用户名: 密码: 验证码:
启发式问题解决认知神经机制及fMRI数据分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工智能经过几十年的发展,取得了一定的成绩,也面临很大的困惑。问题解决是人类思维的最一般形式,是人类高级智能的具体表现,理解与探索人脑问题解决神经机制和信息加工过程可为人工智能提供新的思路。出于“认识脑、保护脑、开发脑、创造脑”的目的,问题解决的认知神经机制以及信息加工过程的研究已经越来越多地受到了不同领域研究人员的关注。
     本研究是国家自然科学基金项目“问题求解中启发式搜索的认知神经机制研究”(ID:60875075)中的主要组成部分,属于探索性研究。问题解决信息加工理论认为:问题解决就是通过不断操作算子,使问题从初始状态变化到目标状态的过程,使用启发式算子可以提高问题解决效率。依据该理论,针对问题解决过程中启发式算子搜索与运用的认知神经机制和信息加工过程进行了系统的研究,并提出了基于分类与聚类的fMRI数据分析方法。主要工作和创新点如下:
     (1)针对算子搜索与运用认知神经机制,提出了新的问题解决实验范式,并设计了两个认知实验:①启发式规则运用与提取;②启发式规则搜索。第一个认知实验重点研究人脑如何提取并运用特定算子,第二个重点研究人脑合理选择和搜索合适算子进行状态空间搜索的神经机制。
     (2)采用多角度fMRI数据分析方法,研究分析了算子搜索与运用的神经机制和信息加工过程。通过脑功能定位分析,发现了算子搜索与运用的激活脑区。在此基础上,通过功能连接分析探索激活脑区之间的连接模式,并提出了算子搜索与运用认知过程的假设。进一步通过ACT-R建立的认知模型验证了该假设,该模型与实际数据的拟合程度达80%以上,说明了该假设与模型比较客观地反映了实际信息加工过程,为理解启发式问题解决信息加工过程提供了有力支持。
     (3)分析了现有的fMRI分类算法,提出了SVVC数据分类方法,该方法可以分析特定脑区与认知过程的相关性,能较好地预测高级思维状态。通过提取单体素BOLD时间序列,训练单体素分类器,并使用AdaBoost算法集成单体素分类结果,分类正确率高达90%。研究对比了不同特征选择方法以及不同分类算法的分类情况,结果表明使用AdaBoost算法的方法性能最好,而选择与问题解决相关的脑区作为分类特征的分类性能较好。
     (4)提出了基于BOLD模式聚类的fMRI数据分析方法,并运用该方法进行大脑协同工作模式的分析。通过提取全脑所有体素的BOLD效应,并对这些BOLD模式进行聚类分析,发现了典型的BOLD模式及其在大脑中的分布情况。在此基础上,进一步从时间和空间上分析了大脑协同工作情况。该方法是一种全面揭示大脑协同工作模式的有效fMRI数据分析手段。
     总之,围绕着问题解决过程中启发式算子的搜索与运用,本研究借助fMRI技术、认知心理学、数据挖掘、认知建模等方法探索了其神经机制和信息加工过程,研究结果有望为人工智能研究提供一些参考。研究过程中提出的基于分类与聚类等fMRI数据分析方法是现有方法的有益补充。
Through several decades of development, artificial intelligence has made quite achievements, but also faces considerable bottlenecks. The ablities of problem-solving are the most general form of the human mind, and a concrete manifestation of the human high-level intelligence. The understanding and exploration of human brain problem-solving and information processing process can provide new ideas for artificial intelligence. With the purpose of“understanding brain, protecting brain, developing brain, creating brain”, the study of cognitive neural mechanisms of problem-solving and information processing process has been studied in more and more different fields.
     This study is the main component of the National Natural Science Foundation project“The study of cognitive neuroscience about heuristic search in problem solving (ID: 60875075)”, also is an exploratory research. Problem-solving information processing theory contends that problem solving is a process of operating different operators continuously to change the problem from the initial state to target state; the use of heuristic operator can improve the efficiency of problem-solving. Based on this theory, this study focuses on the cognitive neural mechanisms of the search and application of heuristic operator and information processing process during problem-solving process, and proposes the fMRI data analysis methods based on classification and clustering. Main tasks in this dissertation are as follows:
     (1) Based on the cognitive neural mechanisms of search and application of operator in problem solving, we proposed a new paradigm which is suitable to fMRI experiment, then design two cognitive experiments using this paradigm:①the application of heuristic operators and retriving;②the seaching and selection of heuristic operators. The first cognitive experiment focuses on how human brain retrive and use a specific operator. The second experiment focuses on studying the neural mechanisms of human brain rational selection and searching for appropriate operators in problem state-space.
     (2) Multi-view analysis methods were used to explore the mechanism. The activated brain regions related to search and application of operator were explored through functional location analysis. On this basis, we used functional connectivity analysis to explore the connection patterns between the activated brain regions, and proposed the hypothesis of operator searching and the using cognitive processes. Then, these hypothesis were verified through a cognitive model established based on ACT-R. The degree of fitting with actual data and the ACT-R model is over 80%, and the good fitness implies that the model objectively reflects the possible information processing process, and the ACT-R model provides strong support for understanding neural mechanisms and information processing process of problem-solving.
     (3) Based on investigation of current fMRI classification method, a kind of data classification method, SVVC, has been proposed in this dissertation, researchers can use this mothod to explore the relationship between brain regions and certain cognitive process. We trained single voxel classifier and use AdaBoost algorithm to integrate classification results of single voxel classifier, and the accuracy of classification is high than 90%. This method can be used as a new ways of decoding high-level mind state based on fMRI. The study also compares classification accuracy of different feature selection methods and different classification algorithms. Experiments results show that the performance of using AdaBoost is the best, and the classification performance of selecting brain regions related to problem-solving is better than other regions.
     (4) This dissertation also proposed a fMRI data analysis method based on BOLD pattern clustering. We extract BOLD effects of all voxels of the whole brain, and use clustering algorithm to analyze these BOLD patterns, and find some typical BOLD patterns and their distribution within the brain. Experiments results show that there are some intrinsic BOLD patterns of the brain during the problems solving. On this basis, we analyz the cooperation working model of different brain regions through spatio-temporal analysis, the method could be an effective means of fMRI data analysis which can reveal the cooperation working pattern of the whole brain.
     In short, focusing on the cognitive neuroscience mechanism of heuristic operator searching and application while problem solving, this dissertation uses fMRI techniques and methodology of cognitive psychology, multi-methods, such as data mining and cognitive modeling, are all used to explore the neural mechanisms and information processing process. These cognitive neuroscience mechanism and information processing process of heuristic problem solving can provide some references and enlighten artificial intelligence hopely. The two new data-driven fMRI data analysis methods proposed in this dissertation can improve the level of fMRI data analysis.
引文
[1]史忠植.高级人工智能[M].北京:科学出版社, 2006.
    [2] Newell A. Simon H.A. Human Problem Solving [M]. Prentice-Hall, Englewood Cliffs, N.J.: Prentice-Hall, 1972.
    [3] J.R. Anderson, The architecture of cognition. Cambridge, MA: Harvard University Press, 1983.
    [4] J.R. Anderson, C. Lebiere. The atomic components of thought [M]. Mahwah, NJ: Brlbaum, 1998.
    [5] J.R. Anderson, How Can the Human Mind Occur in the Physical Universe? [M]. USA:Oxford University Press, ,2007.
    [6]史忠植.展望智能科学[J].科学中国人. 2003, 8:47-49.
    [7]唐孝威,尹岭,唐一源.人类脑计划和神经信息学[J].中国基础科学.科学前沿,2003:33-38.
    [8] Jeff, H, Sandra B,贺俊杰等译.人工智能的未来[M].西安:陕西科学技术出版社, 2006.
    [9]史忠植.智能科学[M].北京:清华大学出版社, 2006.
    [10] Zhong N., Liu J.M., Yao Y.Y. Web Intelligence Meets Brain Informatics [C]. First WICI International Workshop, WImBI 2006, Beijing, China, December 15-16, Springer-Verlag Berlin Heidelberg. Vol. 4845, 2007.
    [11] Zhong N., Liu J.M., Yao Y.Y, et al. Web Intelligence[C]. Proceedings of the 24th IEEE Computer Society International Computer Software and Applications Conference, IEEE Press, 2000,469-470.
    [12] Zhong N., Liu J.M., Yao Y.Y . Web Intelligence [M]. Springer, 2003.
    [13] Fensel, D. Harmelen, F. van,.. Unifying reasoning and search to web scale[C]. IEEE Internet Computing. 2007,3: 94-96.
    [14] Fensel, D. Harmelen, F. van, Andersson, B., et al. Towards LarKC: a platform for web-scale reasoning[C]. IEEE Computer Society Press Los Alamitos, CA, USA, 2008.
    [15]艾森克,基恩著,高定国,肖晓云译.认知心理学[M].上海:华东师范大学出版社, 2006.
    [16] Robertson S.I.张奇等译.问题解决心理学[M].北京:中国轻工业出版社, 2004.
    [17] Boghi A, Rasetti R, Avidano F,et al. The effect of gender on planning: An fMRI study using the Tower of London task [J]. NeuroImage, 2006,33:999–1010.
    [18] J.R. Anderson, M.V. Albert, J.M. Fincham. Tracing Problem Solving in Real Time: fMRI Analysis of the Subject-Paced Tower of Hanoi [J]. Journal of Cognitive Neuroscience, 2005, 17(8): 1261–1274.
    [19]李可,闫镔,单保慈.功能磁共振图像处理的ICA方法综述[J].中国图象图形学报,2005,10 (5):561-567
    [20]李题韬.基于统计参数图的脑功能磁共振成像数据处理方法[J].生物医学工程学杂志, 2007, 24 (2) :477-480
    [21]刘亚东.脑功能磁共振和光学成像数据模式分析方法研究[D].长沙,国防科学技术大学,2006.
    [22]颜莉蓉.脑功能磁共振数据时空分析方法研究[D].长沙,国防科学技术大学,2006.
    [23]王培织,臧玉峰,蒋田仔,朱朝喆,王建哲,田丽霞,梁猛,贺永. AFNI和SPM脑图像空间标准化的效果比较[J].中国医学影像技术, 2004, 20 (11):1650-1653.
    [24]汲业,冯士刚,刘文宇,等. SPM和AFNI的性能比较[J].中国医学影像技术, 2005, 21 (3):336-338.
    [25]李祥兆.数学归纳推理的认知过程研究[J].数学教育学报,2005,14(2): 68-70.
    [26]刘晓华.中学生运用手持技术解决化学定量问题的实验研究[J].化学教育,2006(6):52-57.
    [27]吴鑫德,张庆林,熊士荣,等.高中生化学问题解决思维过程口语报告编码分析[J].心理学科学,2006,29(4):802-805.
    [28] Yulin Qin,Herbert A. Simon.Laboratory Replication of Scientific Discovery Process[J]. Cognitive Science, 1990(14):281-312.
    [29]刑强,黄伟东,张庆林.四巧板问题解决中关键启发信息激活的实验研究[J].心理科学, 2007,30(6):1389-1391.
    [30]张小将,刘昌。汉诺塔问题解决的认知过程及特点分析[J].心理与行为研究,2005,3(1):44-48.
    [31]朱新秤,李瑞菊,周值金。谜语问题解决中线索的作用[J].心理学学报,2009,41(5):397-405.
    [32] Dennett D.C. Darwin’s dangerous idea [M]. New York: Simon and Schuster, 1995.
    [33] J.R. Anderson, Y.L. Qin. Using brain imaging to extract the structure of complex events at the rational time band. Journal of Cognitive Neuroscience.2008,20(9): 1624-1636.
    [34]王岩,翁旭初.人类技巧学习的脑功能成像研究进展[J].心理科学进展, 2003,11(2):136~140.
    [35] J. Duncan, H. Emslie, P. Williams, et al. Intelligence and the frontal lobe: The organization of goal-directed behavior[J]. Cognitive Psychology, 1996,30: 257-303.
    [36] G.S. Halford, W.h. Wilson, S. Phillips. Processing capacity defined by relational complexity: Implications for comparative, Developmental and cognitive psychology [J]. Behavioral & Brain Sciences, 1998, 21: 803-829.
    [37] P.N. Johnson-Laird. Inference and mental models. Perspectives on thinking and reasoning: Essays in honour of Peter Wason [M] . Hove, UK: Psychology Press, 1989.
    [38] P.N. Johnson-Laird. Mental models, deductive reasoning and the brain [M]. The cognitive neurosciences. Cambridge, MA: MIT Press, 1995: 987-1008.
    [39] Harlow, J.M. Recover from the passage of an iron bar through the head [J]. Publ. Mass Med. Soc. 1848; 39:389–393.
    [40] Penfield, W, Evans, J. The frontal lobe in man : a clinical study of maximum removals [J]. Brain 58, 1935, 115-133.
    [41] Porteus, S. Porteus Maze Test: Fifty Years Application [M]. Pacific Books, Palo Alto, 1995.
    [42] Porteus, S.D., Kepner, R.D. Mental changes after bilateral prefrontal lobotomy [J]. Genet. Psychol. Monogr, 1944, 29:3–115.
    [43] T. Shallice. Specific impairments of planning [J]. Philosophical Transactions of the Royal Society London, 1982, 298: 199-209.
    [44] T. Shallice. From neuropsychology to mental structure [M]. Cambridge: Cambridge University Press, 1988.
    [45] Shallice,T., burgess, P.W. Higher-order congnitive impairments and frontal lobe lesions in man [M]. Oxford University Press, New York, 1991:125-138.
    [46] Owen, A.M., Downes, J.D., Sahakian, B.J., et al. Planning and spatial working memory following frontal lobe lesions in man [J]. Neuropsychologia, 1990, 28:1021-1034.
    [47] Owen, A.M., Sahakian, B.J., Hodges, J.R., et al. Dopamine-dependent fronto-striatal planning deficits in early Parkinson’s disease [J]. Neuropsychology,1995, 9:126–140.
    [48] Owen, A.M., Sahakian,B.J., Semple,J., et al. Visuo-spatial short term recognition memory and learning after temporal lobe excisions, frontal lobe excisions or amygdalo-hippocampectomy in man [J]. Neuropsychologia ,1995,33,:1–24.
    [49] Unterrainer J. M. Owen A. M. Planning and problem solving: From neuropsychology to functional neuroimaging [J]. Journal of Physiology, 2006, 3: 308–317.
    [50] Ward, G., Allport, A. Planning and problem-solving using the 5-disc Tower of London Task. [J]. Exp. Psychol, 1997, 50:49–78.
    [51] Morris, R.G., Ahmed, S., Syed, G.M., Toone, B.K. Neural correlates of planning ability: frontal lobe activation during the Tower of London test [J]. Neuropsychologia ,1993, 31:1367–1378.
    [52] Rezai, K., Andreasen, N.C., Alliger, R., et al.The neuropsychology of the prefrontal cortex [J].Arch. Neurol, 1993, 50: 636–642.
    [53] Qin Y.L., Sohn M-H., Anderson J.R., et al. Predicting the practice effects on the blood oxygenation level-dependent (BOLD) function of fMRI in a symbolic manipulation task[J] . Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(8): 4951-4956.
    [54] Y.L. Qin, C.S. Carter, E. Silk, et al. The change of the brain activation patterns as children learn algebra equation solving[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(15): 5686-5691.
    [55] Karen J.C. Implementation of the soar kernel [M] .University of Michigan, 2005.
    [56] Norman1, K.A., Polyn S.M., Detre1, G.J., et al. Beyond mind-reading: multi-voxel pattern analysis of fMRI data [J]. Trends in Cognitive Sciences 2006,10(9), 424-430.
    [57] Mitchell T. Learning to decode cognitive states from brain Images [J]. Machine learning. 2004, 57: 145–175.
    [58] Mitchell T, Shinkareva S V, Carlson A, et al. Predicting Human Brain Activity Associated with the Meanings of Nouns [J]. Science, 2008, 320:1191-1195.
    [59] Anderson J.R., Qin Y.L., Jung K-J, et al. Information-processing modules and their relative modality specificity [J]. Cognitive Psychology, 54:185-217, 2007.
    [60]付小兰.认知研究厚积薄发[J].心理科学进展2005,13(4): 385~387
    [61]李坤成.全国医用设备使用人员(MRI医师)上岗考试指南[M].北京:军事科学出版社, 2009.
    [62] Richard B. Buxton. An Introduction to Functional Magnetic Resonance Imaging: Principles and Techniques [M]. Cambridge Univ Press, 2002.
    [63]刘建刚,田捷,李康,李军.基于功能磁共振的面孔加工神经机制的研究[J].自然科学进展, 2007,17(12):1717-1723
    [64]梁佩鹏.人脑归纳推理的认知神经机制研究[D].北京,北京工业大学,2009.
    [65]薛贵,董奇,张红川.事件相关功能磁共振成像研究及其在认知神经科学研究中的运用[J].中国神经科学杂志,2003,19 (1):45-49.
    [66]邸新,饶恒毅.人脑功能连通性研究进展[J].生物化学与生物物理进展, 2007, 34(1): 5-12.
    [67] Zhou Dongli, Thompson Wesley K, Siegle G. MATLAB toolbox for functional connectivity [J]. NeuroImage, 2009, 47:1590–1607.
    [68]司马贺著,荆其诚,张厚粲译.人类的认知:思维的信息加工理论[M].北京:科学出版社,1986.
    [69] Anderson J R., Fincham J M., Qin Y L , et al. A central circuit of the mind [J]. Trends in Cognitive Sciences , 2008, 12 (4):137-143.
    [70]汲业,冯士刚,刘文宇,等. SPM和AFNI的性能比较[J].中国医学影像技术. 2005, 21(3):336-338.
    [71]李菲菲,刘电芝.口语报告法及其应用研究述评[J].上海教育科研,2005,1:39-44.
    [72]阎国利.眼动分析法在心理学研究中的应用[M].天津:天津教育出版社,2004.
    [73] Sebastian Walther, Andrea Federspiel, Helge Horn, et.al. Encoding deficit during face processing within the right fusiform face area in schizophrenia [J]. Neuroimage, 2009,172:184–191.
    [74] Gauthier, I., Tarr, M.J., Moylan, J., et al. The fusiform‘face area’is part of a network that processes faces at the individual level [J]. Joural of cognitive. Neuroscience , 2000,12:495–504.
    [75] Joseph D. A tale of two recognition systems: Implications of the fusiform face area and the visual word form area for lateralized object recognition models [J]. Neuropsychologia, 2009, 4(1):1-16.
    [76] Tsapkini K, Rapp B. The orthography-specific functions of the left fusiform gyrus: Evidence of modality and category specificity [J]. Cortex, 2010, 46:185-205.
    [77] Starrfelt R, Gerlach C. The Visual What For Area: Words and pictures in the left fusiform gyrus [J]. Neuroimaging, NeuroImage,2007, 35: 334–342.
    [78] Haynes J D, Driver J, Rees G. Visibility Reflects Dynamic Changes of Effective Connectivity between V1 and Fusiform Cortex [J]. Neuron, 2005, 46: 811–821.
    [79] Dehaene S., Cohen L.Towards an Anatomical and Functional Model or Number Processing [J].Mathematical Cognition, 1995, 1 (1):83-120.
    [80] Dehaene S., Tzourio N., Frak V. et al. Cerebral activations during numbei multiplication and comparison: A PET study [J], Neuropsychologia, 1996, 34 (11):1097-1106.
    [81] Dehaene S., Spelke E, Pine P, Stanescu R, et al. Sources of Mathematical. Thinking: Behavioral and. Brain-Imaging Evidence[J]. Science, 1999,7 :970-974.
    [82] Kirk G. Thompson, Narcisse P. Bichot. A visual salience map in the primate frontal eye field [J]. Progress in Brain Research, 2005, 147:249-262.
    [83] Jude F. Mitchell, David Zipser. Sequential memory-guided saccades and target selection: a neural model of the frontal eye fields [J]. Vision Research, 2003, 43 (25): 2669-2695.
    [84] Rebecca Berman, Carol Colby. Attention and active vision. Vision Research, 2009, 49(10): 1233-1248.
    [85] Tehovnik Edward J, Sommer Marc A, Chou I-Han, et al. Eye fields in the frontal lobes of primates.Brain Research Reviews, 2000, 32(2):413-448.
    [86]任延涛,韩玉昌,隋雪.视觉搜索过程中的眼跳及其机制[J].心理科学进展, 2006, 14(3):340-345.
    [87]田银,尧德中.基于视觉搜索的外源易化和返回抑制脑机制研究[J].生物物理学报,2009, 25(3): 203-208.
    [88] Schiller P.H, Sandell J.H, Maunsell J.H., The effect of frontal eye field and superior colliculus lesions on saccadic latencies in the rhesus monkey, J. Neurophysiol, 1987, 57:1033–1049.
    [89] Schiller P.H., True S.D., Conway J.L. Paired stimulation of the frontal eye fields and the superior colliculus of the rhesus monkey, Brain Res, 1979,179: 162–164.
    [90] Schiller P.H., True S.D., Conway J.L, Deficits in eye movements following frontal eye field and superior colliculus ablations, J.Neurophysiol,1980, 44:1175–1189.
    [91] Schiller P.H, Tehovnik E.J. Neural mechanisms underlying target selection with saccadic eye movements [J].Prog Brain Res, 2005, 149: 157-171.
    [92] Bullier J, Schall J D, Morel A. Functional streams in occipito-frontal connections in the monkey [J]. Behav Brain Res, 1996, 76(1-2): 89~97.
    [93] Tobler P N, Muri R M. Role of human frontal and supplementary eye fields in double step saccades [J]. Neuroreport, 2002, 13(2): 253~255.
    [94] Murthy A, Thompson K G, Schall J D. Dynamic dissociation of visual selection from saccade programming in frontal eye field [J]. J Neurophysiol, 2001, 86(5): 2634~2637.
    [95] Muggleton N G, Juan C H, Cowey A, et al. Human Frontal Eye Fields and Visual Search [J]. Journal of neurophysiology, 2003, 89: 3340~3343.
    [96] Corbetta M, Shulman G L. Control of goal - directed and stimulus -driven attention in the brain [J]. Nature Reviews Neuroscience, 2002, 3(3): 201~215.
    [97] T.E. Hazy, M.J. Frank, R.C. O’Reilly.Banishing the homunculus: Making working memory work [J]. Neuroscience, 2006, 139(1): Pages 105-118.
    [98] Edward E. Smith, John Jonides. Storage and Executive Processes in the Frontal Lobes [J]. Science, 1999,283 (12):1657-1661.
    [99] D'Esposito M, Detre J A, Alsop D C, et al. The neural basis of the central executive system of working memory [J]. Nature, 1995, 378(10): 279–281.
    [100] Baddeley A D. Is Working Memory Still Working? [J]. American Psychologist, 2001, 56: 849–864.
    [101] Fletcher P C, Henson R N. Frontal lobes and human memory: insights from functional neuroimaging [J]. Brain, 2001, 124: 849–881.
    [102]刘聪慧,彭聃龄,卢春明. ACC在冲突监测和执行控制中的脑成像研究进展[J].生理科学进展,2006, 37(2):169:172
    [103]朱湘如,刘昌.前扣带回功能的冲突监测理论[J].生理科学进展,心理科学进展2005,13(6): 767~773.
    [104] Carter C S, Macdonald A M, Botvinick M, et al. Parsing executive processes: Strategic vs.functions of the anterior cingulate cortex evaluative [J]. PNAS, 2000, 97(4): 1944~1948.
    [105] Veen V, Carter C S. The timing of action-monitoring processes in the anterior cingulate cortex [J]. Journal of Cognitive Neuroscience, 2002, 14(4): 593~602.
    [106] van Veen V, Cohen J D, Botvinick M M, et al. Anterior cingulate cortex, conflict monitoring and levels of processing [J].NeuroImage, 2001, 14(6): 1302~1308.
    [107] Kevin Johnston, Helen M. Levin, Michael J. Koval, Stefan Everling. Top-Down Control-Signal Dynamics in Anterior Cingulate and Prefrontal Cortex Neurons following Task Switching [J]. Neuron, 2007, 53 (3): 453-462.
    [108] Joshua W. Brown, Todd S. Braver. Learned Predictions of Error Likelihood in the Anterior Cingulate Cortex [J]. Science, 2005, 307(5712):1118– 1121.
    [109] Fincham J. M., Carter C. S., Vincent van Veen, et al. Neural mechanisms of planning: A computational analysis using event-related fMRI [J]. PNAS, 2002, 99(5): 3346-3351.
    [110] Baker, S.C., Rogers, R.D., Owen, A. M., et al. Neural systems engaged by planning: a PET study of the Tower of London task [J]. Neuropsychologia, 1996, 34: 515–526.
    [111] Dagher, A., Owen, A.M., Boecker, H., et al. Mapping the network for planning: A correlational PET activation study with the Tower of London task [J]. Brain, 1999, 122(10): 1973-1987.
    [112] Odile A. van den Heuvel, Henk J. Groenewegen, et al. Frontostriatal system in planning complexity: a parametric functional magnetic resonance version of Tower of London task [J]. NeuroImage, 2003, 18: 367-374.
    [113] Bustini,M., Stratta, P., Daneluzzo, Pollice, E., et al. Tower of Hanoi and WCST performance in schizophrenia: problem-solving capacity and clinical correlates [J]. Journal of Psychiatric Research, 1999, 33: 285–290.
    [114] Lazeron, R.H., Rombouts, S.A., Machielsen, W. C., et al. Visualizing brain activation during planning: the tower of London test adapted for functional MR imaging [J]. American Journal of Neuroradiology, 2000, 21: 1407–1414.
    [115] Schall, U., Johnston, P., Lagopoulos, J., et al. Functional brain maps of Tower of London performance: a PET and fMRI study [J]. NeuroImage, 2003, 20:1154–1161.
    [116] Barto, A. G. Adaptive critics and the basal ganglia. Models of Information Processing in the Basal Ganglia [M]. MIT Press Cambridge, 1995.
    [117] Gazzaniga M S, Ivry R B, Mangun G R. Cognitive Neuroscience: The Biology of the Mind [M]. NewYork: W.W.Norton & Company, 2002. 530-535.
    [118]王日凤,相洁,周海燕,等.基于ACT-R的启发式问题解决认知机制研究[C].第四届全国脑与认知科学学术研讨会暨脑与认知科学国际研讨会,2009.生物物理学报,Vol.25(增):121.
    [119] Wang R.F., Xiang J., Zhou H.Y., et al: Simulating Human Heuristic Problem Solving: A Study by Combining ACT-R and fMRI Brain Image[C]. Proc. Brain Informatics 2009: 53-62.
    [120] Formisano E, Federico D M, Milene B, et al.“Who”Is Saying“What”? Brain-Based Decoding of Human Voice and Speech [J]. Science, 2008, 322: 970-973.
    [121] Kamitani, Y., Tong, F. Decoding the subjective contents of the human brain. Nature [J]. Neuroscience. 2005.8: 679–685.
    [122] Kenneth A. N, Sean M. P, Greg J. D, et al. Beyond mind-reading: multi-voxel pattern analysis of fMRI data [J]. Trends in Cognitive Sciences. 2006, 10(9): 424-430.
    [123] James V. Haxby, M. Ida Gobbini, Maura L. Furey, Alumit Ishai, Jennifer L. Schouten, Pietro Pietrini. Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex [J]. SCIENCE, 2001, 293: 2425-2430.
    [124] Kendrick N. K, Thomas N, Ryan J. Prenger, et al. Identifying natural images from human brain activity [J]. NATURE, 2008, 452:352-355.
    [125] Uri Hasson, Yuval Nir, Ifat Levy, et al.Intersubject Synchronization of Cortical Activity During Natural Vision [J]. SCIENCE, 2004, 303: 1634-1640.
    [126] Ricardo S J, Fujita A, Thomaz C, et al. Evaluating SVM and MLDA in the extraction of discriminant regions for mental state prediction [J]. NeuroImage, 2009:105-114.
    [127] Haynes J D, Geraint R. Predicting the Stream of Consciousness from Activity in Human Visual Cortex [J]. Current Biology. 2005, 15:1301–1307.
    [128] Mitchell T. Learning to decode cognitive states from brain Images [J]. Machine learning. 2004, 57: 145–175.
    [129] Mitchell T, Svetlana V. S, Andrew C, et al. Predicting Human Brain Activity Associated with the Meanings of Nouns [J]. Science, 2008, 320:1191-1195.
    [130] Pereira F. Beyond Brain Blobs: Machine Learning Classifiers as Instruments for Analyzing Functional Magnetic Resonance Imaging Data [D]. Pittsburgh: School of Computer Science Carnegie Mellon University, 2007, 12.
    [131] Pereira F, Mitchell T, Botvinick M. Machine learning classifiers and fMRI: A tutorial overview [J]. NeuroImage.2009, 45:S199-S209.
    [132]眭俊明,姜远,周志华.基于频繁项集挖掘的贝叶斯分类算法.计算机研究与发展[J]. 2007, 44 (8): 1293-1300.
    [133] Cortes Corinna, Vapnik V. Support-Vector Networks. Machine Learning [J]. 1995,20:274-297.
    [134]付忠良.分类器线性组合的有效性和最佳组合问题的研究[J].计算机研究与发展. 2009, 46(7): 1206-1216.
    [135] Chang Chih-Chung, Lin Chih-Jen. LIBSVM: a library for support vector machines, 2001. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    [136]胡剑锋,肖守柏.脑机接口研究概述[J].科技广场.2007(9):229-232
    [137]刘红岩,陈剑,陈国青.数据挖掘中的数据分类算法综述[J].清华大学学报(自然科学版), 2002,42(6):727-730
    [138]王莉.数据挖掘中聚类方法的研究[D].天津,天津大学,2004.
    [139]刘蕊洁,张金波,刘锐.模糊c均值聚类算法[J].重庆工学院学报(自然科学), 2008, 22(2):139-141.
    [140] Zhong N., Liu J.M., Yao Y.Y., et al. Web Intelligence Meets Brain Informatics [M], LNCS 4845, Springer, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700