Samuels, A., D. Weisrock, et al. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes. [J] Gene, 2005,349:43-53.
    186. Arnason, U., A. Gullberg, et al. Mitogenomic analyses of deep gnathostome divergences:a fish is a fish. [J] Gene,2004,333:61-70.
    187. Zhang, P.,D. Wake. Higher-level salamander relationships and divergence dates inferred from complete mitochondrial genomes. [J] Molecular phylogenetics and evolution,2009.
    188. Zhang, P., Y. Chen, et al. Phylogeny, evolution, and biogeography of Asiatic Salamanders (Hynobiidae). [J] Proceedings of the National Academy of Sciences,2006,103(19):7360.
    189. Zhang, P., Y. Chen, et al. The complete mitochondrial genome of a relic salamander, Ranodon sibiricus (Amphibia: Caudata) and implications for amphibian phylogeny. [J] Molecular phylogenetics and evolution,2003, 28(3):620-626.
    190. Mueller, R., J. Macey, et al. Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. [J] Proceedings of the National Academy of Sciences,2004,101(38):13820.
    191. Zhang, P., T. Papenfuss, et al. Phylogeny and biogeography of the family Salamandridae (Amphibia: Caudata) inferred from complete mitochondrial genomes. [J] Molecular phylogenetics and evolution,2008,49(2):586-597.
    192. Chang, M. The braincase of Youngolepis, a Lower Devonian crossopterygian from Yunnan, south-western China. [J] 1982.
    193. Friedman, M., M. Coates, et al. First discovery of a primitive coelacanth fin fills a major gap in the evolution of lobed fins and limbs. [J] Evolution & Development,2007,9(4):329-337.
    194. Davis, M., R. Dahn, et al. An autopodial-like pattern of Hox expression in the fins of a basal actinopterygian fish. [J] Nature,2007,447(7143):473-476.