用户名: 密码: 验证码:
水稻耐镉的基因型差异及外源GSH缓解镉毒的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农田遭受镉(cadmium, Cd)污染,不仅对作物生长发育造成伤害,导致产量下降,更有可能造成作物产品中镉积累过多,导致粮食卫生品质的下降。本研究利用水培试验,系统地研究了镉抑制水稻生长及Cd耐性和吸收积累的基因型差异的生理机理,并探索了以谷胱甘肽(GSH)为主的外源物对水稻镉毒害的缓解效果及作用机理。
     主要研究结果如下:
     1不同浓度外源谷胱甘肽和植物激素对水稻镉毒害的缓解效应
     以水稻品种秀水63为材料,水培试验,比较研究了外源GSH、吲哚-3-乙酸(IAA)、6-苄氨基嘌呤(6-BA)和赤霉素(GA3)对镉胁迫下对水稻生长的影响。结果表明,5μM Cd显著降低株高和地上部干重和鲜重。与5μM Cd对照相比,不同浓度GSH显著提高水稻幼苗的株高和地上部千重,其中尤以50GSH处理对地上部鲜重的恢复作用最明显。低浓度IAA显著提高了地下部鲜重。而各个浓度的6-BA和GA3均没有显著的缓解镉对水稻幼苗生长的抑制。5μM Cd胁迫添加不同浓度GSH和IAA处理试验结果表明,与对照5μM Cd相比,不同浓度的GSH(除50 gM外)和0.1μM与10μM IAA可以显著提高叶绿素含量(SPAD值)。各浓度GSH和10 IAA均可显著降低地上部与地下部镉浓度。综合比较分析结果表明,对镉毒害缓解效果以50μM和200μM GSH最好,其次是10μM IAA。
     2镉对水稻超微结构与抗氧化系统影响的基因型差异及外源GSH和IAA的缓解效应
     水培试验,研究了外源GSH和IAA对镉胁迫下2个耐镉性不同水稻基因型(秀水63,镉敏感基因型;丙97252,耐镉基因型)生长、超微结构、抗氧化系统活性的影响。结果表明:5μM Cd胁迫显著影响叶肉与根尖细胞结构,使细胞基质变稀,叶绿体片层结构松散,液泡变多变大,根系电子富集颗粒(EDG)增加,其中敏感基因型受到更严重的抑制。镉胁迫提高地上部超氧化物歧化酶(SOD)(主要是Mn-SOD)和谷胱甘肽S转移酶(GST)活性、GSH含量、和镉处理10d以前过氧化物酶(POD)活性;但降低抗坏血酸过氧化物酶(APX)活性、地下部POD、过氧化氢酶(CAT)活性,地上部抗坏血酸(AsA)含量和AsA/DHA比值。但是镉处理后丙97252的地上部CAT活性上升,而秀水63则下降;而膜脂过氧化产物丙二醛(MDA)的积累则是秀水63增加的多。说明了丙97252有较强耐性的可能机制是将镉储存在液泡以及更高的CAT活性。镉胁迫条件下添加GSH,镉中毒现象得到明显缓解:生长和细胞结构恢复、减少MDA积累,并且丙97252恢复相对更好。GSH显著提高了耐镉基因型根系POD、CAT、APX活性、地上部AsA含量及AsA/DHA比值,显著降低两基因型根系GST活性、地上部GSH含量以及15 d时Cu/Zn-SOD活性。镉胁迫条件下添加IAA,镉中毒现象也得到一定程度缓解:显著提高根系干重、细胞结构恢复、减少地上部MDA积累、减少植株中镉积累。IAA提高镉胁迫后根系AsA含量,降低GSH含量、GST活性和地上部POD活性。比较GSH和IAA的缓解效果,GSH要更显著。镉胁迫条件下同时添加GSH与IAA,也可以明显缓解镉中毒症状,对生长的影响与单一用GSH缓解相近。其对SOD活性的影响也更接近于单一用GSH来缓解。不同的是,在SOD同工酶中,Cu/Zn-SOD活性更低。并且复合处理后的GSH含量、GST活性、地上部AsA和AsA/DHA值,均低于单一用GSH或者IAA缓解。这些说明外源GSH和IAA可能都有参与螯合作用,GSH还与抗氧化系统活性的恢复有关系,而IAA对抗氧化系统可能不起作用。
     3外源GSH影响镉胁迫水稻苗生长及元素吸收积累的基因型差异
     外源GSH对不同浓度镉(5和50μM)胁迫下水稻矿质元素浓度和积累量的基因型差异。结果表明,50μM Cd处理后水稻生长相比5μM Cd受到更严重抑制,对秀水63的影响尤为严重。镉胁迫显著减少根系与地上部的Mn和地上部的Zn的浓度和积累量,降低根系与地上部的Cu浓度。地上部Zn浓度与地上部/根系镉浓度之间,以及根系中Cd和Mn浓度之间均存在显著的负相关。外源GSH显著降低根系和地上部中镉浓度。同时,在5μM Cd处理中,GSH提高了丙97252中Ca和Mn的浓度以及秀水63根系中Ca和Zn的浓度;而在50μM Cd处理中,GSH增加了Zn的转运。启示外源GSH的效果具有基因型和镉处理浓度的差异。
     4 GSH对镉胁迫水稻光合作用和植物螯合肽分泌的影响基因型差异
     外源GSH对镉胁迫下光合特性和植物螯合肽(PCs)的影响及基因型差异。结果表明,镉(5和50μM)胁迫显著降低叶绿素含量、净光合速率和生物学产量,其中秀水63受到抑制尤为严重。镉降低PSⅡ最大光化学效率(Fν/Fm)和有效PSⅡ量子产量(Y(Ⅱ)),增加能量规则损耗量子产量(Y(NPQ)),镉敏感基因型受影响也更明显。镉诱导根系产生PCs,增加GSH和半胱氨酸(Cys)的含量。其中,丙97252在5d时诱导的PCs和GSH含量均高于秀水63。GSH显著增加叶绿素含量,Pn, Fν/Fm和Y(Ⅱ),降低Y(NPQ)和非光化学猝灭系数(qN)。除50μM Cd处理5d外,添加GSH显著提高两基因型根系中GSH水平;GSH还上调5μM Cd处理下丙97252的PCs水平和秀水63在5d时的水平。因此,GSH对镉毒害的缓解效应与叶绿素含量的提高、光合系统的恢复和根系GSH水平有关。
     5水稻蛋白质组对低浓度镉毒害响应的基因型差异及外源谷胱甘肽的影响
     研究了50μM GSH对镉胁迫下水稻蛋白质谱表达的影响及基因型差异。结果表明,秀水63的生长受到更明显的抑制。鉴定到基因型差异表达的27个蛋白点,质谱分析鉴定出21个差异蛋白点。在根系中,参与抗氧化系统、碳水化合物循环、膜保护、蛋白质合成、DNA表达和防御的蛋白;和在叶中参与光合系统、ROS信号、能量和蛋白降解的蛋白应该与镉耐性有关。而在添加GSH后,在根系中参与抗氧化系统、碳水化合物循环、膜保护、蛋白质合成、DNA表达和防御的蛋白;和叶片中参与卡尔文循环、蛋白和核酸代谢、热激反应的蛋白,这些蛋白的表达均得到显著提升。结果暗示了GSH在这些方面的作用起到了提高水稻镉耐性。
Farmland suffers from cadmium (Cd) pollution, causing crop growth inhibition, yield reduction, and more likely to result in excessive accumulation of Cd in crop products, affecting food quality. This investigation was carried out to study physiological mechanism of genotypic differences in Cd-toxicity, uptake and accumulation, and explored with the mitigation effect and mechanism of exogenous GSH-based materials on Cd toxicity of rice.
     1 Mitigation effect and optimal concentration of exogenous GSH and plant hormones on Cd toxicity in rice
     Hydroponic experiment was performed to study the exogenous reduced glutathione (GSH), indole-3-acetic acid (IAA),6-benzylaminopurine (6-BA) and gibberellin (GA3) on the alleviation of Cd toxicity and optimize the concentration of alleviation. The results showed that 5μM Cd significantly reduced plant height and shoot dry weight and fresh weight. Different concentrations of GSH significantly elevated plant height and shoot dry weight of rice seedlings. FiftyμM GSH mostly resumed the shoot fresh weight. Low concentrations of IAA significantly increased the root fresh weight. The various concentrations of 6-BA and GA3 did not significantly alleviate the Cd induced growth inhibition in rice seedling. Further research showed that all the concentrations of GSH (except for 50μM), as well as 0.1 and 10μM IAA, significantly increased the chlorophyll content (SPAD value). The variety of concentrations of GSH and IAA could reduce the shoot/root Cd concentration. Comprehensive comparative analysis of results showed that concentrations of 50 and 200μM GSH and 10μM IAA concentrations could serve as an effective mitigation factor in Cd toxicity.
     2 Genotypic differences of Cd stress on the ultrastructure and antioxidative system of rice seedlings and mitigation effects of exogenous GSH and IAA
     Hydroponic experiment was performed to study the effects of exogenous GSH and IAA on Cd stress on growth, ultrastructure. and antioxidant system activity in two different Cd-resistance rice genotypes (Xiushui63, cadmium-sensitive genotype; Bing97252, cadmium-resistant genotype). The results showed that 5μM Cd stress significantly inhibited the growth of rice seedlings, destroyed the structure of mesophyll and root tip cells, with cell matrix thinning, chloroplast lamellae loose, vacuole larger and increased, root EDG increased, and more severely inhibition was observed in sensitive genotype. Cd also increased shoot SOD (mainly Mn-SOD), and GST activity, GSH content, and enhanced the POD activity during 10 d treatment, while reduced the APX activity, root POD, CAT activity, shoot AsA content and AsA/DHA ratio. The shoot CAT was elvated in Bing97252, but decreased in Xiushui63 after Cd exposure. Moreover, the increased of accumulation of membrane lipid peroxidation product MDA was more in Xiushui63. Thus, the possible mechanism of Bing97252 showing stronger potential tolerance to Cd might be that it has the ability to transfer and held Cd in the vacuole and has an effective antioxidant system. Addition of GSH significantly relieved of Cd toxicity in rice with plant growth and cell structure restored, MDA accumulation reduced, and the recovery was better in Bing97252. GSH significantly increased root POD, CAT, APX activity, shoot AsA content and AsA/DHA ratios in the cadmium-resistant genotype, significantly reduced GST activity in roots, GSH content in shoots and Cu/Zn-SOD activity at thel5th d in the both genotypes. Addition of IAA also alleviated the Cd toxicity to some extent with significantly increase of root dry weight, cell structure recovery, reducing shoot MDA accumulation and Cd accumulation in plants. IAA increased root AsA content, decreased the GSH content, GST activity and shoot POD activity. Combined GSH and IAA treatment can also significantly alleviate the symptoms of cadmium toxicity on the growth of rice; the effect was similar to single addition of GSH. The differences are that Cu/Zn-SOD activity, GSH content, GST activity, shoot AsA content and AsA/DHA values were lower with Cd+GSH+IAA treatment. These results showed that exogenous GSH, IAA may both take part in chelation, the effect of GSH should be related to restoration of antioxidant system, but IAA appeared to have no effect on antioxidant system.
     3 Genotypic dependent effect of exogenous glutathione on Cd-induced changes in cadmium and mineral uptake and accumulation in rice seedlings
     We evaluated how the different rice genotypes respond to Cd toxicity in the presence of GSH. We studied the effects on growth, Cd and mineral uptake and accumulation. The results showed that Cd stress (5,50μM Cd) decreased plant fresh weight, reduced content of chlorophyll a, b and total carotenoids, with Cd-sensitive genotype being much sever than tolerant one. Cd significantly decreased concentration and accumulation of Mn in root/shoot, and Zn in shoot, but increased Cu concentration in root/shoot. Significantly negative correlation was discovered between shoot Zn concentration and shoot/root Cd concentration, and between root Cd and Mn concentration. Exogenous GSH significantly alleviated Cd-induced growth inhibition in both genotypes, and significantly reduced Cd concentration in roots and shoots. Meanwhile, in 5μM Cd, the concentrations of Ca, Mn in Bing97252, and Ca, Zn in Xiushui63 in roots were elevated by addition of GSH. In 50dM Cd, external GSH enhanced the translocation of Zn. The effects of GSH were different between genotypes and dose of Cd treatment.
     4 Difference in response to Cd toxicity in photosynthesis and phytochelatins between Cd tolerant and sensitive rice genotypes and as affected by exogenous glutathione
     We evaluated how the different genotypes responded in photosynthesis and phytochelatins to Cd toxicity in the presence of GSH. Plant height, chlorophyll content, net photosynthetic rate (Pn) were reduced in the treatments of 5 and 50μM Cd and Cd-sensitive genotype showed much severer in the reduction than tolerant one. Cd stress caused decrease in maximal photochemical efficiency of PSⅡ(Fν/Fm) and effective PSⅡquantum yield (Y(Ⅱ)) and increase in quantum yield of regulated energy dissipation (Y(NPQ)), with Cd-sensitive genotype being more evident. Cd-induced phytochelatins (PCs), GSH and Cysteine (Cys) accumulation was observed in roots of both genotypes, with a markedly higher level in PCs and GSH on day 5 in Bing97252 compared with that in Xiushui63. Exogenous GSH significantly alleviated growth inhibition in Xiushui63 under 5μM Cd, and both genotypes in 50μM Cd. External GSH significant enhanced chlorophyll content, Pn, Fv/Fm and Y(II) of the plants exposed to Cd, but decreased Y(NPQ) and the coefficient of nonphotochemical quenching (qN). GSH addition significantly increased root GSH levels of both genotypes during 15 d Cd exposure, except day 5 of 50μM Cd; induced up-regulation in PCs of 5μM Cd treated Bing97252 thoughtout 15 d and Xiushui63 of 5 d exposure. The results suggest that alleviation of Cd toxicity by GSH is related to a significant improvement in chlorophyll content, photosynthetic performance and root GSH levels.
     5 Proteomic analysis to unravel mild cadmium stress response in rice seedlings and as affected by exogenous glutathione
     We applied 5μM Cd to investigate the effect of environmentally realistic Cd concentration on proteomics in rice. A comparative analysis between two genotypes with proteomic approach revealed that proteins involved in anti-oxidative system, carbohydrate metabolism, membrane protection, protein synthesis, DNA expression and defense in roots; photosystem, ROS signaling, energy, and protein degradations in leaves are important in Cd tolerance. We also applied GSH to exam the alleviating effects on Cd toxicity. GSH enhanced the expressions of proteins involved in anti-oxidative system, carbohydrate metabolism, membrane protection, protein synthesis, DNA expression and defense in roots; Calvin cycle, protein and amino acid metabolism, heat shock responses in leaves. The results suggested GSH play an important role in elevating Cd tolerance of rice in these processes.
引文
陈坤明,宫海军,王锁民.2004.植物谷胱甘肽代谢与环境胁迫.西北植物学报,24:1119-1130.
    程衔亮,史舟,朱有为,刘超,李洪义.2006.浙江省优势农产区土壤重金属分异特征及评价.水土保持学报,20(1):103-107.
    郝怀庆,施国新,杜开和.2001.镉污染对水鳖的毒害影响.西北植物学报,21(6):1237-1240.
    华春,王仁雷,刘友良.2003.外源GSH对盐胁迫下水稻叶绿体活性氧清除系统的影响.植物生理与分子生物学学报,29:415-420.
    李荣春.2000.Cd, Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响.植物生态学报,24(2):238-242.
    李元,王焕校,吴玉树.1992.Cd、 Fe及其复合污染对烟草叶片几项生理指标的影响.生态学报,12(2):147-153.
    罗立新.1999.镉对小麦细胞膜脂过氧化的效应.河南科学,17:47-49.
    麦维军,王颖,梁承邺,张明永.2005.谷胱甘肽在植物抗逆中的作用.广西植物,25:570-575.
    麦维军,张明永.2005.高等植物体内的谷胱甘肽.生物学通报,40:4-5.
    仇硕,黄苏珍.2008.Cd胁迫下黄菖蒲幼苗根系生长与Cd积累的研究.植物资源与环境学报,17:33-38.
    阮海华,沈文飚,叶茂炳,徐朗莱.2001.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护效应.科学通报,46(23):1993-1997.
    邵国胜.2005.水稻镉耐性和积累的基因型差异与机理研究[D].杭州:浙江大学.
    王凯荣,郭焱,何电源,胡荣桂.1993.重金属污染对稻米品质影响的研究.农业环境保护,12(6):254-257.
    魏爱丽,陈云昭.2000.IAA对盐胁迫下大豆幼苗膜伤害及抗盐力的影响.西北植物学报,20:410-414.
    许长成,赵世杰,邹奇.1993.植物膜脂过氧化水平硫代巴比妥酸测定方法中的干扰因素.植物生理学通讯,29(5):361-363.
    徐勤松,施国新,杜开和.2001.镉胁迫对水车前叶片抗氧化酶系统和亚显微结构的影响.农村生态环境,17(2):30-34.
    杨居荣,贺建群,张国祥,毛显强.1995.农作物对Cd毒害的耐性机理探讨.应用生态学报,6:87-91.
    杨居荣,黄翌.1994.植物对重金属的耐性机理.生态学杂志,15(6):20-26.
    曾广文,蒋德安.2000.植物生理学.中国农业科技出版社.
    赵可夫,王韶唐.1990.作物抗性生理.北京:农业出版社.304.
    周红卫,施国新,徐勤松.2003.Cd2+污染水质对水花生根系抗氧化酶活性和超微结构的影响.植物生理学通讯,39(3):211-214.
    朱新开,盛海君,顾晶,张容,李春燕.2005.应用SPAD值预测小麦叶片叶绿素和氮含量的初步研究.麦类作物学报,25:16-50.
    朱速松,刘友良.1996.6-苄基腺嘌呤对大麦耐盐性的调节机理.南京农业大学学报,19:12-16.
    Abdel-Latif.2008. Cadmium Induced Changes in Pigment Content, Ion Uptake, Proline Content and Phosphoenolpyruvate Carboxylase Activity in Triticum Aestivum Seedlings. Australian Journal of
    Basic and Applied Science,2:57-62.
    Ahsan N, Lee S H, Lee D G, Lee H, Lee S W, Bahk J D, Lee B H.2007. Physiological and protein profiles alternation of germinating rice seedlings exposed to acute cadmium toxicity. Plant Biology and Pathology,330:735-746.
    Aki T, Shigyo M, Nakano R, Yoneyama T, Yanagisawa S 2008. Nano scale proteomics revealed the presence of regulatory proteins including three ft-like proteins in phloem and xylem saps from rice. Plant and Cell Physiology,49:767-790.
    Alscher R G.1989. Biosynthesis and antioxidant function of glutathione in plants. Physiologia Plantarum,77:457-464.
    Alscher R G, Erturk N, Heath L S.2002. Role of superoxide dismutase (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany,53:1331-1341.
    Aravind P, Prasad M N V.2003. Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L.:a free floating freshwater macrophyte. Plant Physiology and Biochemistry,41: 391-397.
    Asada K.1999. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons. Annual Review of Plant Physiology and Plant Molecular Biology,50:601-639.
    Athur E, Crews H, Morgan C.2000. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. International Journal of Phytoremediation,2:1-21.
    Baisak R D, Rana P B B, Acharya M K.1994. Alterations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress. Plant and Cell Physiology,35:489-495.
    Bao F, Li J Y.2002. Evidence that the auxin signaling pathway interacts with plant stress response. Acta Botanica Sinica,44:532-536.
    Baszinsky T, Wajda L, Krol M, Wolinska D, Krupa Z, Tukendorf A.1980. Photosynthetic activities of cadmium treated tomato plants. Physiologia Plantarum,48:365-370.
    Bekesiova B, Hraska S, Libahtova J, Moravcikova J, Matusikova I.2008. Heavy-metal stress induced accumulation of chitinase isoforms in plants. Molecular Biology Reports,35:579-588.
    Booth B.2005. The added danger of counterfeit cigarettes. Environmental Science and Technology,39: 34A.
    Bourbouloux A, Shahi P, Chakladar A, Delrot S, Bachhawat A K.2000. Hgtlp, a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. Journal of Biological Chemistry, 275:13259-13265.
    Bowler C, Montagu M V, Inze D.1992. Superoxide dismutase and stress tolerance. Annual Review of Plant Physiology and Plant Molecular Biology,43:83-116.
    Bowler C, Slooten L, Vandenbranden S, De Rycke R, Botterman J, Sybesma C, Van Montagu M, Inze D. 1991. Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. EMBO Journal,10:1723-1732.
    Brown R E, Mattjus P.2007. Glycolipid transfer proteins. Biochimica et Biophysica Acta,1771: 746-760.
    Bryk R, Lima C D, Erdjument-Bromage H, Tempst P, Nathan C.2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science,295:1073-1077.
    Buchanan B B, Gruissem W, Jones RL (eds).2000. Biochemistry & molecular biology of plants. American Society of Plant Physiology.
    Burton K W, King J B, Morgan E.1986. Chlorophyll as an indicator of the upper critical tissue concentration of cadmium in plants. Water, Air, and Soil Pollution,27:147-154.
    Cairns N G, Pasternak M, Watcher A, Cobbett C S, Meyer A J.2006. Maturation of arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant physiology,141:446-455.
    Carpentier S C, Witters E, Laukens K, Deckers P, Swennen R, Panis B.2005. Preparation of protein extracts from recalcitrant plant tissues:An evaluation of different methods for two-dimensional gel electrophoresis analysis. Proteomics,5:2497-2507.
    Cataldo C D, Garland T R, Wildung R E.1983. Cadmium uptake, kinetics in intact soybean plants. Plant physiology,73:844-848.
    Chaoui A, Ghorbal M H, Ferjani E E.1997. Effects of cadmium-zinc interactions on hydroponically grown bean (Phaseolus vulgaris L.). Plant Science,126:21-28.
    Chaoui A, Mazhoudi S.1997. Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus ulgaris L.).Plant Science,127:139-147.
    Chastain C J, Chollet R.2003. Regulation of pyruvate, orthophosphate dikinase by ADP-/Pi-dependent reversible phosphorylation in C3 and C4 plants. Plant Physiology and Biochemistry,41:523-532.
    Chen F, Wang F, Zhang G P, Wu F B.2008. Identification of barley varieties tolerant to cadmium toxicity. Biological Trace Element Research,121:171-179.
    Chen F M.1984. Determining the chlorophyll contents of plant leaves by acetones/ethanol mixture assay. Forest Science Communications,2:4-8.
    Chen W P, Chang A C, Wu L S, Li L Q, Kwon S, Page A L.2007. Probability distribution of cadmium partitioning coefficients of cropland soils. Soil Science,172:132-140.
    Chen Y, Huerta A J.1997. Effects of sulfur nutrition on photosynthesis in cadmiumtreated barley seedlings. Journal of Plant Nutrition,20:845-856.
    Chien H, Wang J, Lin C C, Kao C H.2001. Cadmium toxicity of rice leaves is mediated through lipid peroxidation. Plant Growth Regulation,33:205-213.
    Choi Y E, Harada E, Wada M, Tsuboi H, Morita Y, Kusano T, Sano H.2001. Detoxification of cadmium in tobacco plants:formation and active excretion of crytals containing cadmium and calcium through trichomes. Planta,213:45-50.
    Christopher S C.2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology, 123:825-832.
    Chungh L K, Sawhney S K.1999. Photosynthetic activities of Pisum sativum seedlings grown in the presence of cadmium. Plant Physiologia Plantarum,37:297-303.
    Chukwuma C.1995. A comparative study of cadmium, lead, zinc, pH, and bulk density from the Enyigba lead and zinc mine in two different seasons. Ecotoxicology and Environmental Safety,31: 246-249.
    Clemens S.2006. Toxic metal accumulation, responses to Cd exposure and mechanisms of tolerance in plants. Biocheme,88:1707-1719.
    Clemens S, Antosiewicz D M, Ward J M, Schachtman D P, Schroeder J I.1998. The plant cDNA LCT1 mediates the uptake of calcium and cadmium in yeast. Proceedings of the National Academy of Sciences,95:12043-12048.
    Clijsters H, van Assche F.1985. Inhibition of photosynthesis by heavy metals. Photosynthesis Research,7: 31-40.
    Cnubben N H P, Rietjens I M C M, Wortelboer H, van Zanden J, van Bladeren P J.2001. The interplay of glutathione-related processes in antioxidant defense. Environmental Toxicology and Pharmacology,10:141-152.
    Cobbett C S.2000. Phytochelatins and their roles in heavy metal detoxification. Plant Physiology,123: 825-832.
    Cobbett C, Goldsbrough P.2002. Phytochelatins and metallothioneins:roles in heavy metal detoxification and homeostasis. Annual Review of Plant Physiology and Plant Molecular Biology, 53:159-182.
    Conner M, Krell T, Lindsay J G.1996. Identification arid purification of a distinct dihydrolipoamide dehydrogenase from pea chloroplasts. Planta,200:195-202.
    Connolly E L, Fett J P, Guerinot M L.2002. Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell,14:1347-1357.
    Corticeiro S C, Lima A I G, Figueira E M D A P.2006. The importance of glutathione in oxidative status of Rhizobium leguminosarum biovar viciae under Cd exposure. Enzyme and Microbial Technology, 40:132-137.
    Costa G, Morel J L.1993. Cadmium uptake by Lupinus albus L.:Cadmium excretion, a possible mechanism of cadmium tolerance. Journal of Plant Nutrition,16(10):1921-1929.
    Cui S X, Huang F, Wang J, Ma X, Cheng Y S, Liu J Y.2005. A proteomic analysis of cold stress responses in rice seedlings. Proteomics,5:3162-3172.
    DalCorso G, Farinati S, Maistri S, Furini A.2008. How Plants Cope with Cadmium:Staking All on Metabolism and Gene Expression. Journal of Integrative Plant Biology,50(10):1268-1280.
    Daud M K, Sun Y Q, Dawood M, Hayat Y, Variath M T, Wu Y X, Raziuddin, Mishkat U, Salahuddin, Najeeb U, Zhu S J.2009. Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. Journal of Hazardous Materials,161:463-473.
    Di Cagno R, Guidi L, De Gara L, Soldatini G F.2001. Combined cadmium and ozone treatments affect photosynthesis and ascorbate-dependent defenses in sunflower. New Phytologist,151:627-636.
    Di Martino C, Del(?)ne S, Alvino A, Loreto F. 1999. Photorespiration rate in spinach leaves under moderate NaCl stress. Photosynthetica,36:233-242.
    Dong J, Wu F B, Zhang G P.2006. Influence of cadmium on antioxidant capacity and four microelement concentrations in tomato seedlings (Lycopersicon esculentum). Chemosphere,64:1659-1666.
    Dringen R, Gutterer J M, Gros C, Hirrlinger J.2001. Aminopeptidase N mediates the utilization of the GSH precursor CysGly by cultured neurons. Journal of Neuroscience Research,66:1003-1008.
    Edwards R, Dixon D P, Walbo T V.2000. Plant glutathione S-transferases:enzymes with multiple functions in sickness and in health. Trends in Plant Science,5:193-198.
    Eshdat Y, Holland D, Faltin Z, Ben-Hayyim G.1997. Plant glutathione peroxidases. Plant physiology, 106:1023-1076.
    Fang Z, Sperling M, Welz B.1991. Flame atomic absorption spectrometric determination of lead in biological samples using a flow injection system with on-line preconcentration by coprecipitation without filtration. Journal of Analytical Atomic Spectrometry,6:301-306.
    Ferreira R R, Fornazier R F, Vitoria A P, Lea P J, Azevedo R A.2002. Changes in antioxidant enzyme activities in soybean under cadmium stress. Journal of Plant Nutrition,25:327-342.
    Florijn P J, van Beusichem M L.1993. Uptake and distribution of cadmium in maize inbred lines. Plant and Soil,150:25-32.
    Fornazier R F, Ferreira R R, Vitoria A P, Molina S M G, Lea P J, Azevedo R A.2002. Effects of cadmium on antioxidant enzyme activities in sugar cane. Biologia Plantarum,45:91-97.
    Foyer C H, Lelandais M, Kunert K J.1994. Photooxidative stress in plants. Physiologia Plantarum,92: 696-717.
    Foyer C H, Theodoulou F L, Delrot S.2001. The function of inter-and intracellular glutathione transport systems in plant. Trends in Plant Science,6:486-492.
    Foyer C H, Noctor G.2005a. Redox homeostasis and antioxidant signaling:a metabolic interface between stress perception and physiological responses. Plant Cell,17:1866-1875.
    Foyer C H, Noctor G.2005b. Oxidant and antioxidant signaling in plants:a re-evaluation of the concept of oxidative stress in a physiological context. Plant, Cell and Environment,29:1056-1071.
    Frankart C, Eullaffroy P, Vernet G.2003. Comparative effects of four herbicides on non-photochemical fluorescence quenching in Lemna minor. Environmental and Experimental Botany,49:159-168.
    Fuhrer J.1982. Ethylene biosynthesis and cadmium toxicity in leaf tissue of beans Phaseolus vulagris L. Plant Physiology,70:162-167.
    Gallego S M, Benavides M P, Tomaro M L.1996. Effect of heavy metal ion excess on sunflower leaves: evidence for involvement of oxidative stress. Plant Science,121:151-159.
    Garcia-Olmedo F, Molina A, Sequra A, Moreno M.1995. The defensive role of non-specific lipid-transfer proteins in plants. Trends in Microbiology,3:72-74.
    Ge C L, Wan D Z, Wang Z G, Ding Y, Wang Y L, Shang Q, Ma F, Luo S S.2008. A proteomic analysis of rice seedlings responding to 1,2,4-trichlorobenzene stress. Journal of Environmental Sciences,20: 309-319.
    Ge C L, Wang Z G, Wan D Z, Ding Y, Wang Y L, Shang Q, Luo S S.2009. Proteomic Study for Responses to Cadmium Stress in Rice Seedlings. Rice Science,16:33-44.
    Gehty B, Britantais J M, Baker N R.1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta,99:87-92.
    Gomez L D, Noctor G, Knight M, Foyer C H.2004. Regulation of calcium signaling and gene expression by glutathione. Journal of Experimental Botany,55:1851-1859.
    Grant C A, Buckley W T, Bailey L D, Selles F.1998. Cadmium accumulation in crops. Canadian Journal of Plant Science,78:1-17.
    Gratao P L, Polle A, Lea P J, Azevedo.2005. Making the life of heavy metal-stressed plants a little easier. Functional Plant Biology,32:481-494.
    Grill E, Winnacker E L, Zenk M H.1987. Phytochelatins, a class of heavy metal-binding peptides from plants are functionally analogous to metallothioneins. Proceedings of the National Academy of Sciences,84:439-443.
    Guimaraes B, Souchon H, Honore N, Saint-Joanis B, Brosch R, Shepard W, Cole S T, Alzari P M.2005. Structure and mechanism of the alkyl hydroperoxidase AhpC, a key element of the Mycobacterium tuberculosis defense system against oxidative stress. Journal of Biological Chemistry,280: 25735-25742.
    Ha S B, Smith A P, Howden R, Dietrich W M, Bugg S, O'Connell M J, Goldsbrough P B, Cobbett C S. 1999. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe. Plant Cell,11:1153-1163.
    Hall J L.2002 Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany,53 (366):1-11.
    Hall J L, Williams L E.2003. Transition metal transporters in plants. Journal of Experimental Botany, 54:2601-2613.
    Halliwell B, Gutteridge J M C.1990. Role of free radicals and catalytic metal ions in human disease:an overview. Methods in Enzymology,186:1-85.
    Haramaki N, Han D, Handelman G J, Tritschler H J, Packer L.1997. Cytosolic and mitochondrial systems for NADH-and NADPH-dependent reduction of a-lipoic acid. Free Radical Biology and Medicine,22:535-542.
    Hassan M J, Shao G S, Zhang G P.2005. Influence of cadmium toxicity on growth and antioxidant enzyme activity in rice cultivars with different grain cadmium accumulation. Journal of Plant Nutrition,28: 1259-1270.
    He J Y, Ren Y F, Zhu C, Yan Y P, Jiang D A.2008. Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica,46:466-470.
    Heber U, Bligny R, Streb P, Douce R.1996 Photorespiration is essential for the protection of the photosynthetic apparatus of C3 plants against photoinactivation under sunlight. Botanica Acta,109: 307-315.
    Hegediis A, Erdei S, Horvath G.2001. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Science,160:1085-1093.
    Hendry G A F, Baker A J M, Ewart C F.1992. Cadmium tolerance and toxicity, oxygen radical processes and molecular damage in cadmium-tolerant and cadmium-sensitive clones of Holcus lanatus. Acta Botanica Neerlandica,41:271-281.
    Herawati N, Suzuki S, Hayashi K, Rivai IF, Koyama H.2000. Cadmium, copper, and zinc levels in rice and soil of Japan, Indonesia, and China by soil type. Bulletin of Environmental Contamination and Toxicology,64:33-39.
    Hernandez L E, Lozano-Rodriguez E, Garate A, Carpena-Ruiz R.1998. Influence of cadmium on the uptake, tissue accumulation and subcellular distribution of manganese in pea seedlings. Plant Science,132:139-151.
    Herschbach C, van Der Zalm E, Schneider A, Jouanin L, De Kok L J, Rennenberg H.2000. Regulation of sulfur nutrition in wild-type and transgenic poplar by over-expressing y-glutamylcysteine synthetase in the cytosol as affected by atmospheric H2S. Plant Physiology,124:461-473.
    Heumann H G.1987. Effects of heavy metals on growth and ultrastructure of Chara vulgaris. Protoplasma,136:37-48.
    Hissin P J, Hilf R.1976. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Analytical Biochemistry,74:214-226.
    Hollenbach B, Schreiber L, Hartung W, Dietz K-J.1997. Cadmium leads to stimulated expression of the lipid transfer protein genes in barley:implications for the involvement of lipid transfer proteins in wax assembly. Planta,203:9-19.
    Hothorn M, Wachter A, Gromes R, Stuwe T, Rausch T, Scheffzek K.2006. Structural basis for the redox control of plant glutamate cysteine ligase. Journal of Biological Chemistry,15(37): 27557-27565.
    Howden R, Andersen C R, Coldsbrough P B, Cobbett C S.1995. A Cadmium-sensitive,
    glutathione-deficient mutant of arabidopsis thaliana. Plant Physiology,107:1067-1073.
    Ingle R A, Smith J A C, Sweetlove L J.2005. Responses to nickel in the proteome of the hyperaccumulator plant Alyssum lesbiacum. BioMetals,18:627-641.
    Jalil A, Selles F, Clarke J M.1994. Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. Journal of Plant Nutrition,17:1839-1858.
    Jamai A, Tommasini R, Martinoia E, Delrot S.1996. Characterization of glutathione uptake in broad bean leaf protoplasts. Plant Physiology,111:1145-1152.
    Jarup L, Berglund M, Elinder C G, Nordberg G, Vahter M.1998. Health effects of cadmium exposure-a review of the literature and a risk estimate. Scandinavian Journal of Work, Environment & Health,24:1-51.
    Jentschke G, Godbold D L.2000. Metal toxocity and ectomychorriza. Physiol Plantarum,109:107-116.
    Jiang W S, Liu D H, Xu P.2009. Cd-induced system of defence in the garlic root meristematic cells. Biologia Plantarum,53:369-372.
    Jiang X J, Lou Y M, Zhao Q G, Baker A J M, Christie P, Wong M H.2003. Soil Cd availability to Indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere,50:813-818.
    Jin X F, Yang X E, Islam E, Liu D, Mahamood Q.2008. Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. Journal of Hazardous Materials,156:387-397.
    Jonak C, Nakagami H, Hirt H.2004. Heavy metal stress:activation of distinct mitogenactivated protein kinase pathways by copper and cadmium. Plant Physiology.136:3276-3283.
    Kallberg Y, Oppermann U, Jornvall H, Persson B.2002. Short-chain dehydrogenases/reductases (SDRs). European Journal of Biochemistry,269:4409-4417.
    Kampfenkel K, Marc V M, Dirk I.1995. Effects of iron excess on Nicotiana plumbaginifolia plant. Plant Physiology,107:725-735.
    Kang Y J, Enger M D.1987. Glutathione is involved in the early cadmium cytotoxic response in human lung carcinoma cells. Toxicology,48:93-101.
    Kao W Y, Tsai T T, Shin C N.2003. Photosynthetic gas exchange and chlorophyll a fluorescence of three wild soybean species in response to NaCl treatments. Photosynthetica,41:415-419.
    Khan M S.2007. Engineering photorespiration in chloroplasts:a novel strategy for increasing biomass production. Trends in Biotechnology,25:437-440.
    Kim D W, Rakwal R, Agrawal G K, Jung Y H, Shibato J, Jwa N S, Iwahashi Y, Iwahashi H, Kim D H, Shim IS, Usui K.2005. A hydroponic rice seedling culture model system for investigating proteome of salt stress in rice leaf. Electrophoresis,26:4521-4539.
    Kim Y, Yang Y, Lee Y.2002. Pb and Cd uptake in rice roots. Physiol Plantarum,116:368-372.
    Kirkham M B.2006. Cadmium in plants on polluted soil:Effects of soil factors hyperaccumulation, and amendments. Geoderma,137:19-32.
    Kondo K.1996. Incidence of minamata disease in communities along the Agano river, Niigata, Japan-pattern of the exposure and official diagnosis of patients. Nippon Eisegaku Zasshi,51: 599-611.
    Kovtun Y, Chiu W L, Tena G, Sheen J.2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences,97:2940-2945.
    Kramer D M, Johnson G, Kiirats O, Edwards G E.2004. New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynthesis Research,79:209-218.
    Krupa Z.1988. Cadmium-induced changes in the composition and structure of the lightharvesting chlorophyll a/b protein complex Ⅱ in radish cotyledons. Physiologia Plantarum,73:518-524.
    Krupa Z, Baszynski T.1995. Some aspects of heavy-metals toxicity towards photosynthetic apparatus-direct and indirect effects on light and dark reactions. Acta Physiologiae Plantarum,17:177-190.
    Kukier U, Chaney R L.2002. Growing rice grain with controlled cadmium concentrations. Journal of Plant Nutritin,25:1793-1820.
    Kiipper H, Lombi E, Zhao F-J, Wieshammer G, McGrath S P.2001. Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. Journal of Experimental Botany,52(365):2291-2300.
    Lagriffoul A, Mocquot B, Mench M, Vangronsveld J.1998. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize plants (Zea mays L.). Plant and Soil,200:241-250.
    Lane T W, Morel F M M.2000. A biological function for cadmium in marine diatoms. Proceedings of the National Academy of Sciences,97(9):4627-4631.
    Larbi A, Morales F, Abadia A, Gogorcena Y, Lucena J J, Abadia J.2002. Effects of Cd and Pb in sugar beet plants grown in nutrient solution:induced Fe deficiency and growth inhibition. Functional Plant Biology,29(12):1453-1464.
    Larsson E H, Bornman J F, Asp H.1998. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. Journal of Experimental Botany,49: 1031-1039.
    Lee K, Bae D W, Kim S H, Han H J, Liu X, Park H C, Lim C O, Lee S Y, Chung W S.2010. Comparative proteomic analysis of the short-term responses of rice roots and leaves to cadmium. Journal of Plant Physiology,167:161-168.
    Leon A M, Palma J M, Corpas F J, Gomez M, Romer-Puertas M C, Chatterjee D, Mateos R M, del Rio L A, Sandalio L M.2002. Antioxidative enzymes in cultivars of peppers plants with different sensitivity to cadmium. Plant Physiology and Biochemistry,40:813-820.
    Li R, Moore M, King J.2003. Investigating the Regulation of One-carbon Metabolism in Arabidopsis thaliana. Plant and Cell Physiology,44(3):233-241.
    Lin R, Wang X, Luo Y, Du W, Guo H, Yin D.2007. Effects of soil cadmium on growth, oxidative stress and antioxidant system in wheat seedlings(Triticum aestivum L.). Chemosphere,69:89-98.
    Liu D H, Kottke I.2004. Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. Journal of Biosciences,29:329-335.
    Liu J G, Liang J S, Li K Q, Zhang Z J, Yu B Y, Lu X L, Yang J C, Zhu Q S.2003. Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere,52:1467-1473.
    Lopez-Millana A F, Moralesa F, Gogorcenab Y, Abadiaa A, Abadia J.2009. Metabolic responses in iron deficient tomato plants. Journal of Plant Physiology,166(4):375-384.
    Malik D, Sheoran I S, Singh R.1992. Carbon metabolism in leaves of cadmium treated wheat seedlings. Plant Physiology and Biochemistry,30:223-229.
    Mateo A, Muhlenbock P, Rusterucci C, Chang C C C, Miszalski Z, Karpinska B, Parker, J E,
    Mullineaux P M, Karpinski S.2004. LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiology,136:2818-2830.
    Matuda S, Saheki T.1982. Intracellular distribution and biosynthesis of lipoamide dehydrogenase in rat liver. Journal of Biochemistry,91:553-561.
    Maxwell K, Johnson G N.2000. Chlorophyll fluorescence-a practical guide. Journal of Experimental Botany,51:659-668.
    May M J, Vernoux T, Leaver C, Montagu M V, Inze D.1998. Glutathione homeostasis in plants: implications for environmental sensing and plant decelopment. Journal of Experimental Botany, 49(321):649-667.
    McCarthy I, Romero-Puertas M C, Palma J M, Sandlio L M, Corpas F J, Gomez M, Del Rio L A.2001. Cadmium induces senescence symptoms in leaf peroxisomes of pea plants. Plant, Cell and Environment,24:1065-1073.
    Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R.2005. Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protists and plants. FEMS Microbiology Reviews,29:653-671.
    Mittler R.2002. Oxidative stress, antioxidants and stress tolerance. Trends in plant science,7:405-410.
    Mocquot B, Vangronsveld J, Clijsters H, Mench M.1996. Copper toxicity in young maize (Zea mays L.) plants:effects on growth, mineral and chlorophyll contents, and enzyme activities. Plant Soil,182: 287-300.
    Moons A, Valcke R, van Montagul M.1998. Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant Journal.15: 89-98.
    Moral R, Gomez I, Navarro-Pedreno J, Mataix J.1994. Effects of cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture. Journal of Plant Nutrition,17:953-962.
    Moya J L, Ros R, Picazo I.1995. Heavy metal-hormone interactions in rice plants:effects on growth, net photosynthesis, and carbohydrate distribution. Journal of Plant Growth Regulation,14:61-67.
    Muller M, Zechmann B, Zellnig G.2004. Ultrastructural localization of glutathione in Cucurbita pepo plants. Protoplasma.223:213-219.
    Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, David BK, Issakidis E, Jean-Pierre J t, Rouhier N.2006. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant physiology,142: 1364-1379.
    Ndimba B K, Chivasa S, Simon W J, Slabas A R.2005. Identification of Arabidopsis salt and osmotic stress responsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry. Proteomics,5:4185-4196.
    Neumann D, Zur Nieden U, Lichtenberger O, Leopold I.1995. How does Armeria maritime tolerate high heavy metal concentrations? Journal of Plant Physiology,146:704-717.
    Nielsen H D, Brownlee C, Coelho S M, Brown M T.2003. Inter-population differences in inherited copper tolerance involve photosynthetic adaptation and exclusion mechanisms in Fucus serratus. New Phytologist, 160:157-165.
    Nishizono H, Ichikawa H, Suzuki S, Ishii F.1987. The role of the root cell wall in the heavy metal tolerance of Alhyrium yokosoense. Plant and Soil,65:480-482.
    Nocito F F, Espen L, Crema B, Cocucci M, Sacchi G A.2008. Cadmium induces acidosis in maize root cells. New Phytologist,179:700-711.
    Noctor G, Foyer C H.1998. Ascorbate and glutathione:keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology,49:249-279.
    Noctor G, Gomez L, Vanacker H, Foyer C H.2002a. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signalling. Journal of Experimental Botany,53:1283-1304.
    Noctor G, Veljovic-Jovanovic S D, Driscoll S, Novitskaya L, Foyer C H.2002b. Drought and oxidative load in the leaves of C3 plants:a predominant role for photorespiration? Annals of Botany,89: 841-850.
    Nwugo C C.2008. Physiological and molecular studies on silicon-induced cadmium tolerance in rice (Oryza sativa L.) [D]. Miami:Miami university.
    Ogensen J E, Wimmer R, Larsen J N, Spangfort M D, Otzen D E.2002. The major birch allergen, Bet v 1, shows affinity for a broad spectrum of physiological ligands. Journal of Biological Chemistry,26: 23684-23692.
    Padmaja K, Prasad D, Prasad A.1990. Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosynthetica,24:399-405.
    Panou-filotheou H, Bosabalidis A M, Karataglis S.2001. Effects of copper toxicity on leaves of oregano (Origanum vulgare subsp. hirtum). Annals of Botany 88:207-214.
    Papageorgiou G C, Govindjee, (eds).2004. Chlorophyll a fluorescence:a signature of photosynthesis. Dordrecht: Springer, pp 818.
    Pasternak M, Lim B, Wirtz M, Hell R, Cobbett C S, Meyer A J.2008. Restricting glutathione biosynthesis to the cytosol is sufficient for normal plant development. The Plant Journal,53 (6):999-1012.
    Pierzynski G M, Schwab A P.1993. Heavy Metals in the environment:bioavailability of zinc, cadmium and lead in a metal-contaminated alluvial soil. Journal of Environmental Quality,22:247-254.
    Pilon-Smits E.2005. Phytoremediation. Annual Review of Plant Biology,56:15-39.
    Poschenrieder C, Gunse B, Barcelo J.1989. Influence of cadmium on water relations, stomatal resistance, and abscisic acid content in expanding bean leaves. Plant Physiology,90:1365-1371.
    Prasad M N V.1995. Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany,35:525-545.
    Ralph P J, Burchett M D.1998. Photosynthetic response of Halophilia ovalis to heavy metal stress. Environ Pollution,103:91-101.
    Rascio N, Vecchia F D, Ferretti M, Merlo L, Ghisi R.1993. Some effects of cadmium on maize plants. Archives of Environmental Contamination and Toxicology,25:244-249.
    Rauser W E.1995. Phytochelatins and related peptides. Plant physiology,109:1141-1149.
    Rauser W E, Meuwly P.1995. Rentention of cadmium in roots of maize seedlings-role of complexation by phytochelatins and related thiol peptides. Plant Physiology,109:195-202.
    Rea P A, Li Z S, Lu Y P, Drozdowicz Y M, Martinoia E.1998. From vacuolar GS-X pumps to multispecific ABC transporters. Annual Review of Plant Physiology and Plant Molecular Biology, 49:727-760.
    Rivetta A, Negrini N, Cocucci M.1997. Involvement of Ca2+-calmodulin in Cd2+ toxicity during the early phases of radish (Raphanus sativus L.) seed germination. Plant, Cell & Environment,20:
    600-608.
    Romero-Puertas M C, Palma J M, Gomez M, Del Rio L A, Sandalio L M.2002. Cadmium causes the oxidative modification of proteins in pea plants. Plant, Cell and Environment,25:677-686.
    Rouhier N, Lemaire S D, Jacquot J P.2008. The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annual Review of Plant Biology,59: 143-66.
    Ryu H S, Song M Y, Kim C Y, Han M, Lee S K, Ryoo N, Cho J I, Hahn T R, Jeon J S.2009. Proteomic analysis of rice mutants susceptible to Magnaporthe oryzae. Plant Biotechnology Reports,3:167-174.
    Salt D E, Prince R C, Pickering I J, Raskin I.1995. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology,109:1427-1433.
    Sanchez-Fernandez R, Fricker M, Corben L B, White N S, Sheard N, Leaver CJ, Van Montagu M, Inze D, May M J.1997. Cell proliferation and hair tip growth in the Arabidopsis root are under mechanistically different forms of redox control. Proceedings of the National Academy of Sciences,94:2745-2750.
    Sandalio L M, Dalurzo H C, Gomez M, Romero-Puertas M C, del Rio L A.2001. Cadmium-induced changes in the growth and oxidative metabolism of pea plants. Journal of Experimental Botany,52: 2115-2126.
    Sanita di Toppi L, Gabrielli R.1999. Response to cadmium in higher plants. Environmental and Experimental Botany,41:105-130.
    Sanz Y.2007. Aminopeptidases. Polaina J, MacCabe A P. (eds.), Industrial Enzymes. Netherlands:Springer, pp 243-260.
    Sarry J E, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet J B, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J.2006. The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics,6:2180-2198.
    Sawhney V, Sheoran I S, Singh R.1990. Nitrogen fixation, photosynthesis and enzymes of ammonia assimilation and ureide biogenesis in nodules of mungbean(Vigna radiata) grown in presence of cadmium. Indian Journal of Experimental Biology,28:883-886.
    Schneider S, Bergmann L.1995. Regulation of glutathione synthesis in suspension cultures of parsley and tobacco. BotanicaActa,108:34-40.
    Schreiber U.2004. Pulse-amplitude (PAM) fluorometry and saturation pulse method. In:Papageorgiou G C, Govindjee (eds) Chlorophyll A Fluorescence:A Signature of Photosynthesis. Dordrecht:Springer,279-319.
    Schutzendiibel A, Polle A.2002. A plant response to abiotic stresses:heavy metal induced oxidative stress and protection by micorrhization. Journal of Experimental Botany,53:1351-1365.
    Schiitzendubel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold D L, Polle A.2001. Cadmium-induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiology,127:887-898.
    Sen C K, Packer L.1996. Antioxidant and redox regulation of gene transcription. FASEB Journal,10: 709-720.
    Shah K, Dubey R S.1995. Effect of cadmium on RNA level as well as activity and molecular forms of ribonuclease in growing rice seedlings. Plant Physiology and Biochemistry,33:577-584.
    Shah K, Kumar R G, Verna S, Dubey R S.2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science,
    161:1135-1144.
    Shamsi I H, Wei K, Zhang G P, Jilani G H, Hassan M J.2008. Interactive effects of cadmium and aluminum on growth and antioxidative enzymes in soybean. Biologia Plantarum,52(1):165-169.
    Sharma S S, Dietz K-J.2006. The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany,57(4):711-726.
    Shaw B P.1995. Effect of mercury and cadmium on the activities of antioxidative enzymes in the seedlings of Phaseolus aureus. Biologia Plantarum,37:587-596.
    Sheoran S, Aggarwal N, Singh R.1990. Effects of cadmium and nickel on in vivo carbon dioxide exchange rate of pigeon pea (Cajanus cajan L.). Plant and Soil,129:243-249.
    Shevchenko A, Wilm M, Vorm O, Mann M.1996. Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Analytical Chemistry,68:850-858.
    Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K.2002. Regulation and function of ascorbate peroxidase isoenzymes. Journal of Experimental Botany,53:1305-1319.
    Siedleska A, Baszynski T.1993. Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiologia Plantarum,87:199-202.
    Smith, G C, Brennan E G.1983. Cadmium-zinc interactionship in tomato plants. Phytopathology,73:879-882.
    Somashekaraiah B V, Padmaja K, Prasad A R K.1992. Phytotoxicity of cadmium ions on germinating seedlings of mung bean (Phaseolus vulgaris):involvement of lipid peroxides in chlorophyll degradation. Physiologia Plantarum,85:85-89.
    Song X S, Hu W H, Mao W H, Ogweno J O, Zhou Y H, Yu J Q.2005. Response of ascorbate peroxidase isoenzymes and ascorbate regeneration system to abiotic stresses in Cucumis sativus L. Plant Physiology and Biochemistry,43:1082-1088.
    Souza J F, Dolder H, Cortelazzo A L.2005. Effect of excess cadmium and zinc ions on roots and shoots of maize seedlings. Journal of Plant Nutrition,28:1923-1931.
    Stephens W E, Calder A.2005. Source and health implications of high toxic metal concentrations in illicit tobacco products. Environmental Science & Technology,39:479-488.
    Storozhenko S, Belles-Boix E, Babiychuk E, Herouart D, Davey M W, Slooten L, van Montagu M, Inze D, Kushnir S.2002. y-Glutamyl transpeptidase in transgenic tobacco plants. Cellular localization, processing, and biochemical properties. Plant Physiology,128:1109-1119.
    Tang Q Y, Feng M G.2002. DPS data processing system for practical statistics. Science Press, Beijing.
    Tetu Sasha G, Tanz S K, Vella N, Burnell J N, Ludwig M.2007. The flaveria bidentis β-carbonic anhydrase gene family encodes cytosolic and chloroplastic isoforms demonstrating distinct organ-specific expression patterns. Plant Physiology,144:1316-1327.
    Tripp B C, Smith K, Ferry J G.2001. Carbonic anhydrase:new insights for an ancient enzyme. Journal of Biological Chemistry,276:48615-48618.
    Tukaj Z, Bascik-Remisiewicz A, Skowronski T, Tukaj C.2007. Cadmium effect on the growth, photosynthesis, ultrastructure and phytochelatin content of green microalga Scenedesmus armatus: A study at low and elevated CO2 concentration. Environmental and Experimental Botany,60: 291-299.
    Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.2000. Arabidopsis basic leucine zipper transcription factors involved in an abscissic acid dependent signal transduction pathway under drought and high-salinity. Proceedings of the National Academy of Sciences,97:11632-11637.
    Ursini F, Miaorino M, Brigelius-Flohe R, Aumann K D, Roveri A, Schomburg D, Flohe L.1995. Diversity of glutathione peroxides. Methods in Enzymology,252:38-53.
    Van Assche F, Clijsters H.1990. Effects of metals on enzyme activity in plants. Plant, Cell and Environment,13:195-206.
    van Kooten O, Snel J F H.1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research,25:147-150.
    van Loon L C, Rep M, Pieterse C M J.2006. Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology,44:135-162.
    Vassilev A, Lidon FC, de Ceu Matos M, Ramalho J C, Yordanov I.2002. Photosynthetic performance and some nutrients content in cadmium-and copper-treated barley plants. Journal of Plant Nutrition, 25:2343-2360.
    Vassilev A, Manolov P.1999. Chlorophyll fluorescence of barley(Hordeum vulgare L.) seedlings growing in excess of Cd. Bulgarian Journal of Plant Physiology,23:67-76.
    Vatamaniuk O K, Bucher E A, Ward J T, Rea P A.2001. A new pathway for heavy metal detoxification in animals-phytochelatin synthase is required for cadmium tolerance in Caenorhabdites elegans. Journal of Biological Chemistry,276:20817-20820.
    Vatamaniuk O K, Mari S, Lu Y, Rea P A.2000. Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. Journal of Biological Chemistry,275 (40):31451-31459.
    Verma S, Dubey R S.2001. Effect of cadmium on soluble sugars and enzymes of their metabolism in rice. Biologia Plantarum,44:117-123.
    Vernoux T, Wilson R C, Seeley K A, Reichheld J P, Muroy S, Brown S, Maughan S C, Cobbett C S, Montagu M V, Inze D, May M J, Sung Z R.2000. The root meristemless1/cadmium sensitive gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell,12:97-110.
    Vierling E.1991. The roles of heat shock proteins in plants. Annual Review of Plant Physiology and Plant Molecular Biology,42:579-620.
    Vitoria A P, Da Cunha M, Azevedo R A.2006. Ultrastructural changes of radish leaf exposed to cadmium. Environmental and Experimental Botany,58:47-52.
    Wagner J G.1993. Accumulation of cadmium in crop plants and its consequences to human health. Advances in Agronomy,51:173-210.
    Wachter A, Wolf S, Steininger H, Bogs J, Rausch T.2005. Differential targeting of GSH1 and GSH2 is achieved by multiple transcription initiation:implications for the compartmentation of glutathione biosynthesis in the Brassicaceae. Plant Journal,41(1):15-30.
    Wang M, Zou J H, Duan X C, Jiang W S, Liu D H.2007. Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresource Technology,98:82-88.
    Watts R N, Hawkins C, Ponka P, Richardson D R.2006. Nitrogen monoxide (NO)-mediated iron release from cells is linked to NO-induced glutathione efflux via multidrug resistance-associated protein 1. Proceedings of the National Academy of Sciences,103:7670-7675.
    Webb M A.1999. Cell-mediated crystallization of calcium oxalate in plants. Plant Cell,11:751-761.
    Williams R J P, da Silva J J R F.2003. Evolution was chemically constrained. Journal of Theoretical Biology,220(3):323-343.
    Wingler A, Quick W P, Bungard R A, Bailey K J, Lea P J, Leegood R C.1999. The role of photorespiration during drought stress:an analysis utilising barley mutants with reduced activities of photorespiratory enzymes. Plant, Cell and Environment,22:361-373.
    Wingler A, Lea P J, Quick W P, Leegood R C.2000. Photorespiration:Metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,355:1517-1529.
    Wu F B, Dong J, Cai Y, Chen F, Zhang G P.2006. Differences in Mn uptake and subcellular distribution in different barley genotypes as a response to Cd toxicity. Science of the Total Environment,385:228-234.
    Wu F B, Zhang G P.2002a. Genotypic variation in kernel heavy metal concentrations in barley and as affected by soil factors. Journal of Plant Nutrition,25:1163-1173.
    Wu F B, Zhang G P.2002b. Genotypic Differences in Effect of Cd on Growth and Mineral Concentrations in Barley Seedlings. Bulletin of Environmental Contamination and Toxicology,69:219-227.
    Wu F B, Zhang G P, Yu J S.2003. Genotypic differences in effect of Cd on photosynthesis and chlorophyll fluorescence of barley (Hordeum vulgare L.). Bulletin of Environmental Contamination and Toxicology, 71:1272-1281.
    Xia L, Bjornstedt M, Nordman T, Eriksson L C, Olsson J M.2001. Reduction of ubiquinone by lipoamide dehydrogenase. An antioxidant regenerating pathway. European Journal of Biochemistry, 268:1486-1490.
    Xiang C B, Werner B L, Christensen E L M, Oliver D J.2001. The biological functions of glutathione revisited in arabidopsis transgenic plants with altered glutathione levels. Plant Physiology,126: 564-574.
    Yamazaki D, Motohashi K, Kasama T, Hra Y, Hisabori T.2004. Target proteins of the cytosolic thioredoxins in Arabidopsis thaliana. Plant and Cell Physiology,45:18-27.
    Yang M G, Lin X Y, Yang X E.1998. Impact of Cd on growth and nutrient accumulation of different plant species. Chinese Journal of Applied Ecology,9(1):89-94.
    Yang Y J, Cheng L M, Liu Z H.2007. Rapid effect of cadmium on lignin biosynthesis in soybean roots. Plant Science,172:632-639.
    Yeung A T, Hsu C-n.2005. Electrokinetic remediation of cadmium-contaminated clay. Journal of Environmental Engineering,131:298-304.
    Yu Q, Rengel Z.1999. Drought and salinity differentially influence activities of superoxide dismutases in narrow-leafed lupins. Plant Science,142:1-11.
    Zarcinas B A, Pongsakul P, McLaughlin M J, Cozens G.2004. Heavy metals in soils and crops in Southeast Asia.2. Thailand. Environmental Geochemistry and Health,26:359-371.
    Zhang G P, Fukami M, Sekimoto H.2000. Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. Journal of Plant Nutrition,23:1337-1350.
    Zhang G P, Fukami M, Sekimoto H.2002. Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Research,77: 93-99.
    Zhang M Y, Bourbouloux A, Cagnac O, Srikanth C V, Rentsch D, Bachhawat A K, Delrot S.2004. A novel family of transporters mediating the transport of glutathione derivatives in plants. Plant Physiology,134: 482-491.
    Zhang Z C, Gao X, Qiu B S.2008. Detection of phytochelatins in the hyperaccumulator Sedum alfredii exposed to cadmium and lead. Phytochemistry,69:911-918.
    Zhu R K, Macfie S M, Ding Z F.2005. Cadmium-induced plant stress investigated by scanning electrochemical microscopy. Journal of Experimental Botany,56(421):2831-2838.
    Zhu Y L, Pilon-Smits E A H, Jouanin L, Terry N.1999a. Overexpression of glutathione synthetase in Indian mustard enhances cadmium accumulation and tolerance. Plant Physiology,119:73-79.
    Zhu Y L, Pilon-Smits E A H, Tarun A S, Weber S U, Jouanin L, Terry N.1999b. Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing y-glutamylcysteine synthetase. Plant Physiology,121:1169-1177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700