雌核发育二倍体鲫鲤克隆体系的建立及其衍生后代生物学特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过红鲫(Carassius auratus red var.,♀)与鲤鱼(Cyprinus carpioL.,♂)远缘杂培育出两性可育的异源四倍体鲫鲤群体(AT)。AT能稳定产生二倍体精子和卵子,对其产生的二倍体卵子进行雌核发育研究,建立了一个能稳定产生二倍体卵子的雌核发育二倍体鲫鲤克隆体系(G1~G5)。利用雌核发育二倍体鲫鲤克隆体系产生的二倍体卵子与四倍体鲫鲤产生的二倍体精子杂交获得了改良四倍体鲫鲤G×AT。重要的是,在改良四倍体鲫鲤群体(G1×AT)中选育出2%的高背型个体。高背型G1×AT自交,后代分化形成3种二倍体鱼:高背型红鲫、高背型双尾金鱼和高背型青灰色鲤鱼。本文主要研究内容包括:①雌核发育二倍体鲫鲤克隆体系的建立及其遗传机制研究;②对人工双尾金鱼的细胞和分子生物学特性进行深入分析,来探讨金鱼的起源与进化问题;③高背型鲫鱼和高背型青灰色鲤鱼的生物学特征及其应用。
     具体研究内容如下:
     1.在已获得雌核发育二倍体鲫鲤第三代G3的基础上,制备出G4和G5。建立了一个能稳定产生二倍体卵子的雌核发育二倍体鲫鲤克隆体系(G1~G5)。为进一步研究二倍体鱼产生二倍体卵子的机制,我们对G5早期性腺进行体外组织培育。在早期性腺生长增殖中,发现大量生殖细胞发生融合的现象。而在对照组早期草鱼和鲤鱼性腺的体外培育中,至今未发现生殖细胞融合的现象。这对揭示二倍体杂交鱼产生二倍体配子的机制具有重要的价值。
     2.对高背型人工双尾金鱼(AG)的外形及细胞生物学特征进行研究。结果表明,AG与普通金鱼(NG)的可量性状和可数性状基本一致;AG与原始母本RCC的一些外形特征更为相似,而与原始父本CC的外形特征差异较大。从外形特征上可以初步判断金鱼与鲫鱼的亲缘关系比较近。流式细胞仪测定结果表明AG是一种二倍体鱼。染色体检测表明AG染色体数为2n=100,染色体核型公式为22m+34sm+22st+22t。通过对AG性腺的显微结构和超微结构观察,发现它们具有正常的精巢和卵巢结构,两性个体一年性成熟,分别能产生成熟的单倍体精子和卵子。
     3.在AG分子遗传特性研究中,首先对NG、AG、RCC和CC的Sox基因进行检测。AG与RCC的Sox基因扩增条带一致,同为-200、-600和~1900bp的扩增带,而在NG中只存在-200和~600bp的条带,CC中只存在~200和~900bp的扩增带。另外,对这四种鱼的5S rDNA进行PCR扩增,结果表明NG与AG具有相同的扩增带,它们以具有独特的168bp条带而异于RCC和CC。同时在对5S rDNA进行染色体定位研究中,发现NG、AG和RCC的原位杂交结果一致,它们都具有两个较强的杂交信号,而在CC染色体中没有检测到相关信号。
     对AG线粒体DNA全长进行测序。AG粒体基因组全序列长为16579bp,其结构和基因排列与其他鲤科鱼一致。对线粒体全序列进行比对,AG与原始亲本RCC和CC的相似比分别为99.5%和89.4%,符合线粒体母性遗传规律;AG与NG的相似比高达99.4%,表明两者可能具有相同的起源。
     从鲤鱼和鳙鱼的微卫星引物中筛选出7对引物对NG、AG、RCC和CC群体进行微卫星检测。结果表明,在AG群体中各等位基因数为1-8个,大小在140-300bp,群体呈现了高度的遗传多态性,遗传异质性较大,表明基因组来源复杂,基因高度杂合。
     4.对高背型鲫鱼相关生物学特征进行研究,结果表明它们是-种二倍体鱼,两性可育,一年性成熟;它们在外形上具有体背高、尾柄短、头部小的优良特性。用雌性高背型鲫鱼与雄性改良四倍体鲫鲤交配,获得了改良三倍体鲫鱼。这种改良三倍体鲫鱼不仅在外形上继承了母本高背特征,而且具有生长速度快、不育、营养成分含量高等特征。
     5.对高背型青灰色鲤鱼(ICC)及其自交后代的外形、倍性、性腺发育以及Sox基因进行研究。结果表明ICC与普通鲤鱼(CC)相比,ICC在外形上具有显著的高背特征。ICC是一种二倍体鱼,两性可育,年性成熟。值得注意的是Sox基因检测结果表明ICC是一种杂交个体,具有与AT一致的扩增带(-200、-600、-900和~1900bp),而CC为~200和~900bp的扩增带。
     上述研究结果说明经雌核发育效应改良的远缘杂交后代能分化形成了不同类型的新品种鱼,它们在外形和遗传特性方面都发生了重大变化。对三种不同种类高背型鱼的形成及生物学特征进行研究,在生物进化和遗传育种中具有重要意义。而人工双尾金鱼的形成为研究金鱼的起源与进化提供了直接的证据。
A bisexual fertile allotetraploid (AT) population was obtained by crossing red crucian carp (Carassius auratus red var.,♀,2n=100) with common carp(Cyprinus carpio L., (?),2n=100). Gynogenesis was researched on the diploid eggs produced by AT, and a gynogenetic diploid hybrid clone line was established. The diploid eggs produced by gynogenetic diploid hybrid clone line were fertilized with the diploid sperm of AT to produce a new type of tetraploid fish (G×AT,4n=200). Importantly,2% of G1×AT with the obviously high body height to body length were found in G1×AT population. Self-mating of the high-body G1×AT produced three kinds of bisexual fertile diploid fish:high-body red crucian carp, high-body fork-like-tails goldfish and high-body gray common carp. The main contents of this paper included:①Establishment and genetic mechanism of the diploid gynogenetic hybrid clonal line.②In-depth analysis the cell and molecular biological characteristics of AG to provide insight into the evolutionary origin of goldfish.③Application and biological characterization of high-body crucian carp and high-body gray common carp. The major results were presented as follows:
     1. Based on the formation of the third gynogenetic generation (G3), G4 and G5were obtained by gynogenesis. Thus, a diploid gynogenetic hybrid clonal line (G1-G5) of red crucian carp X common carp was established. For further study of the mechanism of diploid fish produce diploid eggs, we cultivated the early-stage gonadal cells of G5 in vitro. During the gonad proliferation stage, we found the phenomenon of germ cell fusion. While in the control group, grass carp and common carp gonads, there was no phenomenon of cell fusion. These results were of great value to reveal the mechanism why diploid hybrids produce the diploid gametes.
     2. The morphological characteristics of artificial goldfish (AG) were observed. The results showed that AG and the natural goldfish (NG) with the similar traits in morphological. Compared with original parents RCC and CC, AG showed more similar characteristics with RCC, but it was great different from CC. It can determine the genetic relationship between goldfish and crucian carp from the morphological traits. AG possessed 100 chromosomes with the karyotype 22m+34sm+22st+22t, and the DNA content was same with diploid RCC. Both ovary and testis gonads of AG were able to produce normal mature gametes after one year culture.
     3. To detect the molecular genetic characteristics of AG, the Sox genes of NG, AG, RCC and CC were detected firstly. AG and RCC amplified the same bands consistent with the-200,-600 and-1900bp, in NG there were only-200 and-600bp bands, and in CC there were only-200 and-900bp bands. PCR amplification of 5S rDNA results showed that AG and NG with the same amplified band, and both of them had a unique band (168bp) different from RCC and CC.5S rDNA fluorescence in situ hybridization results showed that AG has two strong hybridizing signals as RCC and NG, while in CC there was no signal detected.
     The complete sequence of mitochondrial DNA of AG was 16579bp. Compeared with original parents RCC and CC, the similar rate were 99.5% and 89.4%, respectively, in line with the maternal inheritance of mitochondria. However, AG had the high similarity rate with NG (99.4%), indicating that they may have the same origin.
     The number of alleles varied from one to eight in AG, and the size of the alleles ranged from 140-300bp. The amplification patterns of 7 pairs of microsatellite primers showed that AG had a higher degree of genetic polymorphism, a greater genetic heterogeneity, indicating that the source of genome was complexity and the gene was highly hybrid.
     4. The biological characteristics of high-body crucian carp were studied, the results revealed that high-body crucian carp was a diploid and bisexual fertile fish, possessed many improved features such as smaller head, higher body and shorter caudal. An improved triploid was produced by crossing improved tetraploids with improved diploids. The improved triploids showed some features such as high-body, fast growth, infertility, and high nutrient contents.
     5. The phenotypes, chromosome numbers, gonadal structure and Sox gene of ICC were observed. The results revealed that ICC was a diploid and bisexual fertile fish, and showed the significant features of the high-back compared with CC. It was worth noting that the Sox gene amplification results showed that ICC was a hybrid, which had the same amplified bands with AT (-200,-600,-900 and-1900bp), while CC had-200 and-900bp bands.
     These results indicated that to improve the distant crossing hybrids by gynogenetic, the offspring can differentiate into different types of new varieties of fish, which appearance and genetic characteristics had major changes. Such of various improved fishes plays an important role in biological evolution and fish genetic breeding. Furthermore the formation of AG provided the direct evidence for the evolutionary origin and diversification of goldfish.
引文
[1]楼允东.人工雌核发育及其在遗传学和水产养殖上的应用[J].水产学报,1986,10(1):111-123.
    [2]蒋一硅,俞豪祥,陈本德,等.鲫鱼的人工和天然雌核发育[J].水生生物学报,1982,7(4):471-477.
    [3]樊连春.雌核发育进行银鲫遗传育种新进展[J].生物学通报,1994,29(10):4-6.
    [4]桂建芳,孙健民,粱绍昌.静水压处理与冷休克结合处理诱导水晶彩鲫四倍体[J].水生生物学报,1991,15(4):333.
    [5]邹曙明,李思发,蔡完其,等.团头鲂良种雌核发育群体的建立及其遗传变异[J].水产学报,2001,25(4):311-316.
    [6]刘筠,周工健.红鲫(♀)×湘江野鲤(♂)杂交一代生殖腺的细胞学研究[J].水生生物学报,1986,10(2):101-111.
    [7]Shaojun Liu, Yun Liu, Gongjian Zhou, et al. The formation of tetraploid stocks of red crucian carp×common carp hybrids as an effect of interspecific hybridization. Aquaculture,2001,192(2-4):171-186.
    [8]刘少军,曹运长,何晓晓,等.异源四倍体鲫鲤群体的形成及四倍体化在脊椎动物中的作用[J].中国工程科学,2001,3(12):33-41.
    [9]李建中,刘少军,张轩杰,等.鲫鲤杂种F2精子多态性研究[J].实验生物学报,2004,37(4):276-282.
    [10]孙远东,刘少军,张纯,等.异源四倍体鲫鲤F9-F11染色体和性腺观察[J].遗传学报,2003,30(5):37-41.
    [11]刘筠,刘少军,孙远东,等.多倍体鲫鲤[J].中国农业科技导报,2003,5(6):3-6.
    [12]刘少军,孙远东,周工建,等.异源四倍体鲫鲤成熟性腺和红细胞超微结构观察[J].自然科学进展,2003,13(2):194-197.
    [13]刘少军,黎双飞,刘筠.异源四倍体鱼早期胚胎发育观察[J].湖南师范大学自然科学学报,2001,24(1):55-57.
    [14]刘少军,赵如榕,刘锦辉,等.不同倍性鱼的血细胞和精子DNA含量比较[J]. 动物学报,2005,51(2):360-364.
    [15]刘少军,冯浩,刘筠,等.四倍体鲫鲤F3-F4、三倍体湘云鲫、湘云鲤及有关二倍体的DNA含量[J].湖南师范大学自然科学学报,1999,22(4):61-68.
    [16]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的受精细胞学[J].动物学报,2002,48(2):233-239.
    [17]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的形态特征[J].湖南师范大学自然科学学报,2001,24:64-66.
    [18]李建中,张轩杰,刘少军,等.异源四倍体鲫鲤的性腺发育研究[J].水生生物学报,2002,26(2):116-122.
    [19]李建中,尹绍武,刘少军,等.异源四倍体鲫鲤及其原始亲本遗传变异的RAPD分析[J].水产学报,2003,27(5):403-408.
    [20]刘季芳,等.异源四倍体鲫鲤的Sox9a基因保守区序列的克隆及内含子剪接位点分析[J].自然科学进展,2004,14(6):641-645.
    [21]Liu S J, Duan W, Tao M, et al. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp × common carp [J]. Sci China Ser C:Life Sci, 2007,50(2):186-193.
    [22]张纯,孙远东,刘少军,等.二倍体雌核发育鱼产生二倍体卵子的证据[J].遗传学报,2005,32(2):136-144.
    [23]刘少军,段巍,陶敏,等.雌核发育二倍体鲫鲤杂交克隆品系建立[J].中国科学C辑:生命科学,2007,50(2):186-193.
    [24]Jinpeng Yan, Shaojun Liu, Yuandong Sun, et al. RAPD and microsatellite analysis of diploid gynogens from allotetraploid hybrids of red crucian carp (Carassius auratus) × common carp (Cyprinus carpio) [J]. Aquaculture,2005, 243:49-60.
    [25]颜金鹏,刘少军,孙远东,等.异源四倍体鲫鲤雌核发育后代的RAPD分析[J].水生生物学报,2005,29(3):259-265.
    [26]傅仪远,伍惠生.中国金鱼[M].天津:天津科学技术出版社,1987,12-13.
    [27]陈桢.金鱼的变异与天演[J].科学,1925,10(3):304-330.
    [28]Shisan C. Chen. Variation in external characters of goldfish, Carassius auratus. Contr [J]. Biol. Lab. Sci. Soc. China 1925,1(1):1-64.
    [29]陈桢.金鱼的家化史与品种形成的因素[J].动物学报,1954,6(2):89-116.
    [30]王春元.金鱼的起源[J].生物学通报,1985,12:11-13.
    [31]李璞.我国金鱼的品种及其在系统发育上的关系[J].动物学杂志,1959(6):248-251.
    [32]王春元.我国现有的金鱼品种的分类及其系统发育的探讨[J].动物学报,1983,29(3):267-277.
    [33]梁前进.金鱼起源及演化的研究[J].生物学通报,1995,30(3):14-1.
    [34]傅仪远,伍惠生.中国金鱼[M].天津:天津科学技术出版社,1987,24-127.
    [35]陈桢.金鲫鱼的孟德尔遗传[J].清华大学学报(自然科学版),1930,2:1-22.
    [36]李思发,周碧云,倪重匡,等.长江、珠江、黑龙江鲢、鳙鱼和草鱼原种种群形态差异[J].动物学报.1989,35(4):390-398.
    [37]李璞,汪安琦,崔道枋,等.鲫鱼和金鱼胚胎发育的分期[J].动物学报,1959,11(2):145-154.
    [38]王春元,李延龄.金鱼胚胎发育时期的扫描电镜观察[J].水产学报,1986,10(2):315-3231.
    [39]Ojima, Y., M. Hayashi and K.Ueno. Triploidy appeared in the backcross offspring from funa-carp crossing [J]. Proceedings of the Japan Academy,1972, 47(6):431-440.
    [40]王春元,李延龄.金鱼染色体组型的研究[J].遗传学报,1982,9(3):238-242.
    [41]王长城,王春元.金鱼肌浆蛋白和血清蛋白的研究[J].遗传,1991,13(5):12-15.
    [42]罗莉中,毕世华,王春元.金鱼乳酸脱氢酶同工酶的发生遗传学研究[J].遗传学报,1982,9(5):375~380.
    [43]罗莉中.金鱼乳酸脱氢酶同工酶的发生遗传学研究[J].遗传学报,1984,11(6):487~489.
    [44]王春元.金鱼酯酶同工酶的研究[J].遗传学报,1988,15(6):442-449.
    [45]梁前进,彭奕欣.野生鲫鱼和五个鲫鱼代表品种的肌肉蛋白电泳分析[J].动物学研究,1994,15(2):68-75.
    [46]梁前进,彭奕欣.中国几个金鱼品系血清抗原性的探讨[J].水产学报,1998,22(1):16-21.
    [47]王晓梅,宋文芹,李秀兰,等.用RAPD技术检测野生鲫鱼和四个金鱼代表品种的基因组DNA多态性[J].遗传,1998,20(5):7-11.
    [48]牟希东,白俊杰,叶星,等.金鱼线粒体DNA Cyt b基因序列分析及与鲫鱼亲缘关系探讨[J].南方水产,2007,3(1):26-30.
    [49]Komiyama T, Kobayashi H, Tateno Y, et al. An evolutionary origin and selection process of goldfish [J]. Gene,2009,430:5-11.
    [50]Chen, Shisan C. Transparency and mottling, a case of Mendelian inheritance in the goldfish, Carassius auratus [J]. Genetics,1928,13:434-452.
    [51]Chen, Shisan C. The inheritance of blue and brown colors in the goldfish, Carassius auratus [J]. Jour. Of Genetics,1934,29:61-74.
    [52]Matsui, Y. Genetical studies on goldfish of Japan. Jour. Of Imp [J]. Fisheries Inst, 1934,30:1-96.
    [53]Berndt, Wilhelm. Vererbungsstudien a goldfish [J]. Zeit. Ind. Abst.-u. Vererbungslehre.1925,36:162-349.
    [54]Darwin, C. The variation of animals and plants under domestication [M].2nd ed., John Murray, London.1875.
    [55]刘筠.中国养殖鱼类繁殖生理学[M].北京:农业出版社,1993,22-30.
    [56]Shaojun Liu, Jing Wang, Wei Duan, et al. The formation of a diploid gynogenetic hybrid clonal line of red crucian carp x common carp, and its application [J]. Cybium,2008,32(2) suppl:290-293.
    [57]Cherfas N B. Gynogenesis in fish. In Genetic Basis of Fish Selection [J]. Berlin-verlag,1981,255-273.
    [58]Yamazali F. Chromosomal aberration by overriping and irradiation [J]. Kaiyo Kagaku,1981,13(1):71-83.
    [59]Oshiro. T. Cytological studies on diploid gynogenesis induced in the loach Misgurmus anguillicaudatus [J]. Bulletin of the Japanese Society for Scientific Fisheries.1987,53:933-942.
    [60]樊连春.雌核发育进行银鲫遗传育种新进展[J].生物学通报,1994,29(10):4-6.
    [61]Komen J. Gynogenesis in common carp (Cyprinus carpio L.).11:The production of homozygous gynogenetic clones and F1 hybrids [J]. Aquaculture.1990, 104:51-61.
    [62]Dawley R M. An introduction to unisexual vertebrates [J]. Evolution and Ecology of Unisexual Vertebrates,1989,1-18.
    [63]Zakir Ullah, Chrissie Y Lee and Melvin L DePamphilis. Cip/Kip cyclin-dependent protein kinase inhibitors and the road to polyploidy [J]. Cell division,2009,4(10):1-15.
    [64]Cherfas N B. Induced diploid gynogenesis and polyploidy in crucian carp, Carassius auratus gibelio(Bloch)×common carp, Cyprinus carpio L., hybrids [J]. Aquacult.Fish.Mgmt,1994,25:943.
    [65]丁军.雌核发育银鲫和两性融合发育红鲫卵母细胞成熟的细胞学比较观察[J].水生生物学报,1991,15(2):97-102.
    [66]H.B.普契科夫.《鱼类生理学》[M].上海科学出版社,1956:188-189.
    [67]M.E.勃朗《鱼类生理学(下册)[M].科学出版社,1963:381-382.
    [68]伍惠生,傅毅远.《中国金鱼》[M].天津科学出版社,1983:11-12.
    [69]Norman J R. A history of f ishes,5t h ed., Ch.(?). L ondon:E2 nest Benn L td,1958;[英]J.R.诺门著,邹源琳译.鱼类史[M].科学出版社,1966:200-220.
    [70]徐伟,李池陶,曹顶臣,等.几种鲤鲫鳞片色素细胞和体色发生的观察[J].水生生物学报,2007,31(1):67-72.
    [71]徐伟,李池陶,曹顶臣,等.水晶彩鲫、红鲫和锦鲤的体色和腹膜脏层黑色素细胞观察[J].中国水产科学,2007,14(1):144-148.
    [72]徐伟,白庆利,刘明华,等.彩鲫与红鲫杂交种体色遗传的初步研究[J].中国水产科学,1999,6(1):33-36.
    [73]徐伟,白庆利,刘明华,等.肉色彩鲫的选育及遗传性状研究[J].中国水产科学,2000,7(4):113-115.
    [74]徐伟,曹顶臣,李池陶,等.水晶彩鲫、红鲫、锦鲤、荷包红鲤杂交子代的生长和体色研究[J].水产学报,2005,29(3):339-343.
    [75]徐伟,曹顶臣,李池陶,等.肉色水晶彩鲫和红鲫的体色遗传研究[J].动物学杂志,2006,41(5):1-6.
    [76]Ihssen, P. E., H. E. Booke, J. M. Caaselman, et al. Stock identification:materials and methods [J]. Can. J.Fish... Aquat.Sci.1981,38:1838-1855.
    [77]Bookstein FL, Chernoff B, Elder RL, et al. Morphometrics in Evolutionary Biology [M]. Philadelphia:The Academy of Natural Science Special Publication 1985,15.
    [78]Mamuris Z, Apostolidis AP, Panagiotaki P, et al.Morphological variation between red mullet populations in Greece [J]. J. Fish. Biol.,1998,52:107-117.
    [79]李思发.中国淡水养殖鱼类种质资源研究[M].上海:上海科技出版社,1998,181-210.
    [80]李思发,周碧云,倪重匡,等.长江、珠江、黑龙江鲢、鳙鱼和草鱼原种种群形态差异[J].动物学报,1989,35(4):390-398.
    [81]刘义新,肖祖国,徐振秋.几种杂交鲤的形态学特征及主要经济性状[J].水产科学,2007,26(11):19-621.
    [82]闫学春,孙效文,梁利群,等.鲤鲫杂交(♀)×鲫(♂)回交子代的形态特征研究[J].水产学杂志,2006,19(1):6-11.
    [83]金万昆,朱振秀,王春英,等.框鳞镜鲤(♀)×团头鲂(♂)杂交及其杂种F1的形态学特征[J].水渔业,2003,33(5):16-18.
    [84]赵建,朱新平,陈永乐,等.珠江口卷口鱼不同地理种群的形态变异[J].动物学报,2007,53(5):921-927.
    [85]张鹗,谢仲桂,谢从新.大眼华鳊和伍氏华鳊的形态差异及其物种有效性[J].水生生物学报,2004,28(5):511-518.
    [86]程起群,李思发.刀鲚和湖鲚种群的形态判别[J].海洋科学,28(11):39-43.
    [87]蔡鸣俊,张敏莹,曾青兰,等.鲂属鱼类形态度量学研究[J].水生生物学报,25(6):631-635.
    [88]杨秀平,张敏莹,刘焕章,等.中国似(?)属鱼类的形态变异及地理分化研究[J].水生生物学报,2002,26(3):281-285.
    [89]姚景龙,陈毅峰,严志云,等.中华(?)与前臀(?)的形态差异和物种有效性[J].动物分类学报,2006,31(1):11-17.
    [90]Li Si-fa, Wang Cheng-hui and Cheng Qi-qun. Morphological variations and phylogenesis of four strains in Cyprinus carpio[J]. Journal of fisheries of China. 2005,29(5):606-611.
    [91]王波,刘世禄,张锡烈,等.美国红鱼形态和生长参数的研究[J].海洋水产研究,2002,23(1):47-53.
    [92]李家乐,李思发,李勇,等.尼奥鱼尼罗罗非鱼(♀)×奥里亚罗非鱼(♂)]同其亲本的形态和判别[J].水产学报,1999,23(3):261-265.
    [93]高天翔,武云飞,张秀梅,等.四种鳕鱼的形态学研究[J].青岛海洋大学学报,2002,32(6):884-896.
    [94]Hubbs C L and Lagler K F. Fishes of the creal lakes region [M]. Michigan: University of Michigan press,1947.
    [95]Levan A, K Fredga and A A Sandberg. Comparative cytogenetics of Hoplias malabaricus (Pisces, Erythrinidae):a population analysis in adjacent hydrographic basins [J]. Hereditas,1964,52(2):201-220.
    [96]牧野佐二郎.遗传学杂志,1934,9(2):100-103.
    [97]牧野佐二郎.科学,1935,5:56.
    [98]Makino S. Cytologia.1939,9:430-440.
    [99]Makino S. ibid.,1941,12(1):96-111
    [100]小林弘,川岛康代,竹内直政.鱼类学杂志,1970,17(4):153-160.
    [101]Ohno S. and N. B. Atkin:Chromosome (Berlin),1966,18:455-466.
    [102]Ohno S., J. Muramoto, L. Christian and N. B. Atkin. Ibid,1967,23:1-9.
    [103]OjimaY., S. Hitotsumachi and S. Makino. Proc. Japan Acad.,1960,42:62-66.
    [104]OjimaY., and S. Hitotsumachi. Japan J. Geneties,42(3):163-167.
    [105]OjimaY., M. Hayashi and K. Ueno. Ibid.,197247(6):431-440.
    [106]吴政安、杨慧一.鱼类细胞遗传学的研究Ⅱ鱼类淋巴细胞的培养及其染色体组型分析[J].遗传学报,1980,7(4)370-375.
    [107]小林弘.鱼类学杂志.1973,20(1):7-12.
    [108]Roberts F L. Prog.Fish-cult.29:75-83.
    [109]White M J D. The chromosomes, Methuen & Co Ltd [M]. London,1961.
    [110]Wegner M. From head to toes:the multiple facets of Sox proteins [J]. Nucleic Acids Res,1999,27:1409-1420.
    [111]Ohno S. The one-to-four rule and paralogues of sex-determining genes [J]. EXS, 2001,91:1-10.
    [112]Force A, Lynch M, Pickett F B, et al. Preservation of duplicate genes by complementary degenerative mutations [J]. Genetics,1999,151:1531-1545.
    [113]Patthy L. Introns and exons [J]. Curr Opin Struct Biol,1994,4:383-392.
    [114]Holland P W H, Garcia-Fernandez J, Williams N A, et al. Gene duplications and the origins of vertebrate development [J]. Developrnent,1994 (Suppl):125-133.
    [115]Sambrook J, Fritsch E F and Maniatis, T. Moolecular Cloning:A Laboratory Mannul.2nd edn. Cold Spring Harbor Laboratory [M], New York,1989, pp. 463-468.
    [116]Foster J W. An SRY-related sequence on the marsupial X-chromosome: Implications for the evolution of the mammalian testis determining gene [J]. Proc Natl Acad Sci USA,1994,91 (5):1927.
    [117]Foster J W, Dominguez-Steglich M A, Guioli S, et al. Campomelicdysplasia and autosomal sex reversal caused by mutations in an SRY-related gene [J]. Nature, 1994,372,525-530.
    [118]Wright E M, Hargrave M, Christiansen J, et al. The Sry-related gene sox9 is expressed during chondrogenesis in mouse embryos [J]. Nat Genet,1995,9: 15-20.
    [119]Wagner T, Wirth J, Meyer J, et al. Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene sox9 [J]. Cell,1994,79:1111-1120.
    [120]Lenhoff H M. Activation of the feeding reflexin Hydra-litoralis [J]. The Journal of General Physiology,1961,45:331-343.
    [121]Pevny L H and Lovell Badge R. Sox genes find their feet [J]. Curr Opin Genet Dov,1997,7(3):338-344.
    [122]汪锐,程汉华,郭一清,等.脊椎动物Sox基因家族的系统发生分析[J].遗传学报,2002,29(11):990~994.
    [123]聂刘旺,单祥年,汪鸣,等.中华鳖4个Sox基因保守区的序列分析[J].水生生物学报,2001,25(3):245~250.
    [124]常重杰,杜启艳,邵红伟.Sox基因家族研究的新进展[J].遗传,2002,24(4):470~476.
    [125]Takase M, Noguchi S and Nakamura M. Two Sox9 messenger RNA isoforms: isolation of cDNAs and their expression during gonadal development in the frog Rana rugosa [J]. FEBS Lett,2000,466(2-3):249-254.
    [126]Zhou R, Liu L, Guo Y, et al. Similar gene structure of two Sox9a genes and their expression patterns during gonadal differentiation in a teleost fish, rice field eel (Monopterus albus) [J]. Mol Reprod Dev,2003,66:211-217.
    [127]Wright E, Hargrave M R, Christiansen J, et al. The Sry-related gene Sox9 is expressed during chondrogenesis in mouse embryos [J]. Nature Genet.1995,9: 15-20.
    [128]Lin Chen, Wei Li, Shaojun liu, et al. Novel genetic markers derived from the DNA fragments of Sox genes [J]. Molecular and Cellular Probes.2009, 23:157-165
    [129]Capel B. Sex in the 90s:SRY and the swith to male pathway [J]. Annu Rev Physial,1998,60:497-521.
    [130]Foster J W, Steglich M A D, Guioli S, et al. Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene [J]. Nature, 1994,372:525-530.
    [131]Farr C J, Easty D T, Ragoussis J, et al. Characterization and mapping of the human Sox4 gene [J]. Mamm genome,1993,4:577-584.
    [132]Conner F, Wright E, Denny P, et al. The SRY-related HMG box containing gene Sox6 is expressed in the adult testis and developing nervous system of the mouse [J]. Nucleic Acids Res,1995,17:3365-3372.
    [133]Wright E M, Snopek B and Koopman P. Seven new members of the Sox gene family expressed during mouse development [J]. Nucleic Acids Res,1993,21: 744.
    [134]Long and David. Repeated genes in eukaryotes [J]. Annu Rev Biochem,1980, 49:727-764.
    [135]Suzuki H, K Moriwaki and S Sakurai. Sequences and evolutionary analysis of mouse 5S rDNAs [J]. Mol. Biol. Evol.1994,11:704-710.
    [136]Pendas A M, P Moran, J L Martinez, er al. Applications of 5S rDNA in Atlantic
    salmon, brow trout, and in Atlantic salmon x brown trout hybrid identification [J]. Mol.Ecol.1995,4:275-276.
    [137]Nelson D W and Honda B M. Genes coding for 5S ribosomal RNA of the nematode Caenorhabditis elegan [J]s. Gene (Amst.),1985,38:245-251.
    [138]Leah R, S Frederiksen, J Engberg, et al. Nucleotide sequence of a mouse 5S rRNA variant gene [J]. Nucl. Acids Res.1990,18:7441.
    [139]Sajdak S L, K M Reed and R B Phillips. Intraindividual and interspecies variation in the 5S rDNA of coregonid fish [J]. J. Mol.Evol.1998,46:680-688.
    [140]Masaru Murakami and Hideo Fujitani. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna [J]. Genes Genet Syst,1998, 73:9-20.
    [141]Bogenhagen D F and Brown D D. Nucleotide sequences in Xenopus 5S DNA required for transcription terminator [J]. Cell,1981,14:261-270.
    [142]Nederby-Nielsen J, Hallenberg G, Frederiksen S, et al. Transcription of human 5S rRNA genes is influenced by an upstream DNA sequence [J]. Nucleic Acid Res,1993,26:3631-3636.
    [143]Paola Pasolini, Domenico Costagliola, Lucia Rocco, et al. Molecular Organization of 5S rDNAs in Rajidae (Chondrichthyes):Structural Features and Evolution of Piscine 5S rRNA Genes and Nontranscribed Intergenic Spacers [J]. J Mol Evol,2006,62:564-574.
    [144]Hallenberg C, J Nederby-Nielsen and S Frederiksen. Characterization of 5S rRNA genes from mouse [J]. Gene,1994,142:291-295.
    [145]Frederiksen S, H Cao, B Lomholt, et al. The rat 5S rRNA bona fide gene repeat maps to chromosome 19ql2→qter and the pseudogene repeat maps to 12q12. Cytogenet [J]. Cell Genet.1997,76:101-106.
    [146]Martins C and Galetii P M. Organization of 5S in Leporinus fish species:two different genomic locations are characterized by distinct non-transcribed spacers (NTSs) [J]. Genome,2001,44:903-910.
    [147]Adriane Pinto Wasko, Cesar Martins, Jonathan M Wright, et al. The complete mitochondrial genome of the sea spider Nymphon gracile (Arthropoda: Pycnogonida) [J]. Genome,2001,44:893-902.
    [148]Martins C, A P Wasko, C Oliveira, et al. Nucleotide sequence of 5S rDNA and localization of the ribosomal RNA genes to metaphase chromosomes of the tilapiine cichlid fish, Oreochromis niloticus [J]. Hereditas,2000,133:39-46.
    [149]Wasko A P, C Martins, J M Wright, et al. Molecular organization of 5S rDNA in fishes of the genus Brycon [J]. Genome,2001,44:893-902.
    [150]Pendas A M, P Moran, J P Freije and E Garcia-Vasquez. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA [J]. Cytogenet. Cell Genet,1994,67:31-36.
    [151]Moran P, J L Martinez E Garcia-Vasquez and A.M. Pendas. Sex linkage of 5S rDNA in rainbow trout(Oncorhynchusmykiss) [J]. Cytogenet. Cell Genet.1996, 75:145-150.
    [152]Sajdak S L, K M Reed and R B Phillips. Intraindividual and interspecies variation in the 5S rDNA of coregonid fish [J]. J. Mol.Evol.1998,46:680-688.
    [153]Mashkova TD, Serenkova TI, Mazo AM, et al. The primary structure of oocyte and somatic 5S rRNAs from the loach Misgurnus fossilis [J]. Nucleic Acids Res, 1981,9:2141-2151.
    [154]KomiyaH, Hasegawa M, and Takemura S. Differentiation of oocyte-and somatic-type 5S rRNAs in animals [J]. J. Biochem,1986,100:369-374.
    [155]Pendas A M, P Moran, J L Martinez, et al. Applications of 5S rDNA in Atlantic salmon, brow trout, and in Atlantic salmon x brown trout hybrid identification [J]. Mol. Ecol.1995,4:275-276.
    [156]Delseny M, McGrath J M, This P, et al. Ribosomal RNA genes in diploid and amphiploid Brassica and related species:organization, polymorphism and evolution [J]. Genome,1990,33:733-744.
    [157]Soltis P S, Soltis D E. Multiple origin of the allotetraploid Tragopogon mirus (Compositae):rDNA evidence [J]. Syst. Bot.1991,16:407-413.
    [158]Badaeva E D, Amosova A V, Muravenko O V, et al. Genome differentiation in Aegilops 3. Evolution of the Dgenome cluster [J]. Plant Syst. Evol.2002,231: 163-190.
    [159]Kashkush K, Feldman M, and Levy A S. Gene loss, silencing and activation in a newly synthesized wheat allotetraploid [J]. Genetics,2002,160:1651-1659.
    [160]Violetta Kotseruba, Dorota Gernand, Armin Meister, aet al. Uniparental loss of ribosomal DNA in the allotetraploid grass Zingeria trichopoda (2n= 8) [J]. Genome,2003,46:156-163.
    [161]Han F, Fedak G, Guo W, et al. Rapid and repeatable elmination of a parental genome specific DNA repeat (pGclRla) in newly synthesized wheat allopolyloids [J]. Genetics,2005,170:1239-1245.
    [162]Volkov, R.A., Borisjuk, N.V., Panchuk, I.I., et al. Elimination and rearrangement of parental rDNA in the allotetraploid Nicotiana tabacum [J]. Mol. Biol. Evol. 1999,16:311-320.
    [163]Jean, C T, S C Lee and C T Chen. Morphom-etric Studies on the Fishes of Subfamily Sparinne (Perci-formes:Sparidae) from the Coastal Waters of Taiwan [J]. J.Fish.Soc. Taiwan,1992,19(4):231-238.
    [164]Masaru Murakami and Hideo Fujitani. Characterization of repetitive DNA sequences carrying 5S rDNA of the triploid ginbuna [J]. Genes Genet Syst,1998, 73:9-20.
    [165]Hutchison C A, Nevwbold J E, Potter S S, et al. Maternal inheritance of mammalian mitochondrial DNA [J]. Nature,1974,251:536-538.
    [166]Kondo R, Matsuura E T and Chigusa S I. Further observation of paternal transmission of Drosophila mitochondrial DNA by PCR selective amplification method [J]. Genet Res,1992,59(2):81-84.
    [167]Danan C, Stemberg D, van Steirteghem A, et al. Evaluation of parental mitochondrial inheritance in neonates born after intracytoplasmic sperm injection [J]. Am JHum Genet,1999,65(2):463-473.
    [168]Gyllensten U, Wharton D, Josefsson A, et al. Paternal inheritance of mitochondrial DNA in mice [J]. Nature,1991,352 (6332):255-257.
    [169]Xinhong Guo, Shaojun Liu and Yun Liu. Evidence for Recombination of Mitochondrial DNA in Triploid Crucian Carp [J]. Genetics,2006,172 (3): 1745-1749.
    [170]Guo Xinhong, Liu Shaojun, Liu Yun. Evidence for maternal inheritance of mitochondrial DNA in allotetraploid [J]. DNA Sequence,2007,18(4):247-256.
    [171]Murakami M, Yamashita Y and Fujitani H. The complete sequence of mitochondrial genome from a gynogenetic triploid ginbuna (Carassius auratus longsdorfi) [J]. Zool Sci,1998,15(3):335-337.
    [172]Murakami M. Carassius auratus cuvieri mitochondrial DNA, complete sequence [Z].2001, Published only in GenBank DataBase.
    [173]Broughton R E, Milam J E and Roe B A. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA [J]. Genome Res,2001,11(11):1958-1967.
    [174]Saitoh K, Miya M, Inoue J G, et al. Mitochondrial genomics of Ostariophysan fishes:perspectives on phylogeny and biogeography [J]. J Mol Evol,2003,56(4): 464-472.
    [175]W Mberger P H. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagu (Pisces:Cichlidae) [J]. Bio J Linn Soc,1992,45 (3):197-218.
    [176]Bllington N, Hebert N. Mitochondrail DNA diversity in fishes and its imp lications for introductions [J]. Can J Fish Aquat Sci,1991,48 (suppl):80-94.
    [177]Crooijmans. Microsatellite markers in common carp (cyprinus carpioL.) [J]. Animal Genetics,1997,28:129-134.
    [178]耿波,孙效文,梁利群.利用17个微卫星标记分析鳙鱼的遗传多样性[J].遗传,200628(6):683~688.
    [179]魏东旺,楼允东,孙效文,等.鲤鱼微卫星分子标记的筛选[J].动物学研究,2001,22(3):238-241.
    [180]Dianne B. Microsatellite from rainbow trout (Oncorhynchus mykiss) and their use for genetic study of salmonids [J]. Can. J. Fish. Aquat. Sci,1996,53:120-126.
    [181]Motohiro Takagi. Isolation and characterization of Microsatellite loci from Rea Bream Pagrus major and detection in closely related species [J]. Fisheries Science,1997,63(2):199-204.
    [182]Ratu Siti Aliah. Inheritance of Microsatellite Markers in the Common Carp
    Cyprinus carpio [J]. Fisheries Science,1999,65(2):235-239.
    [183]O'Connell M. Microsatellite DNA in fishes [J]. Reviews in Fish Biology and Fisheries,1997,7:331-363.
    [184]L David. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite markers [J]. Mol Genet Genomics,2001,266:353-362.
    [185]Brooker A L. Organization of microsatellites differs between mammals and cold-water teleost fishes [J]. Can. J. Fish. Aquat. Sci.,1994,51:1959-1966.
    [186]P T O'Reilly. Isolation of twenty low stutter di-and tetranucleotide microsatellites for population analyses of walleye Pollock and other gadoids [J]. J. Fish Bio.,2000,56(5):1074-1086.
    [187]K A Naish. tetranucleotide microsatellite loci for Indian major carp [J]. J. Fish Bio.,1998,53:886-889.
    [188]K M Miller. Characterization of microsatellite loci in Sebastes alutus and their conservation in congeneric rockfish species [J]. Molecular Ecology,9:237-244.
    [189]Phillip C. Watts. Polymorphic microsatellite loci in the European plaice, Pleuronectes platessa, and their utility in flounder, lemon sole and Dover sole [J]. J.Mar.Biol.Ass.U.K.,2001,81:367-368.
    [190]钟麟.家鱼生物学和人工繁殖[M].北京:科学出版社,1965,142.
    [191]杨怀宇,李恩发,邹曙明,等.三角鲂与团头鲂正反交F1的遗传性状[J].上海水产大学学报,2002,11(4):305-309.
    [192]刘少军,胡芳,等.三倍体湘云鲫繁殖季节的性腺结构观察[J].水生生物学报,2000,24(4):301~306.
    [193]刘少军,孙远东,黎双飞,等.三倍体湘云鲫性腺指数分析[J].水产学报,2002,26(2):111~114.
    [194]刘少军,孙远东,张纯,等.三倍体鲫鱼——异源四倍体鲫鲤(♂)×金鱼(♀)[J].2004,31(1):31~38.
    [195]刘飞,张轩杰.湘云鲫(鲤)肌肉生化成分和氨基酸组成分析[J].内陆水产,2000,187(7):8-9.
    [196]樊翠芹,陈希勇,孙其信.作物杂种优势的遗传表现和生理生化基础[J].中
    国农学通报,1996,12(3):15-17.
    [197]明道绪,张征锋,刘永建.作物杂种优势遗传基础的研究进展[J].四川农业大学学报,2002,20(2):177-181.
    [198]D P Biradar, D G Bullock and A Lane Rayburn. Nuclear DNA amount, growth, and yield parameters in maize [J]. T A G Theoretical and Applied Genetics,1994, 88(5):557-560.
    [199]Smith 0 S, Smith J S C, Bowen S L, et al. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs[J]. TA G Theoretical and Applied Genetics,1990,80:833-840.
    [200]浙江农业大学.遗传学(第二版)[M].北京:农业出版社,1990,107-111.
    [201]楼允东,李小勤.中国鱼类远缘杂交研究及其在水产养殖上的应用[J].中国水产科学,2006,13(1):151-158.
    [202]Liu S J, Qin Q B, Xiao J, et al. The formation of the polyploid hybrids from different subfamily fish crossings and is evolutionary significance[J]. Genetics, 2007,176:1023-1034.
    [203]蒋一硅,梁绍昌,陈本德,等.异源精子在银鲫雌核发育子代中的生物学效应[J].水生生物学集刊,1983,8(1):1-13.
    [204]赵俊,陈湘粪.异源精子激发彭泽鲫雌核发育子代的表型分化现象[J].动物学研究,2003,24(4):297-301.
    [205]Zhou L, Wang Y, Gui JF. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp (Carassius auratus gibelio bloch) as revealed by RAPD assays [J]. J Mol Evol,2000,51:498-506.
    [206]Kallman K D. Gynogensis in teleost Mollienissia form with a discussion of the detection of parthenogenesis in vertebrates by tissue transplantation [J]. Journal of Genetics,1962,58(1):7-12.