用户名: 密码: 验证码:
共存元素影响下干旱区绿洲土壤—蔬菜系统中Cd污染化学行为的盆栽实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在农业土壤的污染物中,重金属污染物所引发的农产品安全问题已经受到了全球各界的高度关注。长期的污水灌溉、化肥使用以及工业废渣的堆放是造成重金属元素在农用土壤表层积累的最主要原因。河西走廊是我国干旱区绿洲农业最发达的区域,在该地区,以有色金属冶炼和化工业为主的第二产业的发展对当地经济起到了极大的推动作用,但对环境的负面影响也非常突出。在原本匮乏的水资源利用条件下,污水灌溉现象在当地普遍存在,加之农药和化肥的大量使用,造成重金属污染物残存在动植物以及人类的生存环境中,对人类健康构成严重威胁。
     在河西走廊地区,重金属在土壤-蔬菜系统中的化学污染行为研究工作开展起步较晚,系统的试验研究以及元素复合污染研究几乎是一片空白。本文通过野外盆栽试验,选择干旱区绿洲土壤,以油菜、芹菜、胡萝卜三种蔬菜为供试材料,以Cd、Pb、Zn、Ni四种重金属为基线,探讨与Cd共存的Pb、Zn、Ni在分别与之作用时的土壤、蔬菜污染化学行为表现,掌握特殊生境对四种重金属单独作用和共存作用下的影响,明确蔬菜对Cd及其共存元素的吸收和累积特征,并通过合理的数理统计分析构建土壤重金属总量和重金属形态、蔬菜吸收之间的关系模型,为建立干旱区土壤重金属在土壤-蔬菜系统中迁移转化基础数据库、改善干旱区绿洲土壤环境质量、控制蔬菜重金属污染、建设绿色蔬菜生产基地、保障农产品质量安全提供理论支撑。论文主要研究结果如下:
     (1)在未添加外源污染的干旱区绿洲土壤中种植油菜、芹菜、胡萝卜三种蔬菜后,土壤中Cd主要以铁锰氧化物结合态存在,可交换态含量和比例非常小;而在添加可溶性Cd后,三种蔬菜土壤中Cd的可交换态对外界浓度胁迫响应最大,残渣态对胁迫响应最小,说明试验浓度下蔬菜从生长到成熟的短期过程对可溶性Cd的固定作用不大,更多的量以相对活性的状态参与了土壤-蔬菜系统中的各种迁移。五种形态中碳酸盐结合态是Cd在各种胁迫水平下的主要存在形态。
     (2)在添加了Pb、Zn、Ni的Cd污染土壤中,Cd元素的形态分配规律和单独作用时一致。它们对Cd的作用是:Pb会提高Cd在油菜、胡萝卜土壤中的活性,抑制Cd在芹菜土壤中的活性;Zn会抑制Cd在油菜和胡萝卜土壤中的活性,提高Cd在芹菜土壤中的活性,Ni会降低油菜和芹菜土壤中Cd的活性而提高胡萝卜土壤中Cd的活性。三种组合下,Cd和添加元素活性的对比结果是:Cd>Pb,Cd>Zn,Cd>Ni。
     (3)三种蔬菜土壤中,单Cd胁迫下,土壤中Cd的可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和胁迫量显著相关,它们的变化方程以线性模型为主,其次是幂大于1的乘幂模型。而添加了Pb、Zn、Ni的Cd污染土壤中:加入Pb后,三种土壤可交换态、碳酸盐结合态、铁锰氧化物结合态Cd以及油菜土壤中的有机物结合态Cd和胁迫量显著相关,除了胡萝卜土壤中碳酸盐结合态Cd呈对数模型变化外,其余各形态均以线性和幂大于1的乘幂模型变化;加入Zn后,土壤中可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态Cd和胁迫量显著相关,描述形态随胁迫量的变化模型时,除了油菜土壤中可交换态和有机物结合态Cd以及芹菜土壤中铁锰氧化物结合态Cd的拟合方程分别为幂大于1的乘幂形式、S型曲线、对数形式外,其余形态Cd的拟合方程均为线性。加入Ni后,除了残渣态的其他四种形态Cd均和胁迫量显著相关,各形态Cd的变化以线性模型为主,其次是对数和幂小于1的乘幂模型。
     (4)Cd单独胁迫下,当浓度较低时,抑制作用主要体现在蔬菜各部分重量和地上部长度上,当胁迫浓度较高时(Cd>4.9mg/kg),其对地下部长度的抑制作用比较明显。三种蔬菜对Cd胁迫的耐受程度排序为:油菜>胡萝卜>芹菜。Cd在油菜和胡萝卜各部位积累量分布规律为:地上部>地下部,芹菜正好相反。三种蔬菜各部位积累Cd量的大小排序是油菜>芹菜>胡萝卜。油菜各部位、芹菜地下部对Cd具有明显的富集作用,阻碍油菜迁移Cd的主要场所在地下部-地上部迁移界面,阻碍芹菜迁移Cd的主要场所在土壤-地下部迁移界面。胡萝卜对Cd无明显的富集,各界面在富集转移Cd方面的能力相当。三种蔬菜对Cd的富集能力大小为:油菜>芹菜>胡萝卜;转移能力大小为油菜>胡萝卜>芹菜。
     (5)在添加了Pb、Zn、Ni的Cd污染土壤中种植三种蔬菜,发现当Pb浓度较高时(Pb≥450mg/kg),可以弱化Cd对三种蔬菜生物量的抑制作用;Zn可以弱化Cd对芹菜,胡萝卜地上部长度的抑制,较高浓度(Zn≥500mg/kg)时也可以弱化Cd对芹菜地下部鲜重以及胡萝卜地上部鲜重的抑制;Ni会弱化Cd对芹菜地上部长度和地上部鲜重的抑制,较高浓度(Ni≥600mg/kg)时也会减弱Cd对芹菜地上部鲜重、胡萝卜地上部长度和地上部鲜重的抑制。
     (6)三种元素的介入没有改变Cd在蔬菜体内的分配规律,但造成了蔬菜对Cd积累量、富集能力和转移能力的显著差异,这些差异的产生是介入元素的作用结果。Pb、Zn、Ni对Cd在三种蔬菜中的积累作用影响因浓度、蔬菜种类、蔬菜部位的不同而出现拮抗或者协同。对比Cd、Pb、Zn、Ni四种元素在同种蔬菜中的富集、转移系数可知,Cd是最容易在蔬菜中富集并且转移的元素,其次为Zn,Ni和Pb相对较差。(7)外源Cd总量对蔬菜各部位积累Cd的影响可以用线性模型、乘幂模型(幂小于1)和对数模型来描述,后两种模型提示了蔬菜(油菜地上部以及芹菜各部位)适应外界浓度干扰时采取了自我保护措施。而Cd在蔬菜内部迁移时的变化方程提示,油菜和芹菜中Cd的迁移动态为幂小于1的乘幂模型,而胡萝卜中为线性模型,这可能是前两种蔬菜耐Cd性较强的原因之一。添加了Pb、Zn、Ni的Cd污染胁迫下,蔬菜积累Cd的变化仍然可用线性、乘幂、对数模型描述,但其中乘幂模型的幂基本均≥1(Cd,Pb复合下油菜,芹菜各部位以及胡萝卜地下部积累Cd; Cd, Zn复合下油菜地下部积累Cd; Cd, Ni复合下芹菜地上部和胡萝卜地下部积累Cd),说明复合作用下胁迫浓度越高,这些蔬菜相应部位积累Cd的增量越大。Cd与其他三种元素复合作用下蔬菜内部迁移动态可用线性、对数和乘幂模型来模拟。其乘幂模型的幂均接近1;对数模型适用于Cd, Zn复合以及Cd, Ni复合的Cd在胡萝卜内部的迁移。
Among pollutants in agricultural soil, safety issues of agro-products caused by heavy metal pollutants have attracted high attention from all walks of life in the world. Long term sewage irrigation, fertilizer use, and piled-up industrial solid waste are the primary reasons for metallic elements'accumulation in surface layer of agricultural soil. Hexi Corridor is the most developed area on oasis farming in arid region of China. In this area, development of secondary industry, which gives priority to nonferrous metallurgy and chemical industry, plays a greatly improving role in local economy increase, but such development also has a distinctly adverse impact on environment. In the originally water-short conditions, sewage irrigation is used widely in locality, along with slathering of pesticide and fertilizer, thus, making heavy metal pollutants remain in bodies of animals and plants, and living environment, as poses severe threats to human health.
     Researches on heavy metal behaviors of chemical pollution in soil-vegetable system were started late in Hexi Corridor, leaving empty on studies of systematic experiments and multi-element pollution. Pot experiment, for which coles, celeries and carrots are experimental materials and the four heavy metals, Cd, Pb, Zn, and Ni, are the baseline, is conducted in oasis soil of arid regions. By the experiment, the paper explores behavioral expressions of pollution chemistry of soil and vegetables effected by Pb, Zn, Ni while coexisting with Cd; finds out the special habitats'effect on the single and combined contamination of these four elements; figures out vegetables'absorption and accumulation features to Cd and other coexistent elements. With statistical analysis, the paper builds a relation model between amounts and forms of soil heavy metals and vegetable absorption, offering theory supports to setting up basic database of heavy metals'transference and conversion in soil-vegetable system of arid districts, improving environmental quality of oasis soil, dominating heavy metal pollutions on vegetables, building green-vegetable production base, and guaranteeing qualities of agricultural products safety. The primary results are as follows:
     1) In oasis soil without contamination, coles, celeries and carrots were planted. Then, Cd in the soil mainly existed in Fe-Mn oxides fractions, while the proportion of exchangeable fractions was quite small. Soluble Cd added into soil, we found that exchangeable fractions response most strongly to concentration stress and residual forms response most weakly to such stress in the three-vegetable soil, demonstrating vegetables from growth to maturity conduct little fixed actions to Cd in the concentration range of experiment and that most Cd in relatively active patterns participates in various transferences in soil-vegetable system. Among the five patterns, carbonates fraction was the primary one while Cd was under diversified stresses.
     2)In Cd pollution soil with Pb, Zn and Ni added, appearance and distribute regulation of Cd accords with the one in single action. These three elements'effects on Cd were as follows:Pb improved Cd activity in cole and carrot soil while restraining the one in celery soil; Zn acted completely opposite to Pb; Ni decreased Cd activity in cole and celery soil while increasing the one in carrot soil. Via the three kinds of combination, the comparative result of activity of Cd and other adding elements was Cd>Pb, Cd>Zn, Cd>Ni.
     3)Among the three-vegetable soil, exchangeable, carbonates, Fe-Mn oxides and organic matter fractions of Cd had notable correlations with stress degree under single Cd stress. Most of relative variation equations were linear model, more-than-1 power model in the second place. As to the Cd pollution soil with Pb, Zn, Ni added:Pb added, Cd of exchangeable, carbonates, and Fe-Mn oxides fractions in the three soil and Cd of organic matter fractions in cole soil had notable correlations with the stress degree. Each form changes in linear and more than 1 power model patterns, excepted that Cd of carbonates fractions in carrot soil varies in level-log model; Zn added, Cd of exchangeable, carbonates, Fe-Mn oxides and organic matter fractions in soil has significant connection with the stress degree. When it comes to fractions-stress model, fitted equations of Cd in different forms were linear, excepted that those of Cd of exchangeable and organic matter fractions in cole soil and Cd of Fe-Mn oxides fractions in celery soil were more than 1 power model, sigmoid curve and logarithm model in turn; Ni added, Cd in all forms, except for residual fractions, was closely related to stress degree. Most variation of Cd in each form is consistent with linear model, level-log and less than 1 power models in the next place.
     4)Under single Cd stress, when Cd concentration was low, inhibiting effect was primarily reflected on weight of each vegetable portion and length of aboveground parts; when Cd concentration was high (Cd≥4.9mg/kg), inhibiting effect on length of underground parts was rather distinct. The rank order of these three vegetables'tolerance level to Cd stress was cole>carrot>celery. The distribution regularity of accumulation amounts in each portioin of cole and carrot was aboveground parts>underground parts, while celery was right adverse. The rank order of Cd accumulation amounts in each portion of the three vegetables was cole>celery>carrot. There is obvious enrichment to Cd in every portion of cole and underground parts of celery. The main site that impeded Cd transference in cole was the migration boundary up and below the ground and the one that impeded Cd transference in celery was the migration boundary between soil and underground parts. Carrots did not enrich Cd much, and the capabilities in Cd enrichment of each migration boundary were fair. The ability in Cd enrichment of the three vegetables was cole>celery>carrots, and the one in transference was cole>carrot>celery.
     5)The three vegetables were planted in Cd contaminated soil with Pb, Zn and Ni added. The results indicated that when in high concentration (Pb≥450mg/kg), Pb could weaken Cd inhibiting effects on biomass of the three vegetables, that Zn could weaken Cd inhibiting effects on aboveground length of celery and carrot and when in high concentration (Zn>500mg/kg), Zn could also weaken Cd inhibiting effects on fresh weight of celery underground portions and carrot aboveground parts, and that Ni could weaken Cd inhibiting effects on length and fresh weight of celery aboveground portions and when in high concentration(Ni≥600mg/kg), Ni can also soften Cd inhibiting effects on fresh weight of celery and carrot aboveground portions and length of carrot aboveground parts.
     6)The three intervening elements did not change distribution rule in vegetables, but led to significant variations of accumulation amounts and capabilities in enrichment and transference what vegetables responsed to Cd. These variations were due to actions of intervening elements. Effects of Pb, Zn and Ni on Cd accumulation in the three vegetables might present antagonistic or synergistic as results of differences in concentration, species and portions of vegetables. Comparing accumulation and transference coefficients of Cd, Pb, Zn and Ni in homogeneous vegetables, we concluded Cd was the most feasible element that accumulates and transfers in vegetables, Zn in the next place, and that Ni and Pb were relatively less feasible.
     7)Effects of amounts of exogenous Cd on its accumulation in each portion of vegetables could be described by linear, less-than-1 power and logarithm models. The last two models pointed out self-protection of vegetables (cole aboveground parts and every portion of celery) against exoteric concentration interference. The variation equation of Cd transference in vegetables demonstrates that regular patterns of Cd transference in cole and celery were consistent with less-than-1 power model, while in carrot, the model was linear, as was possibly one reason why cole and celery are more tolerant to Cd. Under Cd pollution stress with Pb, Zn and Ni added, the variations of Cd accumulation in vegetables could still be described by linear, power and logarithm models, but in power models, the power was more than 1 (Cd and Pb compounded, Cd was accumulated in each portion of celery and underground parts of carrot; Cd and Zn compounded, Cd was accumulated in underground parts of cole; Cd and Ni compounded, Cd was accumulated in aboveground parts of celery and underground parts of carrot). All of these showed that the higher stress concentration in compounded actions, the larger increment of Cd accumulation in relevant portions of these vegetables. Cd and the other three concomitant heavy metals, live migration in vegetables could be imitated by linear, level-log and power models. The powers in all power models come near 1, the level-log models are suitable for compounded Cd and Zn, and Cd compounded with Ni transfers in carrot.
引文
白晓军,周志龙,张财祥,等.河西走廊玉米制种基地选择中应注意的几个问题[J].甘肃农业科学与技术,2008,33(10):33-34.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    鲍林,邱泽生,张大宏,译.植物根系的离子吸收[M].北京:科学出版社,1981
    蔡信德,仇荣亮,陈桂珠.镍污染对土壤微生物的生态效应[J].生态科学,2004.23(3):273-277.
    曹秋华,普绍苹,徐卫红,等.根际重金属形态与生物有效性研究进展[J].广州环境科学,2006,21(3):1-4
    崔海丽,夏春镗.芹菜叶对铅的吸收和迁移规律[J].同济大学学报:医学版,2006,27(5):17-20.
    崔爽,周启星,晁雷.某冶炼厂周围8种植物对重金属的吸收与富集作用[J].应用生态学报,2006,17(3):512-515.
    崔妍,丁永生,公维民,等.土壤中重金属化学形态与植物吸收的关系[J].大连海事大学学报,2005,31(2):59-63.
    崔玉静,赵中秋,刘文菊,等.镉在土壤-植物-人体系统中迁移积累及其影响因子[J].生态学报,2003,23(10):2133-2143.
    陈得军,张春燕,王建玲,等.新乡市寺庄顶污灌区土壤中重金属的形态分布及生物有效性研究[J].水土保持学报,2008,22(5):190-193.
    陈高武.重庆都市圈土壤重金属元素迁移富集及生态效应研究[D].成都理工大学,2008
    陈怀满.土壤-植被系统中的重金属污染[M]北京:科学出版社,1996.
    陈宏,陈玉成,杨学春.石灰对土壤中Hg,Pb的植物可利用性的调控研究[J].农业环境科学学报,2003,22(5):549-552.
    陈俊,范文宏,孙如梦,等.新河污灌区土壤中重金属的形态分布和生物有效性研究[J].环境科学学报,2007,27(5):831-837.
    陈世宝,华洛,白玲玉.有机质在土壤重金属污染治理中的应用[J].农业环境与发展,1997,14(3):26—29.
    陈守莉,孙波,王平祖,等.污染水稻土中重金属的形态分布及其影响因素[J].土壤,2007,39(3):375-380
    陈晓婷,王果,张亭旗,等.石灰与泥炭配施对重金属污染土壤上小白菜生长和营养元素吸收的影响[J].农业环境保护,2002,21(5):453-455.
    陈英旭,林琦,陆芳,等.有机酸对铅、镉植株危害的解毒作用研究[J].环境科学学报.2000,4:467-472.
    陈英旭,林琦,陆芳,等.萝卜根系对环境中重金属铅、镉富集的修复作用[J].浙江大学学报(农业与生命科学版),2000,26(1):61-66.
    陈英旭.土壤重金属的植物污染化学[M].北京:科学出版社.2008.
    迟爱民,徐忠林.呼和浩特市蔬菜中重金属污染的研究[J].干旱区资源与环境,1995,9(1):86-94.
    丁海霞,南忠仁,刘晓文,等.金昌市郊农田土壤重金属的污染特征[J].农业环境科学学报,2008,27(6):2183-2188
    丁疆华,温琰茂,舒强.土壤环境中镉、锌形态转化的探讨[J].城市环境与城市生态,2001,14(2):47-49.
    董建军,合肥地区农田土壤重金属形态特征及其生物有效性研究[D].安徽农业大学.2007.
    窦磊,周永章,高全洲等,土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报,2007,38(3):576-583.
    杜彩艳,祖艳群,李元.pH和有机质对土壤中镉和锌生物有效性影响研究[J].云南农业大学学报.2005,20(4):539-543.
    杜应琼,何江华,陈俊坚,等.Pb、 Cd和Cr在叶类蔬菜中的累积及对其生长的影响[J].园艺学报,2003,30(1):51-55.
    方晓航,曾晓雯,于方明,等.Cd胁迫对白菜生理特征及元素吸收的影响研究[J].农业环境科学学报,2006,25(1):25-29.
    冯海艳,杨忠芳,杨志斌.土壤-水稻系统中重金属元素与其他元素之间的相互作用[J].地质通报,2007,26(11):1429-1434.
    扶惠华,王煜,田延亮.镍在植物生命活动中的作用[J].植物生理学通讯,1996.32(1):45-49.
    范文宏,陈俊,王琼.胡敏酸对沉积物中重金属形态分布的影响[J].环境化学,2007,26(2):224-227.
    傅平青,刘从强,万鹰听,等.水环境中腐殖质对重金属吸附行为的影响[J].矿物岩石地球化学通报,2002,22(4):277-281.
    郭观林,周启星.污染黑土中重金属的形态分布与生物活性研究[J].环境化学,2005,24(4):383-388.
    郭观林,周启星.土壤一植物系统复合污染研究[J].应用生态学报,2003,14(5):823-828.
    韩春梅,王林山,巩宗强.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24:1499-1502.
    韩凤祥.锌、镉的土壤环境化学形态及活性的研究[D].南京农业大学,1987.
    韩凤祥,胡霭堂.不同土壤环境中镉的形态分配及活性研究[J].环境化学,1990,9(1):49-53.
    韩永兰.锌对蔬菜锌素营养的影响及施用技术[J].土壤肥料,1991,2:34-36.
    黄昀.重庆三峡库区土壤-柑桔系统重金属生态行为研究[D],西南农业大学,2003.
    黄凯丰.重金属镉、铅胁迫对茭白生长发育的影响[D].扬州大学.2008.
    黄铭洪.环境污染与生态恢复[M].北京:科学教育出版社,2003.
    黄雅琴,杨在中.蔬菜对重金属的吸收积累特点[J].内蒙古大学学报,1995,26(5):608-615.
    黄艺,陈有键,陶澍.菌根植物根际环境对污染土壤中Cu、Zn、Pb、Cd形态的影响[J].应用生态学报,2000,11(3):431-434.
    黄艺,陈有键,陶澍.污染条件下VAM玉米元素积累和分布与根际重金属形态变化的关系[J].应用生态学报,2002,13(7):859-862.
    黄艺,李婷,费颖恒.外生菌根真菌对油松幼苗根际土壤重金属赋存的影响[J].生态与农村环境学报,2007,23(3):70-76.
    何勇田,熊先哲.复合污染研究进展[J].环境科学,2003,15(6):79-83.
    何园,王宪,陈丽丹,等.泉州走马埭典型土壤重金属的赋存形态分析[J],土壤,2007,39
    (2):257-262.
    何占玺.黑河流域退耕还林模式-以临泽县为例[J].草业科学.2004,21(1):15-16.
    何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998.
    胡超,付庆灵.土壤重金属污染对蔬菜发育及品质的影响之研究进展[J],中国农学通报,2007,23
    (6):519-523.
    胡红青,高彦征,汪文芳.土壤镉、铅污染对小白菜的生物效应研究[M].青年学者论土壤植物
    营养科学,北京:中国农业科技出版社,2001,180-184.
    胡文,土壤—植物系统中重金属的生物有效性及其影响因素的研究[D].北京林业大学,2008
    角媛梅,肖笃宁,马明国,等.河西走廊典型绿洲景观格局比较研究——以张掖、临泽、高台、酒
    泉为例[J].干旱区研究,2003,20(3):81-85.
    纪淑娟,王俊伟,王颜红,等.土壤有效态Pb和Cd与大蒜吸收Pb和Cd的关系[J].沈阳农 业大学学报,2008,39(2):237-239.
    贾彦,杨勇,江荣风,等Cd Zn交互作用对金针菇富集重金属的影响[J],农业环境科学学报2009,28(7):1368-1373.
    蒋廷惠,胡霭堂,秦怀英,等.土壤中锌的形态分布及其影响因素[J].土壤学报,1993,30(3):260-266.
    孔德,唐其展,田忠孝,等.南宁市蔬菜基地土壤重金属含量及评价[J].土壤,2004,36(1):21-24.
    雷敬敷,杨德芬.食用菌的重金属含量及食用菌对重金属富集作用的研究[J].中国食用菌,1990,9(6):14-17.
    李博文,杨志新,谢建治.土壤CdZnPb复合污染对植物吸收重金属的影响[J],农业环境科学学报,2004,23(5):908-911.
    李博文,谢建治,郝晋珉.不同蔬菜对潮褐土Cd、Pb、Zn复合污染的吸收效应研究[J].农业环境科学学报,2003,22(3):286-288.
    李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境监测,2005,21(4):21-27.
    李非里,刘丛强,杨元根,等.贵阳市郊菜园土-辣椒体系中重金属的迁移特征[J],生态与农村环境学报,2007,23(4):52-56.
    李福兴,齐善忠,赵飞虎,等.河西走廊临泽样区土壤基层分类及土地持续利用[J].土壤通报,1999,30:13-19.
    李浩,白玉瑞.当前农产品安全问题及解决途径探讨[J].决策探索,2008,2:72-73.
    李俊莉,宋华明.土壤理化性质对重金属行为的影响分析[J].环境科学动态.2003,1:24-26.
    李花粉.根际重金属污染[J].中国农业科技导报,2000.2:54-59.
    李其林,刘光德,黄昀,等.大田蔬菜Pb、Cd污染途径的研究[J].中国生态农业学报,2004,12(4):149-152.
    李世明,程国栋,李元红,等.河西走廊水资源合理利用与生态环境保护[M].郑州:黄河水利出版社,2002.
    李天杰.土壤环境学[M].北京:高等教育出版社,1995:115-140.
    李小阁,潘静,奚旦立,等.印染污泥中重金属形态分析及生物有效性[J].岩矿测试.2009.28(1):10-14.
    李宇庆,陈玲,仇雁翎,等.上海化学工业区土壤重金属元素形态分析[J].生态环境,2004,13(2):154-155.
    李媛,南忠仁,刘晓文,等,金昌市市郊农田土壤-小麦系统Cu、Zn、Ni行为特性[J].西北农业学报,2008,17(6):298-302.
    李元,王涣校,吴玉树Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    李正文,张艳玲,潘根兴,等.不同水稻品种籽粒Cd、Cu和Se的含量差异及其人类膳食摄取风险[J].环境科学,2003,24(3):112-115.
    李宗利,薛澄泽.污灌土壤中Pb,Cd形态的研究[J].农业环境保护,1994,13(4):152-157.
    李忠海,王海燕,梁文彬,等.土壤镉、锌、铅复合污染对芹菜的影响[J].中南林学院学报.2002.22(1):36-39.
    廖敏.施加石灰降低不同母质土壤中镉毒性机理研究[J].农业环境保护,1998,(3):101-103.
    廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,9(10):81-86.
    刘海亮,彭永康,王振英,等.蔬菜幼苗生长及氧化酶同工酶对镉害的响应[J].农业环境保护,1995,14(2):57-61.
    刘建泉,杨建红.人类活动对甘肃境内国家重点保护野生动物的影响[J].安全与环境学报,2004,4(5):29-33.
    刘霞、刘树庆,唐兆宏.河北主要土壤中Cd、Pb形态与油菜有效性的关系[J].生态学报,2002,22(10):1688-1694.
    刘旭.水稻对重金属镉和铅的吸收和运转及栽培环境的影响研究[D].扬州大学.2007
    刘毅,稻麦轮作下水稻土重金属形态特征及其生物有效性研究[D].四川农业大学.2008
    刘芷宇,李良谟,施卫明.根际研究法[M].南京:江苏科学技术出版社,1997.
    林琦,郑春荣,陈怀满.根际环境中镉的形态转化[J].土壤学报,1998,35(4):461-467
    林琦.重金属污染土壤植物修复的根际机理[D].浙江大学.2002.
    卢豪良,严重玲,秋茄(Kandelia candel (L))根系分泌低分子量有机酸及其对重金属生物有效性的影响[J].生态学报,2007,27(10):4174-4181.
    鲁如坤.土壤农业化学分析方法[M].北京:中国农业科学出版社,1999.
    陆晓怡,何池全.蓖麻对重金属Cd的耐性与吸收积累研究[J].农业环境科学学报.2005,24(4):674-677.
    罗金发,宋波,陈同斌,等.北京市菜地土壤和蔬菜锡含量及其健康风险分析[J].环境科学学报,2006,8:54-58.
    骆永明,滕应.我国土壤污染退化状况及防治对策[J].土壤,2006,8(5):505-508.
    吕建波,徐应明,贾堤,等.土壤镉、铅污染对油菜生长行为及重金属累积效应的影响[J].天津城市建设学院学报,2005,11(2):108-110.
    莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布[J].环境化学,2002,21(2):110-116.I
    莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.Ⅱ
    慕晓茹.大豆氮锌营养研究[J].土壤通报.1990.21(1):30-34.
    南忠仁,李吉均.城郊土壤共存元素对土壤作物系统Cd,Pb迁移的影响分析—以白银市城郊区为例[J].城市环境与城市生态,2001,14(2):44-46.Ⅰ
    南忠仁,李吉均.干旱区污灌土壤作物系统Cu,Zn的行为特性[J].盐湖研究.2001,9(1):25-28.Ⅱ
    南忠仁,李吉均,张建明,等.干旱区土壤小麦根系界面Pb、Ni行为的环境影响-以甘肃省白银市区污灌耕作土为例[J].中国沙漠,2001,21(1):33-38.Ⅲ
    南忠仁,李吉均,张建明,等.土壤小麦根系系统重金属迁移控制因子的辨识研究[J].环境污染与防治,2003,25(1):57-60.
    南忠仁,李吉均,张建明,等.白银市区土壤作物系统重金属污染分析与防治对策研究[J1.环境污染与防治,2002,03:56-60.
    南忠仁,赵传燕.甘肃河西地区土地资源农业开发利用程度评价及持续利用对策研究[J].中国沙漠,1998,18(1):51-56.
    彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(Zea mays L.)功苗细胞超微结构的变化[J].中国环境科学,1991,11(6):426-431.
    齐善忠,李福兴,罗芳.绿洲农区土壤资源数据库的建立——以河西走廊临泽样区为例[J].干旱区资源与环境.2002,16(1):15-19.
    钱进,王子健,单孝全.土壤中微量金属元素的植物可给性研究进展[J],环境科学,1995.16(6):73-78.
    秦世学.土壤镉污染对作物的影响及作物对土壤镉的吸收[J].环境科学丛刊,1984,4(10)8-19.
    秦文淑,仇荣亮.Cu污染土壤对菠菜的特征影响研究[J].环境科学与技术,2008,31(6):89-100.
    邱海源.厦门市翔安区土壤重金属分布、形态及生态效应研究[D].厦门大学,2008:147-171.
    曲明清,邢增涛,谢文明,等.培养料中重金属元素对真姬菇产品质量安全的影响[J].中国食用菌,2006,25(6):1-23.
    任福民,周玉松,牛牧晨,等.污泥中的重金属特性分析和生态风险评价[J].北京交通大学学报,2007,31(1):102-105.
    荣兴民,黄巧云.土壤矿物与微生物相互作用的机理及其环境效应[J].生态学报,2008,28:376-387.
    邵国胜,Muhammad Jaffar Hassan章秀福,等.镉胁迫对不同水稻基因型植株生长和抗氧化酶系统的影响[J].中国水稻科学,2004,8(3):239-241
    邵云,姜丽娜,李向力,等.五种重金属在小麦植株不同器官中的分布特征[J].生态环境,2005,14(2):204-207.
    涉谷政夫,正川,等译,土壤污染的机理与解析[M].北京:高等教育出版社.1988.
    施积炎.海州香薷和鸭跖草铜吸收机理和分子形态研究[D].浙江大学.2004.
    宋菲,郭玉文.土壤重金属Cd、Zn、Pb复合污染的研究[J].环境科学学报,1996,16(4):431-435.
    宋菲,郭玉文.镉、锌、铅复合污染对菠菜的影响[J].农业环境保护,1999,18(1):9-14.
    宋玉芳,许华夏,任丽萍,等.土壤重金属污染对蔬菜生长的抑制作用及生态毒性[J].农业环境科学学报,2003,1:13-15.
    宋玉芝.土壤铅污染对水稻生长影响的研究[J].南京气象学院学报,2005,28(4):536-542.
    孙光闻.小白菜镉积累及毒害生理机制的研究[D].浙江大学,2004.
    孙永红.镉砷在水稻体内的积累及其调控[D].南京农业大学,2008.
    铁柏清,袁敏,唐美珍,等.Cd、Pb、Cu、Zn、As复合污染对龙须草生长的影响[J].土壤通报,2005,36(2):286-288.
    王海燕,吴晓芙,胡曰利.土壤镉活度模型与控制相研究[J].中南林学院学报,2000,20(2):126-131.
    王宏康.“土壤环境质量标准”编制进展[J].重庆环境科学,1996,18(1):20-24.
    王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报.2005,25(3):596-605.
    王焕校.污染生态学基础[M].昆明:云南大学出版社,1990.
    王凯荣.我国农业重金属污染现状及其治理利用对策[J].农业环境保护,1997,16(6):174-178.
    王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究[J].农业环境保护,1996,15(4):145-149.
    王夔主编.生命科学中的微量元素(下卷)[M].北京:中国计量出版社,1992.
    王启明.铅、镉及其复合胁迫对大豆幼苗生理生化特性的影响[J].河南农业科学,2006,7:34-37.
    王胜利.干旱区绿洲灌漠土重金属吸附-解析机理及其应用研究[D].2008.兰州大学.
    王松良.芸苔属蔬菜重金属累积特性及抗Cd基因的差异表达与克隆[D].福建农林大学.2004.
    王玮,袁大伟,汪雅各.土壤重金属的形态特征及其对蔬菜重金属含量的影响[J].上海农业学报,1991,7(4):54-60.
    王新,吴燕玉.不同作物对重金属复合污染物吸收特性的研究[J].农业环境保护,1998,17(5):193-196.
    王新,吴燕玉.重金属在土壤-水稻系统中的行为特性[J].生态学杂志,1997,16(4):10-14.
    王新,周启星.外源镉铅锌在土壤中形态分布特性及改性剂的影响[J].农业环境科学学报,2003,22(5):541-545.
    王学锋,师东阳,刘淑萍,等.Cd-Pb复合污染在土壤-烟草系统中生态效应的研究[J].土壤通报,2007,38(4):737-740.
    王学锋,杨艳琴.土壤-植物系统重金属形态分析和生物有效性研究进展[J].化工环保,2004,24(1):24-28.
    王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及其顺序提取法[J].地质通报,2005.8,24(8):728-734.
    王友保,张莉,沈章军,等.铜尾矿库区土壤与植物中重金属形态分析[J].应用生态学报,2005,16(12):2418-2422.
    王远鹏.重金属污染土壤的微生物分子生态及对修复效应的影响[D].浙江大学.2006.
    王拯.河西走廊工业化进程中的可持续发展问题初探[J].兰州铁道学院学报(社会科学版),2000,19(5):47-50.
    温琰茂.施用城市污泥的土壤重金属生物有效性控制及环境容量[C].第六届海峡两岸环境保护研讨会,1999,1116-1121.
    翁高艺,孙小峰,吴龙华,等.铜锌铅复合污染土壤上香薷植物的生长和重金属吸收动态[J]土壤,2006,38(5):602-608.
    吴春发.复合污染土壤环境安全预测预警研究-以浙江省富阳市某污染场地为例[D].2008.
    吴燕玉,王新,梁仁禄,等.重金属复合污染对土壤-植物系统的生态效应:Ⅱ.对作物、苜蓿、树木吸收元素的影响[J].应用生态学报,1997,8(5):545-552.
    夏增禄.中国土壤环境容量[M].北京:地震出版社,1992.
    夏增禄.土壤环境容量及其信息系统[M].北京:气象出版社.1991.
    许超,夏北成,吴海宁,等.酸性矿山废水污灌区水稻土重金属形态分布及生物有效性[J].环境科学.2009,30(3):900-906.
    许光辉,郑洪元.土壤微生物分析方法手册[M].北京:农业出版社,1986.
    徐丽红,陈俏彪,叶长文,等.食用菌对培养基中有害重金属的吸收富集规律研究[J].农业环境科学学报,2005,24(增刊):42-47.
    徐向华.超积累植物商陆吸收累积锰家里研究[D].浙江大学.2006.
    徐应明,林大松,吕建波,贾堤,化学调控作用对Cd、Pb、Cu复合污染菜地土壤中重金属形态和生物有效性的影响[J].农业环境科学学.2006,25(2):326-330.
    薛艳,周东美,沈振国.土壤铜锌复合污染条件下两种青菜的响应差异[J],土壤,2005,37(4):400-404.Ⅰ
    薛艳,沈振国,周东美,等.蔬菜对土壤重金属吸收的差异与机理[J],土壤,2005,37(1):32-36.Ⅱ
    杨崇洁.几种金属元素进入土壤后的迁移转化规律及吸附机理的研究[J].环境科学,1990,10(3):228-231.
    杨科璧.中国农田土壤重金属污染与其植物修复研究[J].世界农业,2007,340:60-63.
    杨和连,张百俊,冯春太,重金属铬对豇豆幼苗生长的影响[J].种子,2007,26(8):79-81.
    杨红飞,严密,王友保,等.安徽主要水稻土中重金属形态分布与土壤酶活性研究[J].土壤,2007,39(5):753-759.
    杨金凤,卜玉山,郭小燕,等.土壤外源镉、铅污染对油菜生长的影响研究[J].陕西农业科学,2005(3):26-28.
    杨锦忠.镉铬铅复合污染胁迫对小麦玉米影响研究及其互作分类方法探讨[D].山东农业大学,2007.
    杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,13(6):20-26.
    杨居荣,贺建群.农作物Cd耐性的种内和种间差异1种间差.应用生态学报,1994,5(2)192-196.
    杨清.我国锌肥应用现状及展望[J],土壤肥料.1988.6:22-25.
    杨清伟,蓝崇钰,束文圣.铅锌矿废水污染水稻土Cd的化学形态与生物有效性研究[J],农业 环境科学学报,2007,26(2):500-504.
    杨苏才,曾静静,王胜利,等.兰州市表层土壤Cu、Zn、Pb污染评价及成因分析[J].干旱区资源与环境,2004,18(8):28-31.
    杨志新,刘树庆,Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响[J].土壤与环境.2000,9(1):15-18.
    杨志新,刘树庆.土壤重金属复合污染对油菜生长的影响[J].河北农业大学学报,2000,23(3):27-30
    盖钧镒,试验统计方法[M].北京:中国农业出版社,2000.
    翟志席,郭玉海,马永泽,等,译.植物生态生理学[M].北京:中国农业大学出版社,1997.
    张勃,石惠春.河西地区绿洲资源优化配置研究[M].北京:科学出版社,2004.
    张福.临泽县水土资源合理开发利用对策[J].甘肃农业.2002,1:39-40.
    张纪伍,梁伟,李德波,等.土壤铜铅锌复合污染对水稻的生态效应[J].农村生态环境,1997,13(1):16-20.
    章明奎,杭州城市土壤研究[M].北京:中国农科科技出版社,2006.
    张肃斌.河西走廊生态系统退化特征与回复策略研究[D].西北农林科技大学.2007.
    赵菲佚,翟禄新,陈荃,等.Cd Pb复合处理下对植物膜的伤害初探[J].兰州大学学报,2002:38(2):115-120.
    赵其国,周炳中,杨浩,等.江苏省环境质量与农业安全问题研究[J].土壤,2002,(1):1-5.
    赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境,2005,14(2):282-286.
    赵转军,南忠仁,王胜利,等.干旱区绿洲土壤共存重金属元素形态变化及生物有效性实验分析—以Cd、Zn、Ni元素为例[J].地球科学进展.2008(11):1194-1200.
    赵转军,南忠仁,王胜利,王兆炜,杨一鸣,胡萝卜对干旱区绿洲土壤Cd/Zn及Cd/Zn/Ni复合污染的生长吸收特征研究[J],农业环境科学学报,2010,29(4).
    郑国璋,农业土壤重金属污染研究的理论与实践[M].北京:中国环境科学出版社,2008.
    郑明霞,冯流,刘洁,等.螯合剂对土壤中镉赋存形态及其生物有效性的影响[J].环境化学.2007,26(5):606-609.
    郑志强.论中国出口食品农产品安全现状及应对措施[J].口岸卫生控制,2008,13(3):7-8.
    智颖飙,王再岚,马中,等.鄂尔多斯地区公路沿线土壤重金属形态与生物有效性[J].生态学报,2007,27(5):2030-2039.
    中国科学院.东南沿海经济发达地区可持续发展的问题和对策[A].中国科学院咨询报告.2004:1-10.
    中国科学院国家科学图书馆.IWMI报告:发展中国家废水农业的驱动力和特征[A].科学研究动态监测快报,2008,18:1-4.
    周国英,何小燕,李河,锌镉污染区植物根际与非根际土壤微生物区系研究[J].湖南林业科技2005,32(5):31-33.
    周康民,汤志云,黄光明,肖灵,江冶,高孝礼,土壤中重金属形态分析方法研究[J].江苏地质,2007.31(3),165-175.
    周启星,高拯民.作物籽实中Cd与Zn的交互作用及其机理的研究[J].农业环境保护,1994,13(4):148-151.
    周小勇,仇荣亮,李清飞,等.锌对长柔毛委陵菜中铅的分布和化学形态的影响[J].环境科学学报.2008,28(10):2064-2071.
    朱波,青长乐,牟树森.紫色土Zn、Cd复合污染生态效应研究[J].应用生态学报,1997,8(6):639-644.
    朱波,青长乐,牟树森.紫色土外源锌镉的生物有效性[J].应用生态学报,2002,13(5):555-558.
    朱波,汪涛,王艳强,等.锌、镉在紫色土中的竞争吸附[J].中国环境科学,2006,26(增刊):73-77.
    朱桂芬,王学锋.重金属Cd,Pb,Zn在油唛菜中的富集和分布[J].河南师范大学学报(自然科学版),2004,32(4):66-69
    朱永官.土壤-植物系统中的微界面过程及其生态环境效应[J].环境科学学报,2003,23(2):205-210.
    曾咏梅,毛昆明,李永梅.土壤中镉污染的危害及其防冶对策[J].云南农业大学学报,2005,20(3):360-365.
    宗良纲,丁园.土壤重金属(CuZnCd)复合污染的研究现状[J],农业环境保护,2001,20(2):126-128
    Ahumadal I,Mendoza J,Ascar L.Sequential extraction of heavy metals in soils irrigated with wastewater[J].Commun,Soil Sci.Plant Anal.1999,30:1507-1519.
    Alam M G M, Snow E T, Tanaka A, Arsenic and heavy metal contamination of vegetables grown in Santa village, Bangladesh[J]. Science of the Total Environment,2003,308:83-96.
    Alain B. Limits of sequential extraction procedures re-examined with emphasis on the role of H ion reactivity[J]. Analytica Chimica Acta.2001,445(1):79-881
    Alloway B J.Heavy metals in soils[J].Blackie,Glasgow and London,1990.
    Amit K. Gupta, Sarita S,Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge:Selection of single extractants[J].Chemosphere,2006,64:161-173.
    An Y J. Combined effect of copper, cadmium, and lead upon Cucumis Sativus growth and bioaccumulation [J]. Science of the Tota 1 Environmen t,2004,326:85-93.
    Ana N, Harald L.Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain) [J].Environment International,2003,29:61-68
    Bhatia N P,Walsh K B,Baker A J M.Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey[J].J Exp Bot.2005,56:1343-1349.
    Bidar G., Garcon G., Pruvot C., et al.,Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field[J].Plant metal concentration and phytotoxicity Environmental Pollution,2007,147:546-553.
    Brooks R R,Chambs M F,Nicks L J et al.,Phytoming.Trends Plant Sci,1998.3(9):359-362.
    Baker, A.J.M., Accumulators and excluders-strategies in the response of plants to heavy metals[J]. J. Plant Nutr.1981.3,64-73.
    Chen Huaiman. Heavy metal in the soil-water-plant system:Importance of imteractions[M]. In: Pawlowski L. Chemistry for the protection of the Environment Plenum Press,1996.
    Costa G, M ichaut J C, Guckert A. Amino acids exuded from axenic roots of lettuce and white lup in seedlings exposed to different cadmium concentrations[J]. Journal of Plant Nutrition,1997, 20:883-900.
    Devkota B., Schmidt G.H., Accumulation of heavy metals in food plants and grasshoppers from the Taigetos Mountains[J]. Greece. Agric.Ecosyst. Environ.2000,78,85-91.
    Eide D J.The molecular biology of metal ion transport in Saccharomyces cerevisiae[J].Annu Rev Nutr.1998,18:441-469.
    Elinder C QJousson L,Pisator M et al.,.Histopathological changes in relation to cadmium concen-tration in horse kidneys[J].Environmental research,1981,26:1-21
    Ernst W H O.Heavy metal tolerance in plants:evolutionary aspects[J].Mine vegetation in Europe.1990:21-37.
    Fargasova VA, Beinrohr E. Metal-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+ and Cu2+in under-andAbove-ground parts of Sinapis alba[J]. Chemosphere,1998.36 (6): 1305-1317
    Filip M. G. Tack, Marc G. Verloo. Single extractions versus sequential extraction for the estimation of heavy metal fractions in reduced and oxidised dredged sediments [J]. Chemical Speciation and Bioavailability.1999,11(2):43-51.
    Filgueiras, A V, Lavilla I Bendicho, C. Chemical sequential extraction for metal partitioning in environmental solid samples[J].Environ. Monit.2002,4,823-857.
    Feng,M.H.,Shan,X.Q.,Zhang,S.Z,et al.,Comparison of a rhizosphere-based method with other one-step extraction methods for assessing the bioavailability of soil metals to wheat [J]. Chemosphere,2005,59:939-949.
    Flogeac K,Guillon E,Apilincourt M.Surface conplexation of copper(Ⅱ) on soil particles:EPR and XAFS studies[J].Environ Sci Technol.2004,38:3098-3103
    Godo G H.,Reisenauer H M.Plant effect on soil manganese availability[J]. Soil. Sci.Soc.A m. J., 1980,44:658-663.
    Gleyzes C,Tellier S,Astruc M.Fractionation study of trace elements in contaminated soils and sediments:a review of sequential extraction procedures[J].Trends Anal Chem,2002,21:451-467.
    Gaoyanzheng,Hejizheng,Lingwanting,et al.,Effect of organic acids on copper and cadmium desor-ption from contaminated soil[J].Environment International,2003,29:613-618.
    Gupate.Concentration of ionic copper in soil solution.Intern[J].Envirort.Anal.Chem,1988,34:45-50
    Guo, Y.L., Schulz, R., Marchner, H., Uptake, distribution and binding of cadmium and nickel in different plant species[J]. J. Plant Nutr.1995.18,2691-706.
    Goswami T,Bhattacharjee A,Babal P et al.,Natural-resistance-associiated macrophage protein 1 is an H+/bivalent cation antiporter[J].Biochem J.2001,354:511-519.
    Gavi F, Basta N T,Raun W R. Wheat grain Cd as affected by long-term fertilization and soil acidity[J]. J. Environ. Qual.,1997,26:265-271.
    Hector M. C, Angel F, Raquel A.Heavy metal accumulation and tolerance in plants from mine tailings of the semiarid Cartagena-La Union mining district (SE Spain)[J]. Science of the Total Environment,2006,366:1-11.
    Hinsinger P,Gobran G R,Gregory P J.et al.,Rhizosphere geometry asn heterogeneity arising from root-mediated physical and chemical processes[J].New Phyto.2005.168:293-303.
    Hammer,D.,Keller,C.Changes in the rhizosphere of metal accumulating plants evidenced by chemical extractants[J].Jounal of Environmental Quality,2002,31:1561-1569.
    Hirschi K D,Zhen R G,Cunningham K.CAXIan H+/Ca2+antiporter from Arabidopsis[J].P Natl Acad Sci USA.1996,93:8782-8786.
    Jeffrey L, Howard, Jianing Shu. Sequential extraction analysis of heavy metals using a chelating agent (NTA) to counteract resorption[J]. Environmental Pollution,1996,91 (1):89-91.
    Ju X T, Kou C L, Christie P, Dou Z X, Zhang F S, Changes in the soil environment from exces-sive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain[J].Environmental Pollution,2007,145:497-506.
    Kabata-Pendias,A.and Pendias,H., Trace elements in soils and plants[M],1992.USA:CRC Press,Inc.
    Katanda Y., Mushonga C., Banganayi F., Nyamangara J.Effects of heavy metals contained in soil irrigated with a mixture of sewage sludge and effluent for thirty years on soil microbial biomass and plant growth[J].Physics and Chemistry of the Earth,2007,32:1185-1194.
    Krishna A K,Govil P K.HeaVymetal contamination of soil around Pali Industrial Area Rajasthan,India[J].Environmental Geology,2004,47:38-44.
    Kayser A,Wenger K,Keller A et al.,Enhancement of phytoextraction of Zn,Cd and Cu from calcareous soil:the use of NTA and sulfur amendments[J].Environ Sci Tech.2000,34:1778-1783.
    Kalbita K,Wennich R.Mobilization of heavy metal and in polluted wetland soil and its dependence on dissolved organic mater[J].Sci Total Environ,1998,209:27-39
    Krishnamurti G S R, Huang P M, Vanrees K C J, et al.Speciation of Particulate-Bound Cadmium Of Soils And Its Bioavailability[J]. Analyst.1995,120 (3):659-665
    Knoke K.,Marwood T M.,Cassidy M B.,et al.,A comparison of five bioassays to monitor toxieity during bioremediation of pentachlorophenol-contaminated soil[J].Water Air and Soil Pollution,1999,110:157-169.
    Kunito T, Saeki K, Nagaoka K, et al. Characterization of copper-resistant bacterial community in rhizo sphere of highly copper-contaminated soil[J]. European Journal of Soil B iology,2001,37: 95-102.
    Kraemer U,Cotter-Howells J D,Charnock J M et al.Free histidine as a metal chelator in plants that accumulate nickel[J].Nature,1996.379:635-638.
    Li M S, Luo Y P, Su Z Y,Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China[J]. Environmental Pollution,2007,147:168-175.
    Lindsay W L.,Chemical Equilbria in Soils[M],New York:John Wiley & Sons,1979.
    Linehan D J,Sinclair A H,Mitchell M C.Seasonal changes in Cu,Mn,Zn and Co concentrations in soil in the root zone of barley(Hordeum vulgare L) [J].J Soil Sci.1989.40:103-115.
    Lluganym,Lombini A,Poschenrieder C,et al. Different Mechanisms Account for Enhanced Copper esistance in SileneArmeria Ecotypes From Mine Spoil and Serpentine Sites[J]. Plant Soil,2003,251:55-63.
    Li Y, Gou X, Wang G, et al., Heavy metal contamination and source in arid agricultural soil in central Gansu Province, China[J]. Journal of Environmental Sciences,2008,20:607-612.
    Lin Q, Chen Y X, Chen H M, et al. Chemical behavior of Cd in rice rhizo sphere[J]. Chemosph-ere,2003,50:755-761.
    Lin Q, Shen K L, Zhao H M,et al..Growth response of Zea mays L. in pyrene-copper co-contaminated soil and the fate of pollutants[J].Journal of Hazardous Materials,2008, 150:515-521.
    Maiz I., Arambarri I., Garcia R., et al. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis [J].Environmental Pollution.2000, 110(1):83-91.
    Mandal, B., Hazra, G.C., Zn adsorption in soils as influenced by different soil management practices[J]. Soil Sci.1997,162,713-721.
    Marmiroli M,Antonioli G,Maestria E et.al,Evidence of the involvement of plant lingo-cellulosic structure in the sequestration of Pb:an X-ray spectroscopy-based analysis[J].Environ Pol-lut,134:217-227.
    Marchiol L., Assolari S., Sacco P., et al., Phytoextraction of heavy metals by canola(Brassica napus) and radish(Raphanus sativus) grown on multicontaminated soil[J]. Environ. Pollut. 2004.132,21-27.
    Martinoia E,Klein M,Geisler M et al.,Multifuncionality of plant ABC transporters-more than just detoxifers[J].Planta.2002,214:345-355.
    Mapanda F, Mangwayana E N, Nyamangara, J, et al.The effects of long-term irrigation using water on heavy metal contents of soils under vegetables[J]. Agriculture, Ecosystem and Environment,2005,107(2-3):151-156.
    Mckenna I M, Chaney R L, Tao S H, et al. Interactions of plant zinc and plant species on the bioavailability of plant cadmium to Japanese quailfed lettuce and spinach[J]. Environ. Res., 1992,57:73-87.
    Mckenna I M, Channey R L, Williams F M. The effect of cadmium and zinc interactions on the accumulation and tissue distribution of zinc and cadmium in lettuce and spinach[J]. Environmen-tal Pollution,1993,79:113-120.
    McGrath, S.P., Dunham, S.J., Correll, R.L., Potential for phytoextractionof zinc and cadmium from soils using hyperaccu-mulatorplants[J]. Phytoremediation of Contaminated Soil and Wate-r,2000,109-128.
    Moreno J.L., Bastida F., Ros M., et al., Soil organic carbon buffers heavy metal contamination on semiarid soils:Effects of different metal threshold levels on soil microbial activity[J]. European Journal of Soil Biology,2009,45:220-228.
    Nan Z., Li J., Zhang C.,et al., Cadmium and zinc interaction and their transfer in soil-crop system under actual field conditions[J]. Sci.Total Environ.,2002.,285,187-195.
    Narwal R P,Singh B R.Effeet of organic materials on partitioning,extractability and plant uptake of metals in an alumshale soil[J].Water,Air,Soil Pollut.1998,103:405-421.
    Navarro M C, Perez-Sirvent C, Martinez-Sanchez M J, et al.,Abandoned mine sites as a source of contamination by heavy metals:A case study in a semi-arid zone[J].Journal of Geochemical Exploration,2008,96:183-193.
    Neumann D,Nieden U Z,Lichtenberger O et al.,How does Armeria maritime tolerate high heavy metal concentration[J].J Plant Physiol.1995,146:704-717.
    Njaya, C.,. Effects of heavy metals contained in sewage sludge and effluent on microbial biomass and carbon mineralization[D]. University of Zimbabwe, Harare.2005
    Peralta-Videa J R, de la Rosa G, Gonzalez J H,et.al.. Effects of the growth stage on the heavy metal tolerance of alfalfa plants[J], Advance Environment Research,2004,8(3-4):679-685.
    Pardo-Botello R,Fernandez-Gonzalez C,Pinilla-Gil E,et al.,Absorption kinetics of zinc in multi-component ionic systems[J] Journal of Colloid and Interface Science,2004,277(2):292-298.
    Prashant S,Balwant S, Michael A. Competitive absorption behavior of heavy metals kaolinite [J].Journal of Colloid and Interface Science,2005,290(1):28-38.
    Parida B K, Chhibba I M, Nayyar V K.Influence of nickel-contaminated soils on fenugreek (Trigonella corniculata L.) growth and mineral composition[J]. Scientia Horticulturae,2003,98 (2)113-119.
    Patra J, Lenka M, Panda B B. Tolerance and co-tolerance of the grass Chtorisbarbata to mercury, cadmium and zinc[J]. New Phytologist,1994,128:165-171.
    Prashar S O., Beaugeard M, Hawari J, et al., Biosorption of heavy metals by red algae (Palmaria palmata)[J].Envir. Tech.2004,25:1097-1106.
    Quartacci M F,Cosi E,Navari-izzo F.Lipids and NADPH-dependent dependent superoxide production in plasma membrane vesicles from roots of weat grown under copper deficiency or excess.J Exp Bot.2001,52:77-84.
    Oliver, M A., Soil and human health:a review[J]. Eur. J. Soil Sci,1997,48:573-592
    Ramos L,Hernandez L M,Gonzalez M J.Sequential fractionation of copper,cadmium and zinc in soil from or near Donana Nation Park[J].J Environ Qual,1994,23,50-57.
    Ross A S,Filip M G T.Fractionation of Cu,Pb and Zn in certified reference soils SRM 2710 and SRM 2711 using the optimized BCR sequential extraction procedure[J].Advances in Environmen-tal Research,2003.8:37-50.
    Risto P, Hannu N, Toivo K et.al.The use of a sequential leaching procedure for assessing the heavy metal leachability in lime waste from the lime kiln at a caustizicing process of a pulp mill[J].Chemosphere.2006, (65):2122-2129.
    Rivetta A, Negrini N, Cocucci M. Involvement of Ca2+-calmodulin in Cd2+toxicity during the early phases of raddish (R ap hanus sativusL.) seed germination[J]. Plant Cell and Env ironment,1997,20:600-608.
    Rossi G, Figliolia A, Socciarelli S, et al,. Capability of Brassica napus to accumulate cadmium, zinc and copperfrom soil[J]. Acta Biotechnologica,2002, (1-2):133-140.
    Reeder R J,Schoonen M A A.Metal speciation and its role in bioaccessibilty and bioavailabi-lity.Rev Mineral Geoch[J].2006.59:113-118.
    Sanders J R, Mcgrath S P, Mcm T.,et al.,Zinc, copper and nickel concentrations in soil extracts and crops grown on four soil treated metal loaded sewage sludges[J].Environ Pollut 1987,44 (3):193-201.
    Shuman L M. Organic waste amendments effect on zinc fraction of two soils[J]. J Environ Qual, 1999,28:1442-1447.
    Silbergeld E K,Walkes Mrice J M.Lead as a carcinogen:experimental evidence and mechanisms of action [J].Am J Ind MED,2000,38:316-323.
    Singh, A.N., Zeng, D.H., Chen, F.S., Heavy metal concentrations in redeveloping soil of mine spoil under plantations of certain native woody species in dry tropical environment, India[J]. Journal of Environment Sciences,2005,1:168-174.
    Singh R P, Agrawal M.Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants[J].Chemosphere,2007,67:2229-2240.
    Sridhara N C,Kamala C T, Samuel S R,Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer[J].Ecotoxicology and Environmental Safety,2007,4(13):1-12.
    Su Y Z, Yang R.Background concentrations of elements in surface soils and their changes as affected by agriculture use in the desert-oasis ecotone in the middle of Heihe River Basin, North-west China[J].Journal of Geochemical Exploration 2008,98:57-64.
    Sutapa B, Vivek R, Bhattacharyya A K, Ramanathan A L,Translocation of metals in pea plants grown on various amendment of electroplating industrial sludge[J].Bioresource Technology 2007:1-9.
    Todd A C,Wetmur J G,Moline J M,et al.,Untraveling the chronic toxicity of lead:an essential priority for environmental health[J].Environ Health Perspec,1996,104:141-146.
    Thuy H T,Tobschall H J,An P V.Trace element distributions in aquatic sediments of Danang-Hoian area,Vietnam[J].Environmental Geology.1999,39(7):733-740.
    Templeton D M,Ariese F,Cornelis R,et al.,IUPAC guidelines for terms related to speciation of trace elements[J].Pure Appl Chem.2000.72:1453-1470.
    Tessier A, Campbell P G C, Bisson M., Sequential extraction procedure for the speciation of particulate trace metals[J]. Analytical Chemistry.1979,51 (7):844-851.
    Tomas S, Alexandra E, Rene R,Effect of Ni and As on radish tuber cultivated on artificially polluted soils[J]. Eur. J. Soil Biol.2000.36:73-80.
    Ting Y P, Teo W K,Uptake of Cd and Zn by yeast:Effects of cometal ion and physical and chemical treatments[J]. Biores. Technol.1994,50,113-117.
    Utekramer.Free histidineasa metal chelatori plants that accumulate niekel [J]. Nature,1996,379 :635-638
    Vidall J., Pe'rez-Sirvent C., Mart nez-Sa'nchezl M J,, Navarro M C.Origin and behaviour of heavy metals in agricultural Calcaric Fluvisols in semiarid conditions[J]. Geoderma,2004,121: 257-270.
    Veeken A,Hamelers B.Sources of Cd,Pb and Zn in biowaste[J].The science of the total environment,2002,300:87-89.
    Verma P, George K V, Singh H V, et al.,Modeling cadmium accumulation in radish, carrot, spinach and cabbage[J].Applied Mathematical Modelling,2007,31:1652-1661.
    Webb,M.Cadmiyn[J].British Medical Bulletin,1975,31:46-50
    Walter I., Cuevas G. Chemical fractionation of heavy metals in a soil amended with repeated sewage sludge application[J]. Sci. Total Environ.1999.226,113-119.
    Wu J,Laird D A,Thompson M L.Sorption and desorption of copper on soil clay components[J] J.Environ.Qual.,1999,28:334-338.
    Williams L E, Pittman J K, Hall J L. Emerging mechanisms of heavy metal transport in plants[J]. Biochemical and Biophysical Acta,2000,1465:104-126.
    Wang J S, Feng J Y,Yang L F,et al..Runoff-denoted drought index and its relationship to the yields of spring wheat in the arid area of Hexi corridor,Northwest China[J].Agricultural Water Management,2009,96 (4):666-676.
    Yang X., Baligar V C., Martens D C, Clark R B, Plant tolerance to Ni toxicity. I. Influx, trans-port and accumulation of Ni in four species[J]. J. Plant Nutr.1996,19:73-85.
    Zhang Y, Liao B H, Zeng Q R, et al.,Surfactant Linear Alkylbenzene Sulfonate effect on soil Cd fractions and Cd distribution in soybean plants in a pot experiment [J].Pedosphere.2008,18(2): 242-247.
    Zheljazkov V D,Nielsen N E. Effect of heavy metals on pepper mint and commint[J].Plant and Soil,1996,178:59-66.
    Zhu B,Alva A K.Distribution of trace metal some sandy soils under citrus Production[J].Soil Sci.1993,57:350-355.
    Zenk M H.Heavy metal detoxification in higher plants-a review[J].Gene.,1996,179:21-30.
    Zasoski R J,Buran R G,Sorption and sorptiveinteraction of cadmium and zinc in hydrous mangan-ese oxide [J].Soil Soc Am J,1988,52:81-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700