α酮酸加低蛋白饮食抑制肾纤维化的作用及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
慢性肾脏病(CKD)是一种常见肾脏疾病,若未能进行有效治疗,最终将进入终末期肾脏病(ESRD)。肾纤维化是各种病因导致的CKD发展至ESRD阶段的共同途径和主要病理结果。氧化应激、慢性炎症及转化生长因子β(TGF-β)等细胞因子均在其发生发展中发挥重要作用,但其确切发病机制尚不清楚。Kruppel样因子15(KLF15)是一种在体内广泛分布的核转录因子,属于锌指蛋白家族,通过对多种基因的表达调控参与细胞分化、增殖、凋亡等生物学过程。2007年Fisch S等研究表明,KLF15参与调控心脏纤维化的发生,其机制与抑制I型胶原转录和结缔组织生长因子(CTGF)启动子活性有关。肾纤维化的发生与心脏纤维化存在相似机制,但目前尚无KLF15与肾脏纤维化关系的研究,其是否是影响CKD肾纤维化发生及进展的重要因素是本研究的关注方向。
     限制蛋白饮食是CKD的主要治疗策略之一,可减轻CKD患者氮质血症,延缓肾衰病情进展,但单纯低蛋白血症可能会引起营养不良等问题。目前临床常采用低蛋白加α酮酸治疗CKD患者,α酮酸可提供必需氨基酸并减少氨基氮的摄入,在不增加体内毒素的同时维持一个相对良好的营养状态。但目前仍不清楚低蛋白加α酮酸饮食在延缓CKD病程进展中的作用是否要优于单纯低蛋白饮食及其具体机制。考虑到氧化应激、炎症在CKD肾纤维化中的作用,本研究的目的在于:明确α酮酸加低蛋白饮食是否较单纯低蛋白饮食可更好地延缓CKD大鼠肾损害进展,减轻氧化应激、和炎症在其中的作用,此外,我们还将进一步探讨KLF15在肾纤维化进展中的作用和机制。
     为此,我们首先建立5/6肾切除SD大鼠CKD模型,对照组大鼠行假手术(Control,n=12),手术组大鼠分别给予正常蛋白饮食(NPD, n=15)、低蛋白饮食(LPD, n=15)和低蛋白饮食加α-酮酸(LPD+KA, n=15),干预6个月留取血、尿标本后处死大鼠,进行血、尿生化检测;留取肾组织包埋切片,进行Masson染色、电镜、I型胶原和纤维连接蛋白免疫组织化学检测;提取肾组织总RNA,进行Real-time PCR检测TGF-β1、Ⅰ型胶原、Ⅲ型胶原、Ⅳ型胶原和纤维连接蛋白的表达。结果显示,血尿素氮、尿蛋白、Masson染色病理评分、电镜、胶原染色和纤维化相关的Real-time PCR均显示:与对照组相比,NPD组出现明显的肾功能恶化,LPD较NPD可改善病情进展,而LPD+KA对肾功能的保护作用较LPD更明显(P<0.05)。LPD组出现低体重、低血清白蛋白等营养不良的表现,而LPD+KA组未出现明显的营养不良(P<0.05)。由于已有研究证实,蛋白营养不良可致组织氧化应激和炎症水平的增加,而氧化应激和炎症是CKD肾纤维化的发生和进展的重要因素,因此,低蛋白加α酮酸饮食较单纯低蛋白饮食更好地减缓肾损害进展,其作用可能与改善营养不良,减少氧化应激和炎症反应有关。
     为进一步证实氧化应激和炎症在低蛋白加α酮酸饮食在延缓CKD病程进展中的作用,我们进一步检测了各组的氧化应激和炎症的相关指标。将上述大鼠肾组织行组织匀浆检测SOD、MDA,提取总蛋白行oxybolt检测蛋白氧化水平,同时组织切片进行硝基化酪氨酸和CD68免疫组织化学检测。此外还提取肾组织总RNA,采用Real-time PCR检测TNF-α, MCP-1、RANTES和CXCL-1的mRNA表达。结果显示,LPD组和LPD+KA组氧化应激(MDA、硝基化酪氨酸、oxybolt)和炎症(CD68、TNF-α、MCP-1、RANTES、CXCL-1)相关指标较NPD组显著改善,同时,LPD+KA组相关指标也显著好于LPD组(P<0.05)。这些结果表明,低蛋白加α酮酸饮食通过减轻氧化应激和炎症反应而减缓CKD肾损害进展。
     随后,我们研究了KLF15在肾纤维化中的作用。首先通过对上述大鼠肾组织的免疫荧光和Real-time PCR检测发现,KLF15主要在对照组肾组织的系膜细胞和间质成纤维细胞中表达,5/6肾切除后表达显著下降,予以低蛋白和低蛋白加α酮酸饮食可使其表达增加,且LPD+KA组较LPD组增加更为显著(P<0.05)。体外实验中我们采用TGF-β1 TNF-α和H202干预大鼠系膜细胞(RMCs),提取总RNA行Real-timePCR检测发现干预后KLF15表达降低(P<0.05);同时通过对TNFR1-/-小鼠系膜细胞及NF-κB基因敲除的RelA-/-小鼠胚肾间质成纤维细胞(MEF)进行TNF-α干预,Real-time PCR检测发现TNF-a通过TNF受体1和NF-κB途径减少KLF15表达。为进一步研究KLF15与纤维化的关系,我们将KLF15质粒瞬时转染人胚肾细胞(HEK293)和RMCs细胞,提取总RNA行Real-time PCR和提取细胞蛋白及上清行ELISA检测,结果显示过表达KLF15可显著减少HEK293和RMCs细胞纤维连接蛋白和IV型胶原的表达(P<0.05)。此部分结果表明KLF15参与调控肾纤维化进程,饮食干预可通过影响KLF15表达而延缓CKD进展。
     总之,本研究发现α酮酸加低蛋白饮食较单纯低蛋白饮食可显著地延缓CKD大鼠肾损害进展,其作用与降低残余肾组织的氧化应激和炎症反应有关。KLF15表达受氧化应激、炎症等多种因素影响,并参与调控CKD肾纤维化进程,饮食干预可通过影响KLF15表达而延缓肾损害进展。
Chronic kidney disease (CKD) is one of the most common kidney diseases and may cause end stage renal disease without effective therapeutic interventions. Renal fibrosis is the result of extracellular matrix accumulation and a hallmark of progressive CKD. Multiple factors, including oxidative stress, chronic inflammation and transforming growth factorβ(TGF-β), are all implicated in the development and progression of renal fibrosis, but the exact mechanisms of CKD remain unknown. Kruppel-like factor 15 (KLF15) is a zinc finger-containing transcription factor and plays an important role in regulation of differentiation, proliferation and apoptosis. In 2007, Fisch S et al reported that KLF15 may play an important role in heart fibrosis, and further study indicated that the levels of type I collagen transcription and the activity of connective tissue growth factor (CTGF) promoter were decreased by KLF15. As heart fibroses share similar mechanisms, KLF15 may also be an important factor in renal fibrosis.
     Dietary protein restriction is a major therapy in CKD. Lowering dietary protein intake to slow down the progression of renal failure would decrease the metabolic burden, especially the levels of urea nitrogen. Since malnutrition is a concern for long-term protein restriction, ketoacida, a nitrogen free substitution for the essential amino acids, have been prescribed together with low protein diet to CKD patients. Ketoacids are equally efficient as their essential amino acids counterpart in protein synthesis. Furthermore, they reduce accumulation of nitrogen waste products by decreasing exogenous nitrogen supply and enhancing reutilization of stored nitrogen. However, it is still unclear whether low protein diet supplemented with ketoacids is better than low protein diet alone in renal protection of CKD patients, and the mechanisms by which they decrease the progression of CKD are unknown. Knowing that oxidative stress and inflammation are implicated in the development of renal fibrosis, we hypothesized that low protein diet supplemented with ketoacids might offer a better protective effect than low protein diet alone. We further evaluated the effect of diet treatment on the level of KLF15 expression and explored the mechanisms in the progression of renal fibrosis in a CKD rat model.
     Forty-five 5/6 nephrectomy SD rats were equally randomized into three groups:NPD group (22% protein); LPD group (6% protein), and LPD+KA group (5% protein+1% ketoacids), all for 24 weeks. Sham operated rats (n=12) were used as control. Blood and urine samples were collected for biochemical test. Remnant or control kidneys were removed, embedded and sliced in sections, and stained with Masson's, type I collagen and fibronectin immunohistochemical staining as well as electron microscope study. Total RNA was extracted from renal tissue and expressions of fibrosis-related genes including TGF-β1, typeⅠ, type III, type IV collagen and fibronection were examined by real-time PCR. BUN, Proteinuria, decreased renal function, glomerular sclerosis and tubulointerstitial fibrosis were observed in the remnant kidneys of NPD group. Protein restriction ameliorated above changes, and the effect was more obvious in LPD+KA group (P<0.05) than LPD group. Lower body weight and serum albumin level were found in LPD group, indicating protein malnutrition (P<0.05). Since protein malnutrition has been reported to cause oxidative stress and inflammation, which are implicated in the development and progression of renal fibrosis, it seems that low protein diet supplemented with ketoacids plays a more protective role than low protein diet alone in protecting remnant kidney function against progressive injury. The effect may be mediated by ameliorating malnutrition, thus protecting the remnant kidney against oxidative stress and inflammation injury.
     Levels of oxidative stress and inflammation were further measured to convince the role that they played in protecting CKD renal function by low protein diet supplemented with ketoacids. The results of MDA, oxybolt and nitrotyrosine immunohistochemical staining showed that renal lipid and protein oxidative products, and chronic inflammation as characterized by extensive macrophage infiltration and increased mRNA expression of cytokine and chemokines (TNF-a, MCP-1, CXCL-1 and RANTES) were substantially reduced in LPD and LPD+KA groups, and the reduction in LPD+KA group was more pronounced than that in LPD group (P<0.05). These findings indicate that low protein diet supplemented with ketoacids played a better role in blocking the progression of renal pathology of CKD by mediating oxidative stress and inflammation injury.
     Then, we studied the role of KLF15 in renal fibrosis and further explored the underlying mechanism. Immunofluorescence revealed that large numbers of KLF15 positive cells were present in both glomeruli and interstitial of the control group. The levels of KLF15 mRNA and the number of KLF15 positive cells were drastically decreased in remnant kidney of 5/6 nephrectomized rats. While restriction of protein intake partially restored the levels of KLF15, the effect was more pronounced in LPD+KA group than that in the groups using dietary protein alone (P<0.05).It was found that in vitro mRNA levels of KLF15 in rat mesangial cells (RMCs) were decreased by TGF-β1, TNF-a, as well as H2O2 (P<0.05) Since the suppressive effect of TNF-a on KLF15 mRNA expression was largely lost in cells lacking TNF receptor 1 (mesangial cells from TNF receptor 1 knock-out mice TNFR1-/-) or p65 subunit of NFκB (embryonic fibroblasts from NFκB p65 deficient mice RelA-/-), both TNF receptor 1 and NFκB are likely required for TNF-a mediated inhibition of KLF15 expression. For further study of KLF15, RMCs and human embryo kidney cells (HEK293) were transfected with a KLF15 cDNA expression vector, and total RNA, cellular protein and culture supernatant were collected for Real-time PCR or ELISA study. It was found that overexpression of KLF15 was associated with a significant decrease in type IV collagen and fibronection expression (P<0.05), suggesting that KLF15 may also have a role in extracellular matrix regulation in renal fibrosis, and the improvement of renal disease by dietary treatment was associated with a partial restoration of KLF15 expression in remnant kidney.
     In conclusion, the results of our study indicate that low protein diet supplemented with ketoacids plays a more renal protective role than low protein diet alone in the 5/6 nephrectomy rat model. The effect may be mediated by ketoacids through ameliorating oxidative stress and inflammation injury in remnant kidney tissue. The expression of KLF15 could be affected by oxidative stress, inflammation and multiple factors, and it may also play a role in extracellular matrix regulation in renal fibrosis in CKD. The improvement of renal disease by dietary treatment was associated with a partial restoration of KLF15 expression in remnant kidney.
引文
1. Chonchol M, Scragg R.25-Hydroxyvitamin D, insulin resistance, and kidney function in the Third National Health and Nutrition Examination Survey. Kidney Int. Jan 2007;71(2):134-139.
    2. Xie Y, Chen X. Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China. Am J Nephrol.2008;28(1):1-7.
    3. Zhang L, Zuo L, Xu G, et al. Community-based screening for chronic kidney disease among populations older than 40 years in Beijing. Nephrol Dial Transplant. Apr 2007;22(4):1093-1099.
    4. USRDS:the United States Renal Data System. Am J Kidney Dis. Dec 2003;42(6 Suppl 5):1-230.
    5. Silverstein DM. Inflammation in chronic kidney disease:role in the progression of renal and cardiovascular disease. Pediatr Nephrol. Aug 2009;24(8):1445-1452.
    6. Rodriguez-Iturbe B, Pons H, Herrera-Acosta J, et al. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. May 2001;59(5):1626-1640.
    7. Gray S, Wang B, Orihuela Y, et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. Apr 2007;5(4):305-312.
    8. Mori T, Sakaue H, Iguchi H, et al. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem. Apr 1 2005:280(13): 12867-12875.
    9. Gray S, Feinberg MW, Hull S, et al. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. Sep 13 2002;277(37): 34322-34328.
    10. Teshigawara K, Ogawa W, Mori T, et al. Role of Kruppel-like factor 15 in PEPCK gene expression in the liver. Biochem Biophys Res Commun. Feb 18 2005;327(3):920-926.
    11. Otteson DC, Liu Y, Lai H, et al. Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters. Invest Ophthalmol Vis Sci. Aug 2004;45(8):2522-2530.
    12. Yamamoto J, Ikeda Y, Iguchi H, et al. A Kruppel-like factor KLF15 contributes fasting-induced transcriptional activation of mitochondrial acetyl-CoA synthetase gene AceCS2. J Biol Chem. Apr 23 2004;279(17):16954-16962.
    13. Nagare T, Sakaue H, Takashima M, et al. The Kruppel-like factor KLF15 inhibits transcription of the adrenomedullin gene in adipocytes. Biochem Biophys Res Commun. Jan 30 2009;379(1):98-103.
    14. Fisch S, Gray S, Heymans S, et al. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. Apr 24 2007; 104(17):7074-7079.
    15. Wang B, Haldar SM, Lu Y, et al. The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J Mol Cell Cardiol. Aug 2008;45(2):193-197.
    16. Fouque D, Wang P, Laville M, et al. Low protein diets delay end-stage renal disease in non-diabetic adults with chronic renal failure. Nephrol Dial Transplant. Dec 2000;15(12):1986-1992.
    1. USRDS:the United States Renal Data System. Am J Kidney Dis. Dec 2003;42(6 Suppl 5):1-230.
    2. Fouque D, Wang P, Laville M, et al. Low protein diets delay end-stage renal disease in non-diabetic adults with chronic renal failure. Nephrol Dial Transplant. Dec 2000;15(12):1986-1992.
    3. Bernhard J, Beaufrere B, Laville M, et al. Adaptive response to a low-protein diet in predialysis chronic renal failure patients. J Am Soc Nephrol. Jun 2001;12(6):1249-1254.
    4. Miyazaki T, Aoyama I, Ise M, et al. An oral sorbent reduces overload of indoxyl sulphate and gene expression of TGF-betal in uraemic rat kidneys. Nephrol Dial Transplant. Nov 2000;15(11):1773-1781.
    5. Ots M, Mackenzie HS, Troy JL, et al. Effects of combination therapy with enalapril and losartan on the rate of progression of renal injury in rats with 5/6 renal mass ablation. J Am Soc Nephrol. Feb 1998;9(2):224-230.
    6. Taal MW, Chertow GM, Rennke HG, et al. Mechanisms underlying renoprotection during renin-angiotensin system blockade. Am J Physiol Renal Physiol. Feb 2001;280(2):F343-355.
    7. Feng JX, Hou FF, Liang M, et al. Restricted intake of dietary advanced glycation end products retards renal progression in the remnant kidney model. Kidney Int. May 2007;71(9):901-911.
    8. Taal MW, Zandi-Nejad K, Weening B, et al. Proinflammatory gene expression and macrophage recruitment in the rat remnant kidney. Kidney Int. Oct 2000;58(4):1664-1676.
    9. Chonchol M, Scragg R.25-Hydroxyvitamin D, insulin resistance, and kidney function in the Third National Health and Nutrition Examination Survey. Kidney Int. Jan 2007;71(2):134-139.
    10. Xie Y, Chen X. Epidemiology, major outcomes, risk factors, prevention and management of chronic kidney disease in China. Am J Nephrol.2008;28(1):1-7.
    11. Zhang L, Zuo L, Xu G, et al. Community-based screening for chronic kidney disease among populations older than 40 years in Beijing. Nephrol Dial Transplant. Apr 2007;22(4):1093-1099.
    12. Nankivell BJ, Tay YC, Boadle RA, et al. Dietary protein alters tubular iron accumulation after partial nephrectomy. Kidney Int. Apr 1994;45(4):1006-1013.
    13. Meireles CL, Price SR, Pereira AM, et al. Nutrition and chronic renal failure in rats: what is an optimal dietary protein? J Am Soc Nephrol. Nov 1999;10(11):2367-2373.
    14. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. Faseb J. May 2004; 18(7):816-827.
    15. Stenvinkel P, Heimburger O, Tuck CH, et al. Apo(a)-isoform size, nutritional status and inflammatory markers in chronic renal failure. Kidney Int. May 1998;53 (5):1336-1342.
    16. Tatli MM, Vural H, Koc A, et al. Altered anti-oxidant status and increased lipid peroxidation in marasmic children. Pediatr Int. Jun 2000;42(3):289-292.
    17. Feoli AM, Siqueira IR, Almeida L, et al. Effects of protein malnutrition on oxidative status in rat brain. Nutrition. Feb 2006;22(2):160-165.
    18. Rana S, Sodhi CP, Mehta S, et al. Protein-energy malnutrition and oxidative injury in growing rats. Hum Exp Toxicol. Oct 1996;15(10):810-814.
    19. Himmelfarb J. Linking oxidative stress and inflammation in kidney disease:which is the chicken and which is the egg? Semin Dial. Nov-Dec 2004;17(6):449-454.
    20. Stenvinkel P. Inflammation in end-stage renal failure:could it be treated? Nephrol Dial Transplant.2002;17 Suppl 8:33-38; discussion 40.
    21. Kobayashi M, Sugiyama H, Wang DH, et al. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int. Sep 2005;68(3):1018-1031.
    22. Vaziri ND, Ni Z, Oveisi F, et al. Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency. Hypertension. Jan 2002;39 (1):135-141.
    1. Stenvinkel P, Barany P. Anaemia, rHuEPO resistance, and cardiovascular disease in end-stage renal failure; links to inflammation and oxidative stress. Nephrol Dial Transplant. 2002; 17 Suppl 5:32-37.
    2. Kobayashi M, Sugiyama H, Wang DH, et al. Catalase deficiency renders remnant kidneys more susceptible to oxidant tissue injury and renal fibrosis in mice. Kidney Int. Sep 2005;68(3):1018-1031.
    3. Sener G, Paskaloglu K, Satiroglu H, et al. L-carnitine ameliorates oxidative damage due to chronic renal failure in rats. J Cardiovasc Pharmacol. May 2004;43(5):698-705.
    4. Ramos LF, Shintani A, Ikizler TA, et al. Oxidative stress and inflammation are associated with adiposity in moderate to severe CKD. J Am Soc Nephrol. Mar 2008; 19(3):593-599.
    5. Silverstein DM. Inflammation in chronic kidney disease:role in the progression of renal and cardiovascular disease. Pediatr Nephrol. Aug 2009;24(8):1445-1452.
    6. Cachofeiro V, Goicochea M, de Vinuesa SG, et al. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int Suppl. Dec 2008(111):S4-9.
    7. Nankivell BJ, Tay YC, Boadle RA, et al. Dietary protein alters tubular iron accumulation after partial nephrectomy. Kidney Int. Apr 1994;45(4):1006-1013.
    8. Bankovic-Calic N, Eddy A, Sareen S, et al. Renal remodelling in dietary protein modified rat polycystic kidney disease. Pediatr Nephrol. Sep 1999;13(7):567-570.
    9. Himmelfarb J. Linking oxidative stress and inflammation in kidney disease:which is the chicken and which is the egg? Semin Dial. Nov-Dec 2004;17(6):449-454.
    10. Buege JA, Aust SD. Microsomal lipid peroxidation. Methods Enzymol.1978;52: 302-310.
    11. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem. Mar 1988;34(3):497-500.
    12. Meireles CL, Price SR, Pereira AM, et al. Nutrition and chronic renal failure in rats: what is an optimal dietary protein? J Am Soc Nephrol. Nov 1999;10(11):2367-2373.
    13. Halliwell B. What nitrates tyrosine? Is nitrotyrosine specific as a biomarker of peroxynitrite formation in vivo? FEBS Lett. Jul 14 1997;411(2-3):157-160.
    14. Aksenov MY, Aksenova MV, Butterfield DA, et al. Protein oxidation in the brain in Alzheimer's disease. Neuroscience.2001;103(2):373-383.
    15. Vaziri ND, Ni Z, Oveisi F, et al. Enhanced nitric oxide inactivation and protein nitration by reactive oxygen species in renal insufficiency. Hypertension. Jan 2002;39 (1):135-141.
    16. Li N, Karin M. Is NF-kappaB the sensor of oxidative stress? Faseb J. Jul 1999; 13 (10):1137-1143.
    17. Nguyen-Khoa T, Massy ZA, De Bandt JP, et al. Oxidative stress and haemodialysis: role of inflammation and duration of dialysis treatment. Nephrol Dial Transplant. Feb 2001;16(2):335-340.
    18. Stenvinkel P, Heimburger O, Tuck CH, et al. Apo(a)-isoform size, nutritional status and inflammatory markers in chronic renal failure. Kidney Int. May 1998;53 (5):1336-1342.
    19. Peuchant E, Delmas-Beauvieux MC, Dubourg L, et al. Antioxidant effects of a supplemented very low protein diet in chronic renal failure. Free Radic Biol Med. 1997;22(1-2):313-320.
    20. Bergesio F, Monzani G, Guasparini A, et al. Cardiovascular risk factors in severe chronic renal failure:the role of dietary treatment. Clin Nephrol. Aug 2005;64(2):103-112.
    21. Tatli MM, Vural H, Koc A, et al. Altered anti-oxidant status and increased lipid peroxidation in marasmic children. Pediatr Int. Jun 2000;42(3):289-292.
    22. Feoli AM, Siqueira IR, Almeida L, et al. Effects of protein malnutrition on oxidative status in rat brain. Nutrition. Feb 2006;22(2):160-165.
    23. Rana S, Sodhi CP, Mehta S, et al. Protein-energy malnutrition and oxidative injury in growing rats. Hum Exp Toxicol. Oct 1996;15(10):810-814.
    24. Mitch WE, Du J, Bailey JL, et al. Mechanisms causing muscle proteolysis in uremia: the influence of insulin and cytokines. Miner Electrolyte Metab. Jul-Dec 1999;25(4-6):216-219.
    25. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest. May 2005:115(5):1111-1119.
    26. Suliman ME, Qureshi AR, Stenvinkel P, et al. Inflammation contributes to low plasma amino acid concentrations in patients with chronic kidney disease. Am J Clin Nutr. Aug 2005;82(2):342-349.
    27. Chung SH, Stenvinkel P, Lindholm B, et al. Identifying and managing malnutrition stemming from different causes. Perit Dial Int. Jun 2007;27 Suppl 2:S239-244.
    28. Stenvinkel P. Inflammation in end-stage renal failure:could it be treated? Nephrol Dial Transplant.2002;17 Suppl 8:33-38; discussion 40.
    29. Salahudeen AK, Clark EC, Nath KA. Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo. J Clin Invest. Dec 1991;88(6):1886-1893.
    1. Uchida S, Tanaka Y, Ito H, et al. Transcriptional regulation of the CLC-K1 promoter by myc-associated zinc finger protein and kidney-enriched Kruppel-like factor, a novel zinc finger repressor. Mol Cell Biol. Oct 2000;20(19):7319-7331.
    2. Fisch S, Gray S, Heymans S, et al. Kruppel-like factor 15 is a regulator of cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A. Apr 24 2007;104(17):7074-7079.
    3. Wang B, Haldar SM, Lu Y, et al. The Kruppel-like factor KLF15 inhibits connective tissue growth factor (CTGF) expression in cardiac fibroblasts. J Mol Cell Cardiol. Aug 2008;45(2):193-197.
    4. Cho KH, Kim HJ, Rodriguez-Iturbe B, et al. Niacin ameliorates oxidative stress, inflammation, proteinuria, and hypertension in rats with chronic renal failure. Am J Physiol Renal Physiol. Jul 2009;297(1):F106-113.
    5. Rodriguez-Iturbe B, Pons H, Herrera-Acosta J, et al. Role of immunocompetent cells in nonimmune renal diseases. Kidney Int. May 2001;59(5):1626-1640.
    6. Turner J, Crossley M. Mammalian Kruppel-like transcription factors:more than just a pretty finger. Trends Biochem Sci. Jun 1999;24(6):236-240.
    7. Dang DT, Pevsner J, Yang VW. The biology of the mammalian Kruppel-like family of transcription factors. Int J Biochem Cell Biol. Nov-Dec 2000;32(11-12):1103-1121.
    8. Pearson R, Fleetwood J, Eaton S, et al. Kruppel-like transcription factors:a functional family. Int J Biochem Cell Biol.2008;40(10):1996-2001.
    9. Gray S, Feinberg MW, Hull S, et al. The Kruppel-like factor KLF15 regulates the insulin-sensitive glucose transporter GLUT4. J Biol Chem. Sep 13 2002;277(37): 34322-34328.
    10. Gray S, Wang B, Orihuela Y, et al. Regulation of gluconeogenesis by Kruppel-like factor 15. Cell Metab. Apr 2007;5(4):305-312.
    11. Mori T, Sakaue H, Iguchi H, et al. Role of Kruppel-like factor 15 (KLF15) in transcriptional regulation of adipogenesis. J Biol Chem. Apr 1 2005;280(13):12867-12875.
    12. Nagare T, Sakaue H, Takashima M, et al. The Kruppel-like factor KLF15 inhibits transcription of the adrenomedullin gene in adipocytes. Biochem Biophys Res Commun. Jan 30 2009;379(1):98-103.
    13. Otteson DC, Liu Y, Lai H, et al. Kruppel-like factor 15, a zinc-finger transcriptional regulator, represses the rhodopsin and interphotoreceptor retinoid-binding protein promoters. Invest Ophthalmol Vis Sci. Aug 2004;45(8):2522-2530.
    14. Teshigawara K, Ogawa W, Mori T, et al. Role of Kruppel-like factor 15 in PEPCK gene expression in the liver. Biochem Biophys Res Commun. Feb 18 2005; 327(3):920-926.
    15. Yamamoto J, Ikeda Y, Iguchi H, et al. A Kruppel-like factor KLF15 contributes fasting-induced transcriptional activation of mitochondrial acetyl-CoA synthetase gene AceCS2. J Biol Chem. Apr 23 2004;279(17):16954-16962.
    16. Micheau O, Tschopp J. Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. Jul 25 2003;114(2):181-190.
    17. Depuydt B, van Loo G, Vandenabeele P, et al. Induction of apoptosis by TNF receptor 2 in a T-cell hybridoma is FADD dependent and blocked by caspase-8 inhibitors. J Cell Sci. Feb 1 2005;118(Pt 3):497-504.
    18. Huang TT, Kudo N, Yoshida M, et al. A nuclear export signal in the N-terminal regulatory domain of IkappaBalpha controls cytoplasmic localization of inactive NF-kappaB/IkappaBalpha complexes. Proc Natl Acad Sci U S A. Feb 1 2000;97(3): 1014-1019.
    19. Fotin-Mleczek M, Henkler F, Samel D, et al. Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci. Jul 1 2002;115(Pt 13):2757-2770.
    20. Chung AC, Zhang H, Kong YZ, et al. Advanced glycation end-products induce tubular CTGF via TGF-{beta}-independent Smad3 signaling. J Am Soc Nephrol. Feb;21(2):249-260.
    21. Verrecchia F, Mauviel A, Farge D. Transforming growth factor-beta signaling through the Smad proteins:role in systemic sclerosis. Autoimmun Rev. Oct 2006;5(8):563-569.
    22. Schnaper HW, Jandeska S, Runyan CE, et al. TGF-beta signal transduction in chronic kidney disease. Front Biosci.2009;14:2448-2465.
    1. Breyer JA, Bain RP, Evans JK, et al. Predictors of the progression of renal insufficiency in patients with insulin-dependent diabetes and overt diabetic nephropathy. The Collaborative Study Group. Kidney Int 50:1651-1658,1996
    2. Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease. The Modification of Diet in Renal Disease Study. Ann Intern Med 123:754-762,1995
    3. GISEN. Randomized placebo-controlled trial effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 349:1857-1863,1997
    4. Irie F, Iso H, Sairenchi T, et al. The relationships of proteinuria, serum creatinine, glomerular filtration rate with cardiovascular disease mortality in Japanese general population. Kidney Int 69:1264-1271,2006
    5. Denis F,Michel A. Eleven reasons to control the protein intake of patients with chronic kidney disease. Nature Clinical Practice Nephrology (2007) 3,383-392
    6. Wang Y, Chen J, Chen L, et al. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 8:1537-1545,1997
    7. Donadelli R, Zanchi C, Morigi M, et al. Protein overload induces fractalkine upregulation in proximal tubular cells through nuclear factor kappaB-and p38 mitogen-activated protein kinase-dependent pathways. J Am Soc Nephrol 14: 2436-2446,2003
    8. Drumm K, Lee E, Stanners S, et al. Albumin and glucose effects on cell growth parameters, albumin uptake and Na(+)/H(+)-exchanger Isoform 3 in OK cells. Cell Physiol Biochem 13:199-206,2003
    9. Tang S, Leung JCK, Abe K,et al. Albumin stimulates interleukin-8 expression in proximal tubular epithelial cells in vitro and in vivo. J Clin Invest 111:515-527,2003
    10. Morigi M, Macconi D, Zoja C,et al. Protein Overload-Induced NF-KB Activation in Proximal Tubular Cells Requires H2O2 through a PKC-Dependent Pathway. J Am Soc Nephrol 13:1179-1189,2002
    11. Dixon R, Brunskill NJ. Albumin stimulates p44/p42 extracellular-signal-regulated mitogen-activated protein kinase in opossum kidney proximal tubular cells. Clin Sci (Lond)98:295-301,2000
    12. Nakajima H, Takenaka M, Kaimori JY, et al:Activation of the signal transducer and activator of transcription signaling pathway in renal proximal tubular cells by albumin. J Am Soc Nephrol 15:276-285,2004
    13. Rawlings JS, Rosler KM, Harrison DA. The JAK/STAT signaling pathway. J Cell Sci 117:1281-1283,2004
    14. Liu Y. Renal fibrosis:New insights into the pathogenesis and therapeutics. Kidney Int 69:213-217,2006
    15. Li JH, Zhu HJ, Huang XR, et al. Smad7 inhibits fibrotic effect of TGF-beta on renal tubular epithelial cells by blocking Smad2 activation. J Am Soc Nephrol 13: 1464-1472,2002
    16. Schreiner GF. Renal toxicity of albumin and other lipoproteins. Curr Opin Nephrol Hypertens 4:369-373,1995
    17. Kees-Folts D, Sadow JL, Schreiner GF. Tubular catabolism of albumin is associated with the release of an inflammatory lipid. Kidney Int 45:1697-1709,1994
    18. Nangaku M, Pippin J, Couser WG. Complement membrane attack complex (C5b-9) mediates interstitial disease in experimental nephrotic syndrome. J Am Soc Nephrol 10:2323-2331,1999
    19. Abbate M, Zoja C, Rottoli D, et al. Antiproteinuric therapy while preventing the abnormal protein traffic in proximal tubule abrogates protein and complement-dependent interstitial inflammation in experimental renal disease. J Am Soc Nephrol 10:804-813,1999
    20. Nangaku M, Pippin J, Couser WG. C6 mediates chronic progression of tubulointerstitial damage in rats with remnant kidneys. J Am Soc Nephrol 13:928-936, 2002
    21. Zhou W, Marsh JE, Sacks SH. Intrarenal synthesis of complement. Kidney Int 59: 1227-1235,2001
    22. Tang S, Sheerin NS, Zhou W, et al. Apical proteins stimulate complement synthesis by cultured human proximal tubular epithelial cells. J Am Soc Nephrol 10:69-76,1999
    23. Hirschberg R, Wang S. Proteinuria and growth factors in the development of tubulointerstitial injury and scarring in kidney disease. Curr Opin Nephrol Hypertens 14:43-52,2005
    24. Wang S-N, LaPage J, Hirschberg R. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Kidney Int 57: 1002-1014,2000
    25. Erkan E, De Leon M, Devarajan P. Albumin overload induces apoptosis in LLC-PK(1) cells. Am J Physiol Renal Physiol 280:F1107-F1114,2001
    26. Morais C, Westhuyzen J, Metharom P, et al. High molecular weight plasma proteins induce apoptosis and Fas/FasL expression in human proximal tubular cells.Nephrol Dial Transplant 20:50-58,2005
    27. Erkan E, Garcia CD, Patterson LT,et al. Induction of renal tubular cell apoptosis in focal segmental glomerulosclerosis:Roles of proteinuria and Fas-dependent pathways. J Am Soc Nephrol 16:398-407,2005
    28. Halimi JM, Giraudeau B, Vol S, et al. Effects of current smoking and smoking discontinuation on renal function and proteinuria in the general population. Kidney Int 2000; 58:1285-1292
    29. Hsu CY, McCulloch CE, Iribarren C, et al. Body mass index and risk for end-stage renal disease. Ann Intern Med 2006; 144:21-28
    30. Navarro-Diaz M, Serra A, Romero R, et al. Effect of drastic weight loss after bariatric surgery on renal parameters in extremely obese patients:long-term follow-up. J Am Soc Nephrol 2006; 17:S213-S217
    31. Denis F,Michel A. Eleven reasons to control the protein intake of patients with chronic kidney disease. Nature Clinical Practice Nephrology (2007) 3,383-392
    32. Weir MR. Is it the low-protein diet or simply the salt restriction? Kidney Int 2007; 71: 188-190
    33. Buter H, Hemmelder MH, Navis G,et al. The blunting of the antiproteinuric efficacy of ACE inhibition by high sodium intake can be restored by hydrochlorothiazide. Nephrol Dial Transplant 1998; 13:1682-1685
    34. Wright JT, Bakris G, Greene T, et al. Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease:results from the AASK trial. JAMA 2002; 288:2421-2431
    35. Palmer BF. Renal dysfunction complicating the treatment of hypertension. N Engl J Med 2002; 347:1256-1261
    36. Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol 2006; 17:2974-2984
    37. Donadelli R, Abbate M, Zanchi C, et al. Protein traffic activates NF-kappaB gene signaling and promotes MCP-1-dependent interstitial inflammation. Am J Kidney Dis 36:1226-1241,2000
    38. Wolf G, Ritz E. Combination therapy with ACE inhibitors and angiotensin II receptor blockers to halt progression of chronic renal disease:pathophysiology and indications. Kidney Int 2005; 67:799-812
    39. Vecchio L, Procaccio M, Vigano S, et al. Mechanisms of disease:the role of aldosterone in kidney damage and clinical benefits of its blockade. Nature Clin Practice Nephrol 2007; 3:42-49
    40. Douglas K, O'Malley PG, Jackson JL. Metaanalysis:the effect of statins on albuminuria. Ann Intern Med 2006; 145:117-124
    41. Attia DM, Verhagen AM, Stroes ES,et al. Vitamin E alleviates renal injury, but not hypertension, during chronic nitric oxide synthase inhibition in rats. J Am Soc Nephrol. 2001 Dec; 12:2585-93
    42. Achour A, Kacem M, Dibej K,et al. One year course of oral sulodexide in the management of diabetic nephropathy. J Nephrol.2005 Sep-Oct; 18:568-74
    43. Agarwal R, Acharya M, Tian J,et al. Antiproteinuric effect of oral paricalcitol in chronic kidney disease. Kidney Int,2005:68:2823-2828