黄土高原半干旱区两典型林分主要树种光合耗水特性及影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄土高原半干旱地区生态系统非常脆弱。严重的水土流失与干旱是该地区面临的两大主要生态问题。植被的可持续恢复是该地区治理水土流失与保障区域生态安全的根本性途径。针对该地区生态恢复中植被重建与水分不足的矛盾,本文以黄土高原半干旱区两种典型林分辽东栎天然次生林和刺槐人工林为研究对象,在延安市公路山林区,应用LI-6400便携式光合测定系统对两典型林分主要树种叶片光合、蒸腾特性及其影响因素进行了研究。利用TDP树干边材液流测定系统和自动气象站对两典型林分各树种的单木耗水特性及相应环境因子进行了定位观测;系统分析了两典型林分各主要树种树干边材液流通量密度的影响因素;估算了2008年生长季两典型林分的蒸腾耗水量。主要结果如下:
     1、两典型林分主要树种刺槐和辽东栎光合日进程在生长季内晴天呈双峰或单峰型曲线,两主要树种均出现明显的“光合午休”现象。造成两树种光合“午休”的原因包括气孔因素和非气孔因素。影响两树种光合“午休”的生态因子主要包括高光强、高水蒸汽压差和高温。刺槐最大光合能力高于辽东栎的最大光合能力,但是日平均光合速率却小于辽东栎生长季内日平均光合速率。两树种叶片净光合速率与气孔导度、胞间CO2浓度、光合有效辐射强度、空气温度、CO2浓度、空气水蒸汽压差和空气相对湿度极显著或显著相关。影响两树种净光合速率的主导因素是生理因子(Gs和Ci),生态因子可能通过影响两树种叶片的Gs和Ci而间接影响树木叶片光合作用。光响应曲线分析结果显示,随土壤干旱加重,两树种叶片固碳能力及利用弱光和强光的能力均降低。
     2、在生长季刺槐和辽东栎叶片蒸腾速率日变化呈单峰型曲线或不规则多峰型曲线。两树种叶片蒸腾速率日进程的季节差异可能与两树种不同的生物学特性有关,也可能是生长季不同时期各生态因子的差异所致。两树种叶片的蒸腾速率在生长季不同时期分别与气孔导度、光合有效辐射强度、空气温度、空气相对湿度和空气水蒸汽压差有着极显著或显著的相关关系。生长季不同时期影响两树种叶片蒸腾速率的生理生态因子不同。
     3、刺槐人工林和辽东栎天然次生林各树种边材液流通量密度日变化在晴天具有与太阳辐射和水蒸汽压差相似的日变化趋势。两典型林分主要树种(刺槐、辽东栎和山杏)不同径级树木间平均边材液流通量密度均存在明显差异。各样树生长季内平均边材液流通量密度与相应胸径间均无显著的相关关系,两典型林分各主要树种的边材液流通量密度可能受到多个生理生态因子的综合制约。生长季内两典型林分各树种林分平均边材液流通量密度日变化在晴天均表现为典型的单峰型曲线,在多云和阴天则总体呈双峰型曲线。各树种日平均林分边材液流通量密度均表现为晴天>多云天>阴天,可能与不同天气条件下各生态因子的显著差异有关。两典型林分各树种液流启动时间、液流持续时间、平均边材液流通量密度峰值及达到峰值的时间等方面在不同月份差异较大。日最大边材液流通量密度值总体表现为生长季初期(4月)和末期(10月)低而生长盛期高的季节动态特征。各树种边材液流通量密度在生长季大部分时间内受太阳辐射、空气温度、空气相对湿度及空气水蒸汽压差等生态因子的综合影响。生长季不同时期两典型林分各主要树种平均边材液流通量密度与各生态因子间的最优多元线性回归模型均达极显著水平,用多元线性回归模型的各生态因子能够解释大部分树木平均边材液流通量密度的变化。
     4、利用乘幂曲线模型可以拟合刺槐人工林和辽东栎天然次生林主要树种(刺槐、辽东栎和山杏)的边材面积与胸径间的回归方程,结合林分调查各主要树种单木的胸径可以计算相应树木边材面积。刺槐人工林和辽东栎天然次生林各树种林分平均边材液流通量密度均具有明显的季节动态变化特征。各树种林分平均边材液流通量密度的季节变化可能与生长季不同时期各树种叶片的生物学节律、气象因子以及土壤水分含量的变化有关。两典型林分各月份未测时段的林分蒸腾耗水量可以通过林分各树种蒸腾耗水量与白天日均水蒸汽压差间非线性回归模型的方法进行估算。生长季内5~7月为两典型林分蒸腾耗水量较高时期。2008年生长季内刺槐人工林和辽东栎天然次生林蒸腾耗水总量分别为73.8 mm和127.85 mm;日均林分蒸腾耗水量分别为0.41 mm day-1和0.63 mm day-1。两典型林分相对偏低的日均林分蒸腾耗水量可能与林分的叶面积指数及林分边材面积较小有关。
     5、除表层0~10cm外,辽东栎天然次生林地的土壤容重高于刺槐人工林地;100cm以下土层两林地土壤容重基本保持恒定。两典型林分的土壤水分动态变化与外界气候变化和林分蒸腾耗水节律紧密相关;0~300cm土层土壤水分变化均较大;300~500cm土层土壤水分保持相对稳定的低值。辽东栎天然次生林地深层(地下300~500cm)平均土壤含水量以及储水量要高于刺槐人工林相应土层的平均土壤含水量与储水量;以乡土树种辽东栎为建群种的天然次生林林下土壤水分状况要优于以外来树种刺槐为主的人工林。
The semiarid region of Loess Plateau of China is characterized by its extremely fragile ecosystems. Severe soil erosion and drought are the two major ecological problems in this region. Sustainable restoration of vegetation is the fundamental approach to the control of soil erosion and ensurance of the regional ecological security. According to the contradiction between revegetation and water deficiency occurred during the process of vegetation restoration, two typical forests in the semiarid region of Loess Plateau, i.e. Robinia peseudoacacia plantation and Quercus liaotungensis forests, were selected in this study. In forests of Mt. Gonglushan of Yan’an city, the leaf scale characteristic of photosynthesis and transpiration of the dominant tree species of the two typical forest types and the corresponding influencing factors were studied using the LI-6400 portable photosynthesis system. With the thermal dissipation probe sap flow measuring system and automatic meteorological station, the stem level water use of each tree species of the two typical forests and relevant environmental factors were monitored in situ in the same forests region. The influencing factors of sap flow of each tree species in the two typical forests were analyzed systematically. The stand level water use of the two typical forests in the growing season of 2008 was assessed. The main results are as follows:
     1. The photosynthesis diurnal courses of the dominant tree species of the two typical forests, i.e. R. peseudoacacia and Q. liaotungensis, were bimodal curve or single-peak curve during clear days of the growing season. Both the two dominant tree species had a significant photosynthetic midday depression phenomenon; and the main reason for this depression of the two tree species included stomatal factor and non-stomatal factor. High solar radiation, high VPD and high temperature are the major ecological factors that induced the photosynthetic midday depression of the two tree species. The maximum net photosynthetic rate of R. peseudoacacia was higher than it of Q. liaotungensis while the daily mean photosynthetic rate of R. peseudoacacia was less than it of Q. liaotungensis. The net photosynthetic rate of R. peseudoacacia and Q. liaotungensis had extremely significant correlation or significant correlation with stomatal conductance, intercellular CO2 concentration, available photosynthetic radiation, air temperature, air CO2 concentration, air vapour pressure deficit (VPD) and air relative humidity during growing season. The physiological factors, including stomatal conductance and intercellular CO2 concentration, were the major factors influencing the net photosynthetic rate of the two tree species. The ecological factors had indirect effect on the net photosynthetic rate of the two tree species by influencing stomatal conductance and intercellular CO2 concentration. The analysis of light response curve of R. peseudoacacia and Q. liaotungensis showed that the ability of carbon fixation and ability of using low light and high light of the two tree species were decreased obviously with the enhancing of soil water stress.
     2. The diurnal courses of transpiration of leaves of R. peseudoacacia and Q. liaotungensis were single-peak curve or irregular multi-peak curve during clear days of growing season. The seasonal differences of the diurnal courses of transpiration of leaves of the two tree species during growing season may be related to the different biologic characteristics of the two tree species or the differences of ecological factors of the different stages of growing season. The transpiration rate of R. peseudoacacia and Q. liaotungensis leaves had extremely significant correlation or significant correlation with stomatal conductance, available photosynthetic radiation, air temperature, air relative humidity and VPD during growing season. The ecophysiological factors influencing the transpiration rate of the two tree species varied with the different months during growing season.
     3. The diurnal courses of sap flux density of each tree species of R. peseudoacacia plantation and Q. liaotungensis forests was similar to the diurnal courses of solar radiation and VPD in clear days. The average sap flux density of each diameter at breast height (DBH) class of dominant tree species (R. peseudoacacia, Q. liaotungensis and Arrmeniaca sibirica) of the two typical forests differed among DBH classes significantly. However, we did not find a correlation between DBH and average sap flux density of R. peseudoacacia, Q. liaotungensis and A. sibirica in this study. This implies that sap flux density of each dominant tree species of the two typical forests may be controlled by multiple ecophysiological factors. The diurnal courses of the stand average sap flux density of each tree species of the two typical forests were single-peak curve in clear days and bimodal curve in cloudy days and overcast days during growing season. The daily mean stand average sap flux density of each tree species in different weather conditions was: Clear days > cloudy days > overcast days. This may be resulted from the significant difference of ecological factors among different weather conditions. The daily sap flow starting time, duration, peak value and the time of peak value of each tree species of the two typical forests differed evidently among the different months during growing season. In general, the daily maximum stand average sap flux density was lower at the beginning and the end of growing season and higher in the peak of growing season respectively. The stand average sap flux density of each tree species was influenced by the combined factors of solar radiation, air temperature, air relative humidity and VPD during most of growing season. The stepwise multiple regression model of ecological factors and stand average sap flux density of each tree species of the two typical forests in different months during growing season were all extremely significant. And, ecological factors of the stepwise multiple regression models are able to explain the most variation of the stand average sap flux density of each tree species in different months during growing season.
     4. The power function model can be used to fit the relationship between sapwood area and DBH of the dominant tree species of R. peseudoacacia plantation and Q. liaotungensis forests. Sapwood area of each tree of the dominant tree species in experimental plot can be calculated by DBH of tree and the corresponding fitted model. The stand average sap flux density of each tree species of R. peseudoacacia plantation and Q. liaotungensis forests were differed obviously among different months of growing season. The seasonal dynamics of stand average sap flux density of each tree species may be related to the differences in leaf phenology, meteorological factors and availability of soil water. The missing stand transpiration data of the two typical forests can be estimated on the basis of the nonlinear regression model between stand level transpiration of each tree species and the mean daily daytime VPD (VPDm) of each month. Stand transpiration of the two typical forests were higher from May to July. Total stand transpiration of R. peseudoacacia plantation and Q. liaotungensis forests during the growing season of 2008 were 73.8 mm and 127.85 mm, respectively. Daily mean stand transpiration for R. peseudoacacia plantation and Q. liaotungensis forests in the region were 0.41 mm day-1 and 0.63 mm day-1, respectively. The relatively lower daily mean stand transpiration for the two typical forests may be related to the relatively low leaf area index and a low ratio of sapwood area to ground area.
     5. Except for the 0-10cm layer, the soil bulk density of Q. liaotungensis forests was higher than it of R. peseudoacacia plantation. Soil bulk density of the two typical forests remained constant below underground 100cm. The variations of soil moisture of the two typical forests were related with the climate factors changes and stand transpiration dynamics. The variations of soil moisture in 0-300cm soil layer of the two typical forests were higher while the soil moisture of 300-500cm soil layer of the two typical forests kept a relatively stable low value. The mean soil moisture and cumulative soil water storage of underground 300-500cm of Q. liaotungensis forest was higher than the corresponding value of R. peseudoacacia plantation. Soil moisture of Q. liaotungensis forests dominanted by the native tree species was better than it of the plantation which was mainly composed by the exotic tree species (R. peseudoacacia).
引文
[1]龚垒.树木的光合作用与物质生产[M].北京:科学技术出版社, 1989.
    [2]刘世荣,温远光,王兵,等.中国森林生态系统水文生态功能规律[M].北京:中国林业出版社, 1996.
    [3]周晓峰.中国森林与生态环境[M].北京:中国林业出版社, 1999.
    [4]魏天兴,朱金兆,张学培.林分蒸散耗水量测定方法述评[J].北京林业大学学报, 1999, 21(3): 85-91.
    [5]王彦辉,张星耀,张守攻.我国林业生态环境的建设[J].科学对社会的影响, 2002, (3): 31-37.
    [6]汤洁,林年丰.中国干旱半干旱区农业生态地质环境系统工程研究[J].长春地质学院学报, 1996, 26(1): 54-58.
    [7]陈永金,陈亚宁,薛燕.干旱区植物耗水量的研究与进展[J].干旱区资源与环境, 18(6): 152-158.
    [8]王彦辉,张星耀,张守攻.我国林业生态环境的建设[J].科学对社会的影响, 2002, (3): 31-36.
    [9]李文华,李飞.中国森林资源研究[M].北京:中国林业出版社, 1996.
    [10]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998.
    [11]张金屯.黄土高原植被恢复与建设的理论和技术问题[J].水土保持学报, 2004, 18(5): 120-124.
    [12]邹年根,罗伟祥.黄土高原造林学[M].北京:中国林业出版社, 1997.
    [13]王正秋.黄土高原造林中几个问题的思考[J].中国水土保持, 2000, (4): 37-39.
    [14]侯庆春,韩蕊莲,韩仕锋.黄土高原人工林草地“土壤干层”问题初探[J].中国水土保持, 1999, (5): 11-14.
    [15]沈允钢.地球上最重要的化学反应:光合作用[M].北京:清华大学出版社, 2000.
    [16]殷宏章.植物的气体代谢[M].北京:科学出版社, 1990.
    [17]殷宏章.光合作用研究进展[M].北京:科学出版社, 1976.
    [18]沈允钢.光合作用在世纪之交的研究动向[J].生物学通报, 1999, 34(6): 1-4.
    [19]杜林方.光合作用研究的一些进展[J].世界科技研究与发展, 1999, 21(1): 58-62.
    [20] Xu DQ. Progress in Photosynthesis Research: From Molecular Mechanisms to Green Revolution[J]. Acta Phytophysiologica Sinica, 2001, 27(2): 97-108.
    [21]李合生.现代植物生理学[M].北京:高等教育出版社, 2002.
    [22]许大全.光合作用效率[M].上海:上海科学技术出版社, 2002.
    [23]蒋高明,常杰,高玉葆,等.植物生理生态学[M].北京:高等教育出版社, 2004.
    [24]沈允钢,李德耀,魏家绵,等.改进干重法测定光合作用的应用研究[J].植物生理学通讯, 1980, (2): 37-41.
    [25] Delieu T, Walker DA. Simultaneous measurement of oxygen evolution and Chlorophyll fluorescence from leaf pieces[J]. Plant Physiology, 1983, 73: 534-541.
    [26]于泽源,许姣卉,霍俊伟.李光合特性的研究[J].东北农业大学学报, 2004, 35(3): 315-317.
    [27]张小全,徐德应.杉木中龄林不同部位和叶龄针叶光合特性的日变化和季节变化[J].林业科学, 2000, 36(3): 19-26.
    [28]严俊鑫,刘晓东,张晓娇,等. 6种丁香的光合特性[J].东北林业大学学报, 2008, 36(7): 23-24,41.
    [29]柯世省.天台山3种常绿阔叶树光合特性的季节变化[J].浙江林业科技, 2004, 24(5): 7-11.
    [30]朱万泽,王金锡,等.四川桤木光合生理特性研究[J].西南林学院学报, 2001, 21(4): 196-204.
    [31]童方平,徐艳平,龙应忠,等.湿地松半同胞家系净光合速率的比较研究及季节变异规律[J].中国农学通报, 2008, 24(7): 419-424.
    [32]孙存华,孙存玉.两种女贞光合作用季节特性研究[J].生态学报, 1997, 17(5): 525-528.
    [33] Kramer PJ, Kozlowski TT. Physiology of Woody Plants[M]. New York, San Francisco and London: Academic Press, 1979.
    [34]周海光,刘广全,焦醒,等.黄土高原水蚀风蚀区林木光合特征研究[J].西北林学院学报, 2008, (5): -.
    [35]张淑勇,周泽福,张光灿,等.半干旱黄土丘陵区天然次生灌木山桃(Prunus davidiana)与山杏(Prunus sibirica L.)叶片气体交换参数日动态差异[J].生态学报, 2009, 29(1): 499-507.
    [36]许大全.光合作用的光抑制[J].植物生理学通讯, 1997, 33(6): 467-467.
    [37]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯, 1992, 28(4): 237-243.
    [38]路丙社,白志英,梁海永,等.阿月浑子叶片光合作用的光抑制研究[J].园艺学报, 2002, 29(4): 313-316.
    [39]韦朝领,江昌俊,陶汉之,等.茶树叶片光合作用的光抑制及其恢复研究[J].安徽农业大学学报, 2003, 30(2): 157-162.
    [40] Horton P, Ruban AV, Walters RG. Regulation of light harvesting in green plants[J]. Annual Review Of Plant Physiology And Plant Molecular Biology, 1996, 47: 655-684.
    [41] Pearcy RW. Sunflecks and photosynthesis in plant canopies[J]. Annual Review Of Plant Physiology And Plant Molecular Biology, 1990, 41: 421-453.
    [42]叶子飘,于强.光合作用光响应模型的比较[J].植物生态学报, 2008, 32(6): 1356-1361.
    [43]张继澍.植物生理学[M].西安:世界图书出版公司, 1999.
    [44]常杰,葛滢,陈增鸿,等.青冈常绿阔叶林主要植物种叶片的光合特性及其群落学意义[J].植物生态学报, 1999, 23(5): 393-400.
    [45] Demmig B, Bjorkman O. Comparison of the effect of excessive light on chlorophyll fluorescence(77K)and photon yield of O2 evolution on leaves of higher plants [J]. Planta, 1987, 171(2): 171-184.
    [46] Ogren E, Evans JR. Photoinhibition of Photosynthesis in situ in Six Species of Eucalyptus[J]. Australian Journal Of Plant Physiology, 1992, 19(3): 223-232.
    [47] Long SP, Humphries S, Falkowski PG. Photoinhibition of photosynthesis in nature[J]. Annual Review Of Plant Physiology And Plant Molecular Biology, 1994, 45: 633-662.
    [48] Flexas J, Escalona JM, Medrano H. Water stress induces different levels of photosynthesis and electron transport rate regulation in grapevines[J]. Plant Cell And Environment, 1999, 22(1): 39-48.
    [49] Demmigadams B, Adams WW. Photoprotection and other response of plants to high light stress[J]. Annual Review Of Plant Physiology And Plant Molecular Biology, 1992, 43: 599-626.
    [50] James SA, Bell DT. Leaf orientation, light interception and stomatal conductance of Eucalyptus globulus ssp globulus leaves[J]. Tree Physiology, 2000, 20(12): 815-823.
    [51] Feng YL, Cao KF, Feng ZL. Thermal dissipation, leaf rolling and inactivation of PSII reaction centres in Amomum villosum[J]. Journal Of Tropical Ecology, 2002, 18: 865-876.
    [52] Robinson SA, Osmond CB. Internal gradients of chlorophyll and carotenoid pigments in relation to photoprotection in thick leaves of plants with carssulacean acid metabolism[J]. Australian Journal Of Plant Physiology, 1994, 21(4): 497-506.
    [53] Lu CM, Lu QT, Zhang JH et al. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field[J]. Journal Of Experimental Botany, 2001, 52(362): 1805-1810.
    [54] Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation[J]. Nature, 1996, 384(6609): 557-560.
    [55] Osmond CB, Grace SC. Perspectives on photoinhibition and photorespiration in the f ield quintessential ineficiencies of the light and dark reactions of photosynthesis[J]. Journal Of Experimental Botany, 1995, 46: 1351-1362.
    [56] Depege N, Bellafiore S, Rochaix JD. Rote of chloroplast protein kinase Stt7 in LHCII phosphorylation and state transition in Chlamydomonas[J]. Science, 2003, 299(5612): 1572-1575.
    [57] Mewes H, Richter M. Supplementary ultraviolet-B radiation induces a rapid reversal of the diadinoxanthin cycle in the strong light-exposed diatom Phaeodactylum tricornutum[J]. Plant Physiology, 2002, 130(3): 1527-1535.
    [58] Jin ES, Yokthongwattana K, Polle JEW et al. Role of the reversible xanthophyll cycle in the photosystem II damage and repair cycle in Dunaliella salina[J]. Plant Physiology, 2003, 132(1): 352-364.
    [59]沈允钢,施教耐,许大全.动态光合作用[M].北京:科学出版社, 1998.
    [60] Genthon G, Barnola JM, Raynaud D et al. Vostok ice core:climatic response to CO2 and orbital forcing changes over the last climatic cycle[J]. Nature, 1987, 329: 414-418.
    [61]陈平平.大气二氧化碳浓度升高对植物的影响[J].生物学通报, 2002, 37(3): 20-21,22.
    [62] Arp WJ, Drake BG. Increased photosynthetic capacity of Scirpus-olneyi after 4 years of exposure to elevated CO2[J]. Plant Cell And Environment, 1991, 14(9): 1003-1006.
    [63] Gunderson CA, Wullschleger SD. Photosynthetic acclimation in trees to rising atmospheric CO2: A broader perspective[J]. Photosynthesis Research, 1994, 39(3): 369-388.
    [64] Gunderson CA, Norby RJ, Wullschleger SD. Foliar gas exchange responses of two deciduous hardwoods during three years of growth in elevated CO2: No loss of photosynthetic enhancement[J]. Plant Cell And Environment, 1993, 16(7): 797-807.
    [65]蒋高明.全球大气二氧化碳浓度升高对植物的影响[J].植物学通报, 1995, 12(4): 1-7.
    [66]蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响-国外十余年来模拟实验研究之主要手段及基本结论[J].植物生态学报, 1997, 21(6): 489-502.
    [67] Norby RJ, Wullschleger SD, Gunderson CA et al. Tree responses to rising CO2 in field experiments: implications for the future forest[J]. Plant Cell And Environment, 1999, 22(6): 683-714.
    [68]张小全,徐德应,赵茂盛,等. CO2增长对杉木中龄林针叶光合生理生态的影响[J].生态学报, 2000, 20(3): 390-396.
    [69]蒋跃林,张庆国,杨书运,等. 28种园林植物对大气CO2浓度增加的生理生态反应[J].植物资源与环境学报, 2006, 15(2): 1-6.
    [70]王亚萍,王开运,张远彬,等.川西亚高山森林优势种对CO2浓度倍增的光合生理响应[J].生态环境, 2008, 17(4): 1514-1517.
    [71] Silvola J, Ahlholm U. Photosynthesis in willow (Salix x dasyclados) grown at different CO2 concentrations and fertilization levels[J]. Oecologia, 1992, 91(2): 208-213.
    [72] Samuelson LJ, Seiler JR. Fraser fir seedling gas exchange and growth in response to elevated CO2[J]. Environmental and Experimental Botany, 1992, 32(4): 351-356.
    [73] Grulke NE, Hom JL, Roberts SW. Physiological adjustment of two full-sib families of ponderosa pine to elevated CO2[J]. Tree Physiology, 1993, 12(4): 391-401.
    [74] Mousseau M, Saugier B. The direct effect of increased CO2 on gas exchange and growth of forest tree species. In: International Scientific Meeting on Effects of Climatic Change on Agricultural and Natural Ecosystems, 1990 Sep Aug, San Miniato, Italy, 1990. p. 1121-1130.
    [75] Vanoosten JJ, Afif D, Dizengremel P. Long-term effects of a CO2 enriched atmosphere on enzymes of the primary carbon metabolism of spruce trees[J]. Plant Physiology and Biochemistry, 1992, 30(5): 541-547.
    [76] Tissue DT, Thomas RB, Strain BR. Long-term effects of elevated CO2 and nutrients on photosynthesis and rubisco in loblolly-pine seedlings[J]. Plant Cell And Environment, 1993, 16(7): 859-865.
    [77] Wilkins D, Vanoosten JJ, Besford RT. Effects of elevated CO2 on growth and chloroplast proteins in Prunus-avium. In: International Workshop on Ecophysiology and Genetics of Trees and Forests in a Changing Environment, 1993 May, Jul-Sep, Viterbo, Italy, 1993. p. 769-779.
    [78]蒋高明,渠春梅.北京山区辽东栎林中几种木本植物光合作用对CO2浓度升高的响应[J].植物生态学报, 2000, 24(2): 204-208.
    [79]陈德祥,李意德,骆土寿,等.短期CO2浓度升高对雨林树种盘壳栎光合特性的影响[J].生态学报, 2004, 24(8): 1622-1628.
    [80] Herrick JD, Maherali H, Thomas RB. Reduced stomatal conductance in sweetgum (Liquidambar styraciflua) sustained over long-term CO2 enrichment[J]. New Phytologist, 2004, 162(2): 387-396.
    [81] Herrick JD, Thomas RB. No photosynthetic down-regulation in sweetgum trees (Liquidambar styraciflua L.) after three years of CO2 enrichment at the Duke Forest FACE experiment[J]. Plant Cell And Environment, 2001, 24(1): 53-64.
    [82] Escalona JM, Flexas J, Medrano H. Stomatal and non-stomatal limitations of photosynthesis under water stress in field-grown grapevines[J]. Australian Journal Of Plant Physiology, 1999, 26(5): 421-433.
    [83] Flexas J, Medrano H. Drought-inhibition of photosynthesis in C-3 plants: Stomatal and non-stomatal limitations revisited[J]. Annals of Botany, 2002, 89(2): 183-189.
    [84] Cornic G, Fresneau C. Photosynthetic carbon reduction and carbon oxidation cycles are the main electron sinks for photosystem II activity during a mild drought[J]. Annals of Botany, 2002, 89: 887-894.
    [85] Lawlor DW. Limitation to photosynthesis in water-stressed leaves: Stomata vs. metabolism and the role of ATP[J]. Annals of Botany, 2002, 89: 871-885.
    [86] Tezara W, Mitchell VJ, Driscoll SD et al. Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP[J]. Nature, 1999, 401(6756): 914-917.
    [87]陈少良,王沙生, Altma A. et al. Stomatal and Non-stomatal Control of Photosynthesis in Poplar Genotypes in Response to Water Stres[J]. Journal of Beijing Forestry University (English Ed.), 1996, 5(2): 63-72.
    [88]苏培玺,严巧娣. C4荒漠植物梭梭和沙拐枣在不同水分条件下的光合作用特征[J].生态学报, 2006, 26(1): 75-82.
    [89] Meyer S, Dekouchkovsky Y. ATPase state and activity in thylakoids from normal water-stressed lupin[J]. Febs Letters, 1992, 303(2-3): 233-236.
    [90] Medrano H, Parry MAJ, Socias X et al. Long term water stress inactivates Rubisco in subterranean clover[J]. Annals Of Applied Biology, 1997, 131(3): 491-501.
    [91] Turner IM. Sclerophylly:primarily protective?[J]. Functional Ecology, 1994, 8(6): 669-675.
    [92] Larcher W. Temperature stress and survival ability of Mediterranean sclerophyllousplants[J]. Plant Biosystems, 2000, 134(3): 279-295.
    [93] Werner C, Correia O, Beyschlag W. Two different strategies of Mediterranean macchia plants to avoid photoinhibitory damage by excessive radiation levels during summer drought[J]. Acta Oecologica-international Journal Of Ecology, 1999, 20(1): 15-23.
    [94] Comstock J, Mencuccini M. Control of stomatal conductance by leaf water potential in Hymenoclea salsola (T & G), a desert subshrub[J]. Plant Cell And Environment, 1998, 21(10): 1029-1038.
    [95] Clifton-Brown JC, Lewandowski I. Water use efficiency and biomass partitioning of three different Miscanthus genotypes with limited and unlimited water supply[J]. Annals of Botany, 2000, 86(1): 191-200.
    [96] Larcher W.翟志席等译.植物生态生理学.[M].北京:中国农业大学出版社, 1997.
    [97] Schrader SM, Kleinbeck KR, Sharkey TD. Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis[J]. Plant Cell And Environment, 2007, 30(6): 671-678.
    [98]刘辉,郭延平,胡美君.杨梅光合作用的低温光抑制[J].热带亚热带植物学报, 2005, 13(4): 338-342.
    [99]宋祥春,赵惠新,苗玉青,等.低温对两种沙冬青幼苗光合生理指标的影响[J].新疆大学学报:自然科学版, 2009, (3): 342-346.
    [100]刘鹏,孟庆伟,赵世杰.冷敏感植物的低温光抑制及其生化保护机制[J].植物生理学通讯, 2001, 37(1): 76-82.
    [101] Pastenes C, Horton P. The effect of high temperature on photosynthesis. In: Mathis P, editor. Xth International Photosynthesis Congress, 1995 Aug 20-25, Montpellier, France, 1995. p. 789-792.
    [102] Mitchell RAC, Keys AJ, Madgwick PJ et al. Adaptation of photosynthesis in marama bean Tylosema esculentum (Burchell A. Schreiber) to a high temperature, high radiation, drought-prone environment[J]. Plant Physiology and Biochemistry, 2005, 43(10-11): 969-976.
    [103]刘东焕,赵世伟,高荣孚,等.植物光合作用对高温的响应[J].植物研究, 2002, 22(2): 205-212.
    [104] Crafts-Brandner SJ, Law RD. Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state[J]. Planta, 2000, 212(1): 67-74.
    [105] Streb R, Aubert S, Bligny R. High temperature effects on light sensitivity in the twohigh mountain plant species Soldanella alpina (L.) and Rannunculus glacialis (L.)[J]. Plant Biology, 2003, 5(4): 432-440.
    [106] Haldimann P, Feller U. Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase[J]. Plant Cell And Environment, 2004, 27(9): 1169-1183.
    [107]张小全,徐德应.温度对杉木中龄林针叶光合生理生态的影响[J].林业科学, 2002, 38(3): 27-33.
    [108]郭延平,周慧芬,曾光辉,等.高温胁迫对柑橘光合速率和光系统Ⅱ活性的影响[J].应用生态学报, 2003, 14(6): 867-870.
    [109]郭孟霞,毕华兴,刘鑫,等.树木蒸腾耗水研究进展[J].中国水土保持科学, 2006, 4(4): 114-120.
    [110]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学, 1997, 33(2): 117-126.
    [111]陶大立,靳月华,林继惠.长白山树木蒸腾和气孔阻力的日变化[J].植物生理学通讯, 1989, (3): 22-25.
    [112] Ansley RJ, Dugas WA, Heuer ML et al. Stem flow and porometer measurements of transpiration from honey mesquite (Prosopis glandulosa) [J]. Journal Of Experimental Botany, 1994, 45(275): 847-856.
    [113]巨关升,刘奉觉,郑世锴,等.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究, 2000, 13(4): 360-365.
    [114]苏建平,康博文.我国树木蒸腾耗水研究进展[J].水土保持研究, 2004, 11(2): 177-179,186.
    [115] Hatton TJ, Wu HI. Scaling theory to extrapolate individual tree water use to stand water use[J]. Hydrological Processes, 1995, 9: 527-540.
    [116]司建华,冯起,张小由,等.植物蒸散耗水量测定方法研究进展[J].水科学进展, 2005, 16(3): 450-459.
    [117] Wullschleger SD, Meinzer FC, Vertessy RA. A review of whole-plant water use studies in trees[J]. Tree Physiology, 1998, 18(8-9): 499-512.
    [118] Ladefoged K. A Method for Measuring the Water Consumption of Larger Intact Trees[J]. Physiologia Plantarum, 1960, 13(4): 648-658.
    [119]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997, 33(2): 117-126.
    [120] Greenwood EAN, Beresford JD. Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique. I. Comparative transpiration from juvenile Eucalyptus above saline ground-water seeps[J]. Journal of Hydrology, 1979, 42(3-4): 369-382.
    [121]邓东周,范志平,王红,等.林木蒸腾作用测定和估算方法[J].生态学杂志, 2008, 27(6): 1051-1058.
    [122] Smith DM, Allen SJ. Measurement of sap flow in plant stems[J]. Journal Of Experimental Botany, 1996, 47(305): 1833-1844.
    [123] Steinberg SL, van Bavel CHM, McFarland MJ. A gauge to measure mass-flow rate of sap in stems and trunks of woody-plants[J]. Journal Of The American Society For Horticultural Science, 1989, 114(3): 466-472.
    [124] Baker JM, Vanbavel CHM. Measurement of mass flow of water in the stems of herbaceous plants[J]. Plant Cell And Environment, 1987, 10(9): 777-782.
    [125]郑怀舟,朱锦懋,魏霞,等. 5种热动力学方法在树干液流研究中的应用评述[J].福建师范大学学报(自然科学版), 2007, 23(4): 119-123.
    [126] Braun P, Schmid J. Sap flow measurements in grapevines (Vitis vinifera L.) - 1. Stem morphology and use of the heat balance method[J]. Plant and Soil, 1999, 215(1): 39-45.
    [127] Cermak J, Kucera J, Nadezhdina N. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands[J]. Trees-structure And Function, 2004, 18(5): 529-546.
    [128] Cermak J, Deml M, Penka M. A new method of sap flow rate determination in trees[J]. Biologia Plantarum, 1973, 15(3): 171-178.
    [129] Kucera J, Cermak J, Penka M. Improved thermal method of continual recording the transpiration flow rate dynamics[J]. Biologia Plantarum, 1977, 19(6): 413-420.
    [130] Cermak J, Cienciala E, Kucera J et al. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site[J]. Journal of Hydrology, 1995, 168(1-4): 17-27.
    [131] Swanson RH. Significant historical developments in thermal methods for measuring sap flow in trees[J]. Agricultural And Forest Meteorology, 1994, 72(1-2): 113-132.
    [132] Marshall DC. Measurement of sap flow in conifers by heat transport[J]. Plant Physiology, 1958, 33(6): 385-396.
    [133] Swanson RH, Whitfield DWA. A numerical analysis of heat pulse velocity theoryand practice[J]. Journal Of Experimental Botany, 1981, 32(126): 221-239.
    [134] Green SR, Clothier BE. Water use of kiwifruit vines and apple trees by the heat-pulse technique[J]. Journal Of Experimental Botany, 1988, 39(198): 115-123.
    [135] Granier A. A new method of sap flow measurement in tree stems[J]. Annales des Sciences Forestieres, 1985, 42(2): 193-200.
    [136] Granier A. Sap flow measurements in Douglas-fir tree trunks by means of a new thermal method[J]. Annales des Sciences Forestieres, 1987, 44(1): 1-14.
    [137] Lu P, Urban L, Zhao P. Granier's thermal dissipation probe (TDP) method for measuring sap flow in trees: Theory and practice[J]. Acta Botanica Sinica, 2004, 46(6): 631-646.
    [138]雷志栋,杨诗秀,谢森传.土壤水动力学[M].北京:清华大学出版社, 1988.
    [139]徐德应.森林的蒸散:方法与实践[A]. In:中国林学会主编.森林水文学术讨论会文集[C].北京:测绘出版社, 1989:177-182.
    [140]王华田.林木耗水性研究述评[J].世界林业研究, 2003, 16(2): 23-27.
    [141]马雪华.森林水文学[M].北京:中国林业出版社, 1993.
    [142] Denmead OT. Plant physiological methods for studying evapotranspiration: problems of telling the forest from the trees[J]. Agricultural Water Management, 1984, 8(1-3): 167-189.
    [143] Kostner B, Granier A, Cermak J. Sapflow measurements in forest stands: methods and uncertainties[J]. Annales des Sciences Forestieres, 1998, 55(1-2): 13-27.
    [144] Hatton TJ, Vertessy RA. Transpiration of plantation Pinus radiata estimated by the heat pulse method and the Bowen ratio[J]. Hydrological Processes, 1990, 4(3): 289-298.
    [145] Hatton TJ, Moore SJ, Reece PH. Estimating stand transpiration in a Eucalyptus populnea woodland with the heat pulse method: measurement errors and sampling strategies[J]. Tree Physiology, 1995, 15(4): 219-227.
    [146] Teskey RO, Sheriff DW. Water use by Pinus radiata trees in a plantation[J]. Tree Physiology, 1996, 16(1-2): 273-279.
    [147] Vertessy RA, Benyon RG, O'Sullivan SK et al. Relationships between stem diameter, sapwood area, leaf area and transpiration in a young mountain ash forest[J]. Tree Physiology, 1995, 15(9): 559-567.
    [148] Vertessy RA, Hatton TJ, Reece P et al. Estimating stand water use of large mountain ash trees and validation of the sap flow measurement technique[J]. Tree Physiology, 1997, 17(12): 747-756.
    [149] Dunn GM, Connor DJ. Analysis of sap flow in mountain ash (Eucalyptus regnans) forests of different age[J]. Tree Physiology, 1993, 13(4): 321-336.
    [150] Ladefoged K. Transpiration of forest trees in closed stands[J]. Physiologia Plantarum, 1963, 16(2): 378-414.
    [151] Cermak J, Kucera J. Transpiration of mature stands of spruce (Picea abies (L.) Karst.) as estimated by the tree trunk heat balance method. In: Swanson R, Bernier P, Woodward P, editors. Proceedings of the Forest Hydrology and Watershed Management Symposium, 1987, Vancouver, Canada: IAHS-AISH Publ. No. 167, 1987. p. 311-317.
    [152] Werk KS, Oren R, Schulze ED et al. Performance of two Picea abies (L.) Karst. stands at different stages of decline.3. Canopy transpiration of green trees[J]. Oecologia, 1988, 76(4): 519-524.
    [153] Thorburn PJ, Hatton TJ, Walker GR. Combining measurements of transpiration and stable isotopes of water to determine groundwater discharge from forests[J]. Journal of Hydrology, 1993, 150: 563-587.
    [154]熊伟,王彦辉,于澎涛,等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推[J].林业科学, 2008, 44(1): 34-40.
    [155]马李一,孙鹏森,马履一.油松、刺槐单木与林分水平耗水量的尺度转换[J].北京林业大学学报, 2001, 23(4): 1-5.
    [156]赵平,饶兴权,马玲,等.基于树干液流测定值进行尺度扩展的马占相思林段蒸腾和冠层气孔导度[J].植物生态学报, 2006, 30(4): 655-665.
    [157]孙龙,王传宽,杨国亭,等.应用热扩散技术对红松人工林树干液流通量的研究[J].林业科学, 2007, 43(11): 8-14.
    [158] Kumagai T, Aoki S, Shimizu T et al. Sap flow estimates of stand transpiration at two slope positions in a Japanese cedar forest watershed[J]. Tree Physiology, 2007, 27(2): 161-168.
    [159] Granier A, Biron P, Bréda N et al. Transpiration of trees and forest stands: Short and longterm monitoring using sapflow methods[J]. Global Change Biology, 1996, 2(3): 265-274.
    [160]孙鹏森,马履一.水源保护树种耗水特性研究与应用[M].北京:中国环境科学出版社, 2002.
    [161] Saugier B, Granier A, Pontailler JY et al. Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods[J]. Tree Physiology,1997, 17(8-9): 511-519.
    [162] Granier A, Loustau D. Measuring and modelling the transpiration of a maritime pine canopy from sap-flow data[J]. Agricultural And Forest Meteorology, 1994, 71(1-2): 61-81.
    [163] Asbjornsen H, Tomer MD, Gomez-Cardenas M et al. Tree and stand transpiration in a Midwestern bur oak savanna after elm encroachment and restoration thinning[J]. Forest Ecology And Management, 2007, 247: 209–219.
    [164] Ewers BE, Mackay DS, Gower ST et al. Tree species effects on stand transpiration in northern Wisconsin[J]. Water Resources Research, 2002, 38(7): 1-11.
    [165] Oren R, Phillips N, Katul G et al. Scaling xylem sap flux and soil water balance and calculating variance: a method for partitioning water flux in forests[J]. Annales des Sciences Forestieres, 1998, 55(1-2): 191-216.
    [166]张小由,康尔泗,司建华,等.胡杨蒸腾耗水的单木测定与林分转换研究[J].林业科学, 2006, 42(7): 28-32.
    [167] Cermak J, Nadezhdina N. Sapwood as the scaling parameter-defining according to xylem water content or radial pattern of sap flow?[J]. Annales des Sciences Forestieres, 1998, 55(5): 509-521.
    [168] Wullschleger SD, King AW. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees[J]. Tree Physiology, 2000, 20(8): 511-518.
    [169] Wullschleger SD, Hanson PJ, Todd DE. Transpiration from a multi-species deciduous forest as estimated by xylem sap flow techniques[J]. Forest Ecology And Management, 2001, 143(1-3): 205-213.
    [170]孙鹏森,马李一,马履一.油松、刺槐林潜在耗水量的预测及其与造林密度的关系[J].北京林业大学学报, 2001, 23(2): 1-6.
    [171]王华田,邢黎峰,马履一,等.栓皮栎水源林林木耗水尺度扩展方法研究[J].林业科学, 2004, 40(6): 170-175.
    [172] Edwards WRN, Booker RE. Radial variation in the axial conductivity of Populus and its significance in heat pulse velocity measurement[J]. Journal Of Experimental Botany, 1984, 35(153): 551-561.
    [173] Cermak J, Cienciala E, Kucera J et al. Radial velocity profiles of water flow in trunks of Norway spruce and oak and the response of spruce to severing[J]. Tree Physiology, 1992, 10(4): 367-380.
    [174] Phillips N, Oren R, Zimmermann R. Radial patterns of xylem sap flow in non-,diffuse- and ring-porous tree species[J]. Plant Cell And Environment, 1996, 19(8): 983-990.
    [175] Loustau D, Domec JC, Bosc A. Interpreting the variations in xylem sap flux density within the trunk of maritime pine (Pinus pinaster Ait.): application of a model for calculating water flows at tree and stand levels[J]. Annales des Sciences Forestieres, 1998, 55(1-2): 29-46.
    [176]孙鹏森,马履一,王小平,等.油松树干液流的时空变异性研究[J].北京林业大学学报, 2000, 22(5): 1-6.
    [177] Ford CR, McGuire MA, Mitchell RJ et al. Assessing variation in the radial profile of sap flux density in Pinus species and its effect on daily water use[J]. Tree Physiology, 2004, 24(3): 241-249.
    [178]张小由,龚家栋,周茅先,等.胡杨树干液流的时空变异性研究[J].中国沙漠, 2004, 24(4): 489-492.
    [179] Infante JM, Domingo F, Ales RF et al. Quercus ilex transpiration as affected by a prolonged drought period[J]. Biologia Plantarum, 2003, 46(1): 49-55.
    [180] Hinckley TM, Brooks JR, Cermak J et al. Water flux in a hybrid poplar stand[J]. Tree Physiology, 1994, 14: 1005-1018.
    [181] Kellomaki S, Wang KY. Sap flow in Scots pines growing under conditions of year-round carbon dioxide enrichment and temperature elevation[J]. Plant Cell And Environment, 1998, 21(10): 969-981.
    [182] Senock RS, Leuschner C. Axial Water Flux Dynamics in Small Diameter Roots of a Fast Growing Tropical Tree[J]. Plant and Soil, 1999, 208(1): 57-71.
    [183] Granier A, Huc R, Barigah ST. Transpiration of natural rain forest and its dependence on climatic factors[J]. Agricultural And Forest Meteorology, 1996, 78(1-2): 19-29.
    [184]茹桃勤,李吉跃,孔令省,等.刺槐耗水研究进展[J].水土保持研究, 2005, 12(2): 135-140.
    [185] Kurpius MR, Panek JA, Nikolov NT et al. Partitioning of water flux in a Sierra Nevada ponderosa pine plantation[J]. Agricultural And Forest Meteorology, 2003, 117(3-4): 173-192.
    [186]李合生.现代植物生理学[M].北京:高等教育出版社, 2001.
    [187] Gardner W, Kirkham D. Determination of soil moisture by neutron scattering[J]. Soil Science, 1952, 73(5): 391-401.
    [188]马履一.国内外土壤水分研究现状与进展[J].世界林业研究, 1997, 10(5): 26-32.
    [189]陈洪松,邵明安.中子仪的标定及其在坡地土壤水分测量中的应用[J].干旱地区农业研究, 2003, 21(2): 68-71,76.
    [190]西北水土保持生物土壤研究所土壤水分组.陕西省东部旱塬农田墒情调查[J].土壤, 1975, (6): 279-285.
    [191]李玉山.黄土区土壤水分循环特征及其对陆地水分循环的影响[J].生态学报, 1983, 3(2): 91-101.
    [192]杨文治,韩仕峰.黄土丘陵区人工林草地的土壤水分生态环境[J].中国科学院西北水土保持研究所集刊, 1985, (2 ): 19-28.
    [193]韩仕峰,李玉山,石玉洁,等.黄土高原土壤水分资源特征[J].水土保持通报, 1990, 10(1): 36-43.
    [194]侯庆春,黄旭,韩仕峰,等.黄土高原地区小老树成因及其改造途径的研究:Ⅱ.土壤水分和养分状况及其与小老树生长的关系[J].水土保持学报, 1991, 5(2): 75-83.
    [195]王经民,戴夏燕,韩冰.黄土丘陵区土壤水分研究[J].农业系统科学与综合研究, 2000, 16(1): 53-56.
    [196]穆兴民,徐学选,王文龙,等.黄土高原人工林对区域深层土壤水环境的影响[J].土壤学报, 2003, 40(2): 210-217.
    [197]陈云明,刘国彬,杨勤科.黄土高原人工林土壤水分效应的地带性特征[J].自然资源学报, 2004, 19(2): 195-200.
    [198]孙中文,孙中峰,张学培,等.黄土区人工林地的土壤水分研究动态[J].干旱区研究, 2005, 22(2): 167-171.
    [199]王力,卫三平,吴发启.黄土丘陵沟壑区土壤水分环境及植被生长响应――以燕沟流域为例[J].生态学报, 2009, 29(3): 1543-1553.
    [200]田丽,王孝安,郭华,等.黄土高原马栏林区辽东栎更新特性研究[J].广西植物, 2007, 27(2): 191-196.
    [201]单长卷,梁宗锁,郝文芳.黄土高原刺槐林生长与土壤水分关系研究进展[J].西北植物学报, 2003, 23(8): 1341-1346.
    [202]侯庆春,韩蕊莲,李宏平.关于黄土丘陵典型地区植被建设中有关问题的研究:Ⅲ,乡土树种在造林中的意义[J].水土保持研究, 2000, 7(2): 119-123.
    [203]刘建利,李凯荣,易亮,等.黄土高原丘陵区人工刺槐林林分结构及林下植物多样性研究[J].水土保持通报, 2008, 28(3): 49-52,70.
    [204]王力,邵明安,王全九,等.黄土高原子午岭天然林与刺槐人工林地土壤干化状况对比[J].西北植物学报, 2005, 25(7): 1279-1286.
    [205]卢彦昌,张文辉,陆元昌.黄龙山林区不同培育措施对辽东栎种群结构与动态的影响[J].西北植物学报, 2006, 26(7): 1407-1413.
    [206]徐学选,刘江华,高鹏,等.黄土丘陵区植被的土壤水文效应[J].西北植物学报, 2003, 23(8): 1347-1351.
    [207]朱志诚.陕北黄土高原辽东栎林的类型和演替[J].西北大学学报:自然科学版, 1991, 21(1): 57-71.
    [208]王力,邵明安,李裕元.陕北黄土高原人工刺槐林生长与土壤干化的关系研究[J].林业科学, 2004, 40(1): 84-91.
    [209]薛智德,朱清科,山中典和,等.延安地区辽东栎群落结构特征的研究[J].西北农林科技大学学报(自然科学版), 2008, 36(10): 81-87,94.
    [210]李军,王学春,邵明安,等.黄土高原不同密度刺槐(Robinia pseudoacia)林地水分生产力与土壤干燥化效应模拟[J].生态学报, 2008, 28(7): 3125-3142.
    [211]李军,陈兵,李小芳,等.黄土高原不同植被类型区人工林地深层土壤干燥化效应[J].生态学报, 2008, 28(4): 1429-1445.
    [212]梁向锋,赵世伟,张亚莉,等.子午岭次生林区土壤持水力及其与土壤有机碳的关系[J].水土保持研究, 2008, 15(3): 15-19.
    [213]刘勇,上官周平.子午岭森林群落土壤水分与生物量关系研究[J].西北农业学报, 2007, 16(5): 150-154.
    [214]刘勇,刘光明.黄土高原子午岭群落演替特性研究[J].安徽农业科学, 2007, 35(18): 5550-5551,5598.
    [215]郑淑霞,上官周平.黄土高原油松和刺槐叶片光合生理适应性比较[J].应用生态学报, 2007, 18(1): 16-22.
    [216]曹军胜,刘广全.刺槐光合特性的研究[J].西北农业学报, 2005, 14(3): 118-122,136.
    [217]曹军胜,刘广全.刺槐叶绿素荧光特性的研究[J].西北植物学报, 2006, 26(1): 121-126.
    [218]靳甜甜,刘国华,胡婵娟,等.黄土高原常见造林树种光合蒸腾特征[J].生态学报, 2008, 28(11): 5758-5765.
    [219]安慧,上官周平.黄土高原植被不同演替阶段优势种的光合生理特性[J].应用生态学报, 2007, 18(6): 1175-1180.
    [220]许红梅,高琼,黄永梅,等.黄土高原森林草原区6种植物光合特性研究[J].植物生态学报, 2004, 28(2): 157-163.
    [221]秦娟,刘勇,上官周平.子午岭林区白桦-辽东栎混交林光合生理生态特征研究[J].西北植物学报, 2006, 26(11): 2331-2337.
    [222]吴征镒.中国植被[M].北京:科学出版社, 1980.
    [223]吴钦孝,杨文治.黄土高原植被建设与持续发展[M].北京:科学出版社, 1998.
    [224] Campbell GS, Norman JM. An introduction to environmental biophysics[M]. New York USA: Springer-Verlag New York Inc., 1998.
    [225] Granier A. Evaluation of transpiration in a Douglas-fir stand by means of sap flow measurements[J]. Tree Physiology, 1987, 3(4): 309-320.
    [226] Clearwater MJ, Meinzer FC, Andrade JL et al. Potential errors in measurement of nonuniform sap flow using heat dissipation probes[J]. Tree Physiology, 1999, 19(10): 681-687.
    [227] James SA, Clearwater MJ, Meinzer FC et al. Heat dissipation sensors of variable length for the measurement of sap flow in trees with deep sapwood[J]. Tree Physiology, 2002, 22(4): 277-283.
    [228] Granier A, Biron P, K?stner B et al. Comparisons of xylem sap flow and water vapour flux at the stand level and derivation of canopy conductance for Scots pine[J]. Theoretical And Applied Climatology, 1996, 53(1): 115-122.
    [229] Osmond CB, Winter K, Powles SB. Adaptive significance of carbon dioxide cycling during photosynthesis in water stressed plants[A]. In: Turner NC, Kramer PJ. Adaption of Plants to Water and High Temperature Stress[C]. New York: John Wiley and Sons, 1980:139-154.
    [230]许大全.光合作用“午睡”现象的生态,生理与生化[J].植物生理学通讯, 1990, 26(6): 5-10.
    [231]许大全.光合作用气孔限制分析中的一些问题[J].植物生理学通讯, 1997, 33(4): 241-244.
    [232] Farquhar GD, Sharkey TD. Stomatal conductance and photosynthesis[J]. Annual Review Of Plant Physiology And Plant Molecular Biology, 1982, 33: 317-345.
    [233] Berry JA, Downton WJS. Environmental regulation of Photosynthesis[A]. In: Govindjee NY. Photosynthesis (II)[C]. New York: Academic Press, 1982:263-343.
    [234]韩凤山,赵明,赵松山.小麦午睡原因的研究I.大田生态因子与午睡的关系[J].作物学报, 1984, 10(2): 137-143.
    [235]韩凤山,赵明,赵松山,等.小麦午睡原因的研究Ⅲ.形成小麦午睡生态生理因素作用的综合分析[J].作物学报, 1988, 14(4): 296-302.
    [236] Tenhunen JD, Lange OL, Gebel J et al. Changes in Photosynthetic capacity, carboxylation effiency, and CO2 compensation point associated with midday stomatal closure and midday depression of net CO2 exchange of leaves of Quercus suber[J]. Planta, 1984, 162(3): 193-203.
    [237]钱莲文,张新时,杨智杰,等.几种光合作用光响应典型模型的比较研究[J].武汉植物学研究, 2009, 27(2): 197-203.
    [238] Herrick JD, Thomas RB. Effects of CO2 enrichment on the photosynthetic light response of sun and shade leaves of canopy sweetgum trees (Liquidambar styraciflua) in a forest ecosystem[J]. Tree Physiology, 1999, 19(12): 779-786.
    [239] Lewis JD, McKane RB, Tingey DT et al. Vertical gradients in photosynthetic light response within an old-growth Douglas-fir and western hemlock canopy[J]. Tree Physiology, 2000, 20(7): 447-456.
    [240] Baly EC. The kinetics of photosynthesis[J]. Proceedings of the Royal Society of London, Series B: Biological Sciences, 1935, 117: 218-239.
    [241] Thornley JHM. Dynamic model of leaf photosynthesis with acclimation to light and nitrogen[J]. Annals of Botany, 1998, 81(3): 421-430.
    [242] Thornley JHM. Mathematical Models in Plant Physiology [M]. London: Academic Press, 1976.
    [243] Cannell MGR, Thornley JHM. Temperature and CO2 responses of leaf and canopy photosynthesis: A clarification using the non-rectangular hyperbola model of photosynthesis[J]. Annals of Botany, 1998, 82(6): 883-892.
    [244] Peek MS, Russek-Cohen E, Wait DA et al. Physiological response curve analysis using nonlinear mixed models[J]. Oecologia, 2002, 132(2): 175-180.
    [245]刘宇锋,萧浪涛,童建华,等.非直线双曲线模型在光合光响应曲线数据分析中的应用[J].中国农学通报, 2005, 21(8): 76-79.
    [246] Bassman JH, Zwier JC. Gas exchange characteristics of populus trichocarpa, populus deltoides and populus trichocarpa X populus deltoides clones[J]. Tree Physiology,1991, 8(2): 145-159.
    [247] Prado C, DeMoraes J. Photosynthetic capacity and specific leaf mass in twenty woody species of Cerrado vegetation under field conditions[J]. Photosynthetica, 1997, 33(1): 103-112.
    [248] Watling JR, Press MC, Quick WP. Elevated CO2 induces biochemical and ultrastructural changes in leaves of the C4 cereal sorghum[J]. Plant Physiology, 2000, 123(3): 1143-1152.
    [249]刘锦春,钟章成,何跃军,等.重庆石灰岩地区十大功劳(Nahonia fortunei)的光合响应研究[J].西南师范大学学报:自然科学版, 2005, 30(2): 316-320.
    [250]王克勤,王斌瑞.土壤水分对金矮生苹果光合速率的影响[J].生态学报, 2002, 22(2): 206-214.
    [251] Kuppers M, Schulze ED. An empirical model of net photosynthesis and leaf conductance for the simulation of diurnal courses of CO2 and H2O exchange[J]. Australian Journal Of Plant Physiology, 1985, 12(5): 513-526.
    [252]陈根云,俞冠路,陈悦,等.光合作用对光和二氧化碳响应的观测方法探讨[J].植物生理与分子生物学学报, 2006, 32(6): 691-696.
    [253]郭春芳,孙云,张木清.土壤水分胁迫对茶树光合作用-光响应特性的影响[J].中国生态农业学报, 2008, 16(6): 1413-1418.
    [254]钟全林,胡松竹,贺利中,等.刨花楠不同种源主要光响应指标分析[J].林业科学, 2008, 44(7): 118-123.
    [255]王淼,代力民,姬兰柱,等.干旱胁迫对蒙古柞表观资源利用率的影响[J].应用生态学报, 2002, 13(3): 275-280.
    [256]朱万泽,王金锡,薛建辉,等.四川桤木光合生理特性研究[J].西南林学院学报, 2001, 21(4): 196-204.
    [257]孙书存,陈灵芝.东灵山地区辽东栎叶的生长及其光合作用[J].生态学报, 2000, 20(2): 212-217.
    [258]蔺琛,马钦彦,韩海荣,等.山西太岳山辽东栎的光合特性[J].生态学报, 2002, 22(9): 1399-1406.
    [259]许大全.光合作用的“午睡”现象[J].植物生理学通讯, 1997, 33(6): 466-467.
    [260]王华田,张光灿,刘霞.论黄土丘陵区造林树种选择的原则[J].世界林业研究, 2001, 14(5): 74-78.
    [261]田丽,王孝安,郭华,等.黄土高原马栏林区辽东栋更新特性研究[J].广西植物, 2007, 27(2): 191-196.
    [262]何明,翟明普,曹帮华,等.持续干旱下刺槐无性系光合作用与蒸腾作用的日变化[J].山东林业科技, 2005, (1): 6-8.
    [263]黄运平,严昌荣.暖温带落叶阔叶林中辽东栎蒸腾作用的特征[J].中南民族大学学报(自然科学版), 2002, 21(3): 16-18.
    [264]王海珍,韩蕊莲,梁宗锁,等.土壤干旱对辽东栎、大叶细裂槭幼苗生长及水分利用的影响[J].西北植物学报, 2003, 23(8): 1377-1382.
    [265]杨建伟,周索,韩蕊莲,等.土壤干旱对刺槐蒸腾变化及抗旱性研究[J].西北林学院学报, 2006, 21(5): 32-36,73.
    [266]张华,王百田,郑培龙.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究[J].水土保持学报, 2006, 20(2): 122-125.
    [267]王海珍,韩蕊莲,冉隆贵,等.不同土壤水分条件对辽东栎、大叶细裂槭水分状况的影响[J].西北林学院学报, 2003, 18(3): 1-5.
    [268]李凯荣,王佑民,冯汀.黄土高原沟壑区刺槐人工林蒸腾状况的研究[J].陕西林业科技, 1989, (4): 12-17.
    [269]杨文文,张学培,王洪英.晋西黄土区刺槐蒸腾、光合与水分利用的试验研究[J].水土保持研究, 2006, 13(1): 72-75.
    [270]杨文文,王洪英.黄土丘陵区刺槐蒸腾速率及其环境影响因子[J].水土保持科技情报, 2005, (1): 20-22.
    [271]王孟本,李洪建,柴宝峰,等.树种蒸腾作用,光合作用和蒸腾效率的比较研究[J].植物生态学报, 1999, 23(5): 401-410.
    [272]单长卷,郝文芳,梁宗锁,等.不同土壤干旱程度对刺槐幼苗水分生理和生长指标的影响[J].西北农业学报, 2005, 14(2): 44-49.
    [273] Granier A, Bobay V, Gash JHC et al. Vapour flux density and transpiration rate comparisons in a stand of Maritime pine (Pinus pinaster Ait.) in Les Landes forest[J]. Agricultural And Forest Meteorology, 1990, 51(3-4): 309-319.
    [274] Poyatos R, Llorens P, Gallart F. Transpiration of montane Pinus sylvestris L. and Quercus pubescens Willd. forest stands measured with sap flow sensors in NE Spain[J]. Hydrology And Earth System Sciences, 2005, 9(5): 493-505.
    [275] Oguntunde PG. Whole-plant water use and canopy conductance of cassava underlimited available soil water and varying evaporative demand[J]. Plant and Soil, 2005, 278(1-2): 371-383.
    [276] Lu P, Biron P, Bréda N et al. Water relations of adult Norway spruce (Picea abies (L) Karst) under soil drought in the Vosges mountains: water potential,stomatal conductance and transpiration[J]. Annales des Sciences Forestieres, 1995, 52(2): 117-129.
    [277] Lu P. A direct method for estimating the average sap flux density using a modified Granier measuring system[J]. Australian Journal Of Plant Physiology, 1997, 24(5): 701-705.
    [278] Licata JA, Gyenge JE, Fernandez ME et al. Increased water use by ponderosa pine plantations in northwestern Patagonia, Argentina compared with native forest vegetation[J]. Forest Ecology And Management, 2008, 255(3-4): 753-764.
    [279] Kumagai T, Aoki S, Nagasawa H et al. Effects of tree-to-tree and radial variations on sap flow estimates of transpiration in Japanese cedar[J]. Agricultural And Forest Meteorology, 2005, 135(1-4): 110-116.
    [280]王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报, 2002, 26(6): 661-667.
    [281]王华田,马履一,孙鹏森.油松、侧柏深秋边材木质部液流变化规律的研究[J].林业科学, 2002, 38(5): 31-37.
    [282]王华田,马履一,徐军亮.油松人工林SPAC水势梯度时空变化规律及其对边材液流传输的影响[J].植物生态学报, 2004, 28(5): 637-643.
    [283]徐军亮,马履一,阎海平.油松树干液流进程与太阳辐射的关系[J].中国水土保持科学, 2006, 4(2): 103-107.
    [284]徐军亮,马履一.土壤温度对油松(Pinus tabulaeformis)树干液流活动的影响[J].生态学报, 2008, 28(12): 6107-6112.
    [285]李海涛,向乐,夏军,等.应用热扩散技术对亚热带红壤区湿地松人工林树干边材液流的研究[J].林业科学, 2006, 42(10): 31-38.
    [286]赵平,饶兴权,马玲,等. Granier树干液流测定系统在马占相思的水分利用研究中的应用[J].热带亚热带植物学报, 2005, 13(6): 457-468.
    [287]赵平,饶兴权,马玲,等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异[J].生态学报, 2006, 26(12): 4050-4058.
    [288]于占辉,陈云明,杜盛.黄土高原半干旱区人工林刺槐展叶期树干液流动态分析[J].林业科学, 2009, 45(4): 53-59.
    [289] Danso SKA, Zapata F, Awonaike KO. Measurement of biological N2 fixation in field-grown Robinia pseudoacacia L[J]. Soil Biology & Biochemistry, 1995, 27(4-5): 415-419.
    [290] Hanover JW, Mebrahtu T. Robinia pseudoacacia: temperate legume tree with worldwide potential[R]. Waimanalo: Nitrogen Fixing Tree Association (NFTA), 1991.
    [291]王力,邵明安,侯庆春,等.延安试区人工刺槐林地的土壤干层分析[J].西北植物学报, 2001, 21(1): 101-106.
    [292]杨新民,杨文治,马玉玺.纸坊沟流域人工刺槐林生长状况与土壤水分条件研究[J].水土保持研究, 1994, 1(3): 31-35,42.
    [293]孙一琳,王洪英,刘秀萍.黄土高原人工刺槐林土壤水分特征[J].青岛农业大学学报, 2007, 24(2): 123-126.
    [294]吴照柏,杨新民.黄土丘陵区刺槐生长及林地土壤水分动态规律研究[J].水土保持研究, 2004, 11(4): 117-120.
    [295]马玉玺,杨文治,杨新民.陕北黄土丘陵沟壑区刺槐林水分生态条件及生产力研究[J].水土保持通报, 1990, 10(6): 71-77.
    [296] Granier A, Anfodillo T, Sabatti M et al. Axial and radial water flow in the trunks of oak trees: a quantitative and qualitative analysis[J]. Tree Physiology, 1994, 14(12): 1383-1396.
    [297] Poyatos R, Cermak J, Llorens P. Variation in the radial patterns of sap flux density in pubescent oak (Quercus pubescens) and its implications for tree and stand transpiration measurements[J]. Tree Physiology, 2007, 27(4): 537-548.
    [298] David TS, Ferreira MI, David JS et al. Transpiration from a mature Eucalyptus globulus plantation in Portugal during a spring-summer period of progressively higher water deficit[J]. Oecologia, 1997, 110(2): 153-159.
    [299]陈灵芝,鲍显诚,陈清朗,等.天津和北京地区植物生态学研究[A]. In:中国科学院植物研究所和动物研究所.天津、北京地区生物和生态学研究[C].北京:中国海洋地理出版社, 1990:1-42.
    [300]朱志诚.关于秦岭及陕北黄土高原区辽东栎林的初步研究[J].植物生态学与地植物学学报, 1982, 6(2): 95-104.
    [301]王巍,刘灿然,马克平,等.东灵山两个落叶阔叶林中辽东栎种群结构和动态[J].植物学报, 1999, 41(4): 425-432.
    [302]高贤明,王巍,杜晓军,等.北京山区辽东栎林的径级结构、种群起源及生态学意义[J].植物生态学报, 2001, 25(6): 673-678.
    [303]赵世伟,周印东,吴金水.子午岭北部不同植被类型土壤水分特征研究[J].水土保持学报, 2002, 16(4): 119-122.
    [304]康永祥,康博文,岳军伟,等.陕北黄土高原辽东栎(Quercus liaotungensis)群落类型划分及其生态位特征[J].生态学报, 2007, 27(10): 4096-4105.
    [305]康永祥,岳军伟,雷瑞德,等.陕北黄龙山辽东栎群落优势种群生态位研究[J].西北植物学报, 2008, 28(3): 574-581.
    [306]曹文强,韩海荣,马钦彦,等.山西太岳山辽东栎夏季树干液流通量研究[J].林业科学, 2004, 40(2): 174-177.
    [307]熊伟,王彦辉,于澎涛,等.六盘山辽东栎、少脉椴天然次生林夏季蒸散研究[J].应用生态学报, 2005, 16(9): 1628-1632.
    [308]魏天兴,朱金兆,张学培,等.晋西南黄土区刺槐油松林地耗水规律的研究[J].北京林业大学学报, 1998, 20(4): 36-40.
    [309]张华,王百田,郑培龙.黄土半干旱区不同土壤水分条件下刺槐蒸腾速率的研究[J].水土保持学报, 2006, 20(2): 122-125.
    [310]李凯荣,王佑民.黄土塬区刺槐林地水分条件与生产力研究[J].水土保持通报, 1990, 10(6): 58-65.
    [311]侯振宏,贺康宁,张小全.晋西黄土高原半干旱区刺槐林分需水量的研究[J].水土保持学报, 2003, 17(4): 180-183.
    [312]王海珍,梁宗锁,韩蕊莲,等.不同土壤水分条件下黄土高原乡土树种耗水规律研究[J].西北农林科技大学学报, 2005, 33(6): 57-63.
    [313]陈天林,徐学选,张北赢,等.黄土丘陵区刺槐生长季生态需水研究[J].水土保持通报, 2008, 28(2): 54-57.
    [314] Hara Y, Zhang W, Du S et al. Water relations of 4 afforestation species in the Loess Plateau, China[J]. Journal of the Japanese Forest Society, 2008, 90(4): 247-252 (in Japanese).
    [315] Yan MJ, Yamanaka N, Yamamoto F et al. Responses of leaf gas exchange, water relations, and water consumption in seedlings of four semiarid tree species to soil drying[J]. Acta Physiol Plant, 2009, Doi:10.1007/s11738-009-0397-x.
    [316] Schiller G, Cohen S, Ungar ED et al. Estimating water use of sclerophyllous species under East-Mediterranean climate - III. Tabor oak forest sap flow distribution and transpiration[J]. Forest Ecology And Management, 2007, 238(1-3): 147-155.
    [317] Schaeffer SM, Williams DG, Goodrich DC. Transpiration of cottonwood/willow forest estimated from sap flux[J]. Agricultural And Forest Meteorology, 2000, 105(1-3): 257-270.
    [318] Delzon S, Loustau D. Age-related decline in stand water use: sap flow and transpiration in a pine forest chronosequence[J]. Agricultural And Forest Meteorology, 2005, 129(3-4): 105-119.
    [319] Roberts S, Vertessy R, Grayson R. Transpiration from Eucalyptus sieberi (L. Johnson) forests of different age[J]. Forest Ecology And Management, 2001, 143(1-3): 153-161.
    [320]常学向,赵爱芬,赵文智,等.黑河中游荒漠绿洲区免灌植被土壤水分状况[J].水土保持学报, 2003, 17(2): 126-129.
    [321]郑纪勇,邵明安,张兴昌.黄土区坡面表层土壤容重和饱和导水率空间变异特征[J].水土保持学报, 2004, 18(3): 53-56.