用户名: 密码: 验证码:
睾丸特异表达基因LM23的性质和功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物的精子发生是一个复杂而独特的细胞增殖与分化的过程,其中包括精原细胞的有丝分裂增殖,精母细胞的减数分裂和精子细胞的变态过程,最终形成成熟的精子。精子发生过程涉及复杂的形态变化、遗传重组及染色体倍数的减半。这一过程是一个受到精细调节的众多基因参与的复杂而有序的过程。因此,筛选和研究精子发生过程中起重要作用的特异表达基因,对研究精子发生的分子机制,探讨男性不育的分子机理,寻找新的诊断和治疗措施及研究新的节育手段具有重要意义。
     LM23基因是本实验室克隆出的一条新基因,前期的初步研究提示,它是一个新的大鼠精子发生相关基因。BLAST工具对LM23基因的同源基因进行比对分析发现,LM23基因与小鼠、人类的speedy homolog A(Spdya, Speedy)基因具有同源性。本研究对该基因在精子发生过程中的明确作用及其机制进行了探讨。
     首先我们对该基因的表达特性进行了进一步的鉴定。利用RT-PCR检测了LM23基因在正常大鼠的心、肝、脾、肺、肾、脑、卵巢、睾丸、肌肉组织中的表达,结果显示睾丸组织有较高水平的LM23基因表达,其余组织均为阴性,从而提示LM23基因的表达具有睾丸特异性。分离9天龄雄性SD大鼠A型精原细胞及成年大鼠粗线期精母细胞和圆形精子细胞进行荧光定量PCR检测,结果显示该基因在精母细胞中表达量最高,显著高于精原和精子细胞的表达量;原位杂交检测结果也提示LM23基因主要在精母细胞中表达。这些结果说明LM23基因的表达具有组织特异性和阶段特异性的特点。
     为了探讨LM23基因在精子发生中的功能,本研究针对LM23基因序列,设计了4个RNA干扰靶点序列,克隆到慢病毒载体上,筛选出含目的序列的慢病毒载体,包装成病毒颗粒。选5周龄的雄性SD大鼠为研究对象,经睾丸输出管注射法将上述包装好的病毒颗粒注射到睾丸。实验组注射液中含干扰片段病毒,对照组含无关片段病毒,单侧注射,未注射侧睾丸作为空白对照。注射后4周,拉颈处死大鼠,开腹取出睾丸。结果发现,注射干扰病毒的睾丸比对照侧右侧睾丸略小,且附睾也没有右侧附睾饱满;而注射对照病毒的睾丸与对侧睾丸比较无明显差异。在体式荧光显微镜下观察,可见已经在大鼠睾丸表达慢病毒载体的绿色荧光蛋白。在荧光显微镜下观察睾丸冰冻切片,显示生精上皮细胞中有绿色荧光表达,说明慢病毒颗粒已成功转染生精细胞。Real-time PCR检测注射后2周和4周的实验组、对照组和空白对照组睾丸LM23的表达,结果显示实验组LM23的表达显著降低,与对照组比较,2周和4周表达量分别减低了69%和87%。通过Western blot方法检测干扰侧大鼠组睾丸中LM23蛋白的表达情况,结果显示,发现RNA干扰大鼠睾丸未LM23蛋白表达。这些结果提示成功建立LM23基因沉默大鼠模型。
     睾丸组织切片HE染色检查,结果显示干扰侧睾丸的精曲小管组织紊乱,有断裂和生精细胞脱落至管腔的现象,生精细胞发育阻滞在精母细胞阶段。镜下大约可以观察到三种类型的精曲小管,在Ⅰ型管中含有3-4层的精母细胞;在Ⅱ型管中含更多的精母细胞,并且细胞有向管腔中脱落的现象,管腔中有伊红染色很重的细胞;在Ⅲ型管腔中仅有1-2层精原细胞和支持细胞,管腔空洞。对照侧附睾中充满成熟精子,而干扰侧附睾管的管腔缩小,未见成熟精子。TUNEL检测LM23基因沉默后睾丸显示,在一些精曲小管中有大量的凋亡细胞存在,而这些精曲小管与上述提到的Ⅱ型管基本对应,而在对应的Ⅰ型管腔和Ⅲ型管腔中存有少量的凋亡细胞,而在对照侧睾丸则几乎未检测到凋亡细胞。根据这些结果推测,LM23基因沉默通过某种机制引起精子发育到精母细胞阶段发生阻滞,造成了精母细胞在精曲小管中堆积,出现了Ⅰ型管中所观察到的现象。由于这些精母细胞不能继续分化可能启动了凋亡通路而发生凋亡,出现了Ⅱ型管中所观察到的现象;最后由于凋亡细胞被清除而出现了Ⅲ型管中所观察到的现象。
     为了探讨LM23基因的作用机制,本研究利用大鼠全基因组芯片筛查LM23基因沉默引起的睾丸表达谱的改变状况,并对所得数据进行验证和分析。基因芯片结果分析显示,LM23基因沉默大鼠睾丸发生大量的基因表达改变,其中包括多个精子发生、减数分裂及细胞周期和凋亡相关的基因。
     综上所述,LM23基因的具有睾丸特异表达的特点,且主要在精母细胞表达,该基因在精子发生中起重要的作用,抑制其作用造成精子发生阻滞在精母细胞阶段,大量生精细胞凋亡,许多与精子发生、减数分裂和凋亡相关基因的表达发生改变。
Spermatogenesis is a complicated and specific process of cell proliferation and differentiation including mitotic division of spermatogonia, meiotic division of spermatocytes and morphological transformation of spermatids.It is a complex process involving cell division, diffentiation and interactions between cells in the microenviroment of the seminiferous tubule. It is regulated by lots of genes; generally, these kinds of regulation genes are expressed under precise temporal and spatial regulation in sperm cells specifically. The separating and identifying of genes related to spermatogenesis and the study of their molecular regulating mechanism at proteome level are very important for clinical diganosis and treatment of male infertility.
     LM23 (AF492385) is a gene specifically expressed in the testes of Rattus norvegicus previously reported by our laboratory. A BLAST homology search against the NCBI non-redundant database and an Ambystoma EST database revealed that LM23 is a R. norvegicus homologue of Speedy A (Spdya). In this study, we clarified the majoy role and mechanism of LM23 in the proeess of spemratogenesis.
     Firstly, RT-PCR analysis of RNA from the nine different tissues including testis and ovary showed that LM23 RNA was only present in testis. Real-time PCR analysis showed that the expression level of LM23 was highest in spermatocytes and very low in spermatogonia and spermatids. In situ hybridization revealed a strong positive signal in the cytoplasm of spermatocytes and a weak signal in spermatids and spermatogonia. This testis-specific and stage-specific expression pattern suggested that LM23 might be involved in R. norvegicus spermatogenesis.
     To reveal the function of LM23 in the testis, we used lentivirus-mediated RNA interference (RNAi) to knock down LM23 expression in a tissue-specific manner in vivo. A lentiviral vector expressing a short hairpin RNA (shRNA) targeting LM23 was microinjected into the efferent ducts of R. norvegicus testes. The infectious lentivirus was microinjected into testes of 5-week-old R. norvegicus just completing the first wave of spermatogenesis. The enhanced green fluorescent protein (EGFP) signal in about 75% of whole testes of R. norvegicus at four weeks post-transfection is shown in a stereomicroscope view. Next, to examine the efficiency of LM23 RNAi, we analyzed the expression levels of LM23 mRNA in testes by real-time PCR at two weeks and four weeks post-transfection. Compared with scrambled RNAi-transfected testes, LM23 mRNA expression was significantly reduced (69% and 87%, respectively). There was no difference in LM23 mRNA level between scrambled RNAi-transfected testes and wild type testes. Western blot analysis showed LM23 protein expression was not detected in testis after LM23 RNAi. These data showed that the specific in vivo knockdown of LM23 in testes of R. norvegicus via lentivirus-mediated RNAi was effective and stable.
     The size and weight of LM23-shRNA testes had no significant differences from the controls. Seminiferous tubules of control testes were well organized and contained a full spectrum of spermatogenic cells, including spermatogonia, spermatocytes, spermatids and spermatozoa. In contrast, seminiferous tubules of LM23-shRNA testes appeared disorganized, disrupted, and shedding germ cells into the lumina; the germ cells exhibited complete meiotic arrest in spermatogenesis. Spermatocytes were accumulated, round spermatids were few and elongating spermatids, spermatozoa were absent in certain LM23-shRNA seminiferous tubules. Three major types of seminiferous tubules were observed in LM23-shRNA testes. TypeⅠtubules contained 3-4 layers of spermatocytes. In typeⅡtubules, there were more layers of spermatocytes and many heavily eosin-stained cells, which might be apoptotic cells. TypeⅢtubules were characterized by a few layers of spermatogenic cells/Sertoli cells and big empty lumina. The epididymal tubules of control R. norvegicus were filled with spermatozoa, whereas those of LM23-shRNA testes R. norvegicus were empty. A TUNEL assay showed the presence of many apoptotic cells in certain tubules, which were likely typeⅡtubules. In contrast, few apoptotic cells were present in typeⅠor typeⅢtubules. Few apoptotic cells were detected in tubules of control testes. One possible explanation for the presence of three types of tubules in LM23-knockdown testes might be coordinated differentiation of the germ cells in a given tubule. In LM23-knockdown testes, spermatogenesis proceeded from spermatogonia to spermatocytes, but further differentiation was blocked, resulting in the accumulation of spermatocytes in type I tubules. Subsequently, these spermatocytes failed to further differentiate and underwent apoptosis in typeⅡtubules. Eventually, most apoptotic spermatocytes were eliminated in typeⅢtubules.
     Microarray analyses of the transcriptomes of the LM23-shRNA and control testes were performed to screen for genes regulated by LM23. The results revealed that the expression of some genes related to spermatogenesis, meiosis, the cell cycle, and apoptosis were significantly changed after LM23 knockdown. Real-time PCR analysis confirmed that some meiotic genes involved in synapsis, recombination (Sycp1, Sycp2, Sycp3, Msh5) and meiotic sister-chromatid cohesion (Stag3, rec8Ll) had lower expression. Many pro-apoptotic genes were up regulated such as Bcl-2 family members including Bax, Bid3, Bak1 et al. And many anti-apoptotic genes were down regulated such as Fafl and Zfp9.
     Collectively, these studies demonstrate that LM23 is required for meiosis in spermatogenesis.
引文
1. Krawetz SA. Paternal contribution:new insights and future challenges. Nat Rev Genet 2005; 6:633-642.
    2. Zirkin BR. Regulation of spermatogenesis in the adult mammal:gonadotrophin and androgens. In. New York:Oxford Univ. Press, 1993.
    3. Maclean JN, Wilkinson MF. Gene regulation in spermatogenesis. Curr Top Dev Biol 2005; 71:131-197.
    4.0'Bryan MK, de Kretser D. Mouse models for genes involved in impaired spermatogenesis. Int J Androl 2006; 29:76-89,105-108.
    5. Guo X, Shen J, Xia Z, Zhang R, Zhang P, Zhao C, Xing J, Chen L, Chen W, Lin M, Huo R, Su B, Zhou Z, Sha J. Proteomic analysis of proteins involved in spermiogenesis in mouse. J Proteome Res 2010; 9:1246-1256.
    6. Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A 2003; 100:12201-12206.
    7. Roy A, Matzuk MM. Deconstructing mammalian reproduction:using knockouts to define fertility pathways. Reproduction 2006; 131:207-219.
    8. Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 2004; 101:6876-6881.
    9. Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schutz G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 1996; 380:162-165.
    10. Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques 2008; 44:613-616.
    11. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391:806-811.
    12. Kuhn R, Streif S, Wurst W. RNA interference in mice. Handb Exp Pharmacol 2007:149-176.
    13. Soutschek J, Akinc A, Bramlage B, Charisse K, Constien R, Donoghue M, Elbashir S, Geick A, Hadwiger P, Harborth J, John M, Kesavan V, Lavine G, Pandey RK, Racie T, Rajeev KG, Rohl I, Toudjarska I, Wang G, Wuschko S, Bumcrot D, Koteliansky V, Limmer S, Manoharan M, Vornlocher HP. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 2004; 432:173-178.
    14. Shoji M, Chuma S, Yoshida K, Morita T, Nakatsuji N. RNA interference during spermatogenesis in mice. Dev Biol 2005; 282:524-534.
    15. Rao MK, Pham J, Imam JS, MacLean JA, Murali D, Furuta Y, Sinha-Hikim AP, Wilkinson MF. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev 2006; 20: 147-152.
    16. Carmell MA, Girard A, van de Kant HJ, Bourc' his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 2007; 12:503-514.
    17. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295:868-872.
    18. van den Brandt J, Wang D, Kwon SH, Heinkelein M, Reichardt HM. Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 2004; 39:94-99.
    19. Pfeifer A. Lentiviral transgenesis. Transgenic Res 2004; 13:513-522.
    20. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA, Weinberg RA, Novina CD. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9:493-501.
    21. Nishitsuji H, Ikeda T, Miyoshi H, Ohashi T, Kannagi M, Masuda T. Expression of small hairpin RNA by lentivirus-based vector confers efficient and stable gene-suppression of HIV-1 on human cells including primary non-dividing cells. Microbes Infect 2004; 6:76-85.
    22. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295:868-872.
    1. Porter LA, Dellinger RW, Tynan JA, Barnes EA, Kong M, Lenormand JL, Donoghue DJ.Human Speedy:a novel cell cycle regulator that enhances proliferation through activation of Cdk2. J Cell Biol.2002 Apr 29;157(3):357-66. Epub 2002 Apr 29.
    2. Cheng A., Xiong W., Jr Ferrell J. E. and Solomon M. J.:Identification and comparative analysis of multiple mammalian Speedy/Ringo proteins. Cell Cycle,4(1), 155-65(2005)
    1. Krawetz SA. Paternal contribution:new insights and future challenges. Nat Rev Genet 2005; 6: 633-642.
    2. Zirkin BR. Regulation of spermatogenesis in the adult mammal:gonadotrophin and androgens. In. New York:Oxford Univ. Press,; 1993.
    3. Maclean JN, Wilkinson MF. Gene regulation in spermatogenesis. Curr Top Dev Biol 2005; 71: 131-197.
    4. O'Bryan MK, de Kretser D. Mouse models for genes involved in impaired spermatogenesis. Int J Androl 2006; 29:76-89,105-108.
    5. Guo X, Shen J, Xia Z, Zhang R, Zhang P, Zhao C, Xing J, Chen L, Chen W, Lin M, Huo R, Su B, Zhou Z, Sha J. Proteomic analysis of proteins involved in spermiogenesis in mouse. J Proteome Res 2010; 9:1246-1256.
    6. Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 2004; 101:6876-6881.
    7. Blendy JA, Kaestner KH, Weinbauer GF, Nieschlag E, Schutz G. Severe impairment of spermatogenesis in mice lacking the CREM gene. Nature 1996; 380:162-165.
    8. Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques 2008; 44:613-616.
    9. Kuhn R, Streif S, Wurst W. RNA interference in mice. Handb Exp Pharmacol 2007:149-176.
    10. Shoji M, Chuma S, Yoshida K, Morita T, Nakatsuji N. RNA interference during spermatogenesis in mice. Dev Biol 2005; 282:524-534.
    11. Rao MK, Pham J, Imam JS, MacLean JA, Murali D, Furuta Y, Sinha-Hikim AP, Wilkinson MF. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev 2006; 20:147-152.
    12. Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 2007; 12:503-514.
    13. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295:868-872.
    14. van den Brandt J, Wang D, Kwon SH, Heinkelein M, Reichardt HM. Lentivirally generated eGFP-transgenic rats allow efficient cell tracking in vivo. Genesis 2004; 39:94-99.
    15. Kanatsu-Shinohara M, Kato M, Takehashi M, Morimoto H, Takashima S, Chuma S, Nakatsuji N, Hirabayashi M, Shinohara T. Production of transgenic rats via lentiviral transduction and xenogeneic transplantation of spermatogonial stem cells. Biol Reprod 2008; 79:1121-1128.
    16. Ikawa M, Tergaonkar V, Ogura A, Ogonuki N, Inoue K, Verma IM. Restoration of spermatogenesis by lentiviral gene transfer:offspring from infertile mice. Proc Natl Acad Sci U S A 2002; 99:7524-7529.
    17. Dann CT, Alvarado AL, Hammer RE, Garbers DL. Heritable and stable gene knockdown in rats. Proc Natl Acad Sci U S A 2006; 103:11246-11251.
    18. Dann CT. New technology for an old favorite:lentiviral transgenesis and RNAi in rats. Transgenic Res 2007; 16:571-580.
    19. Dann CT, Garbers DL. Production of knockdown rats by lentiviral transduction of embryos with short hairpin RNA transgenes. Methods Mol Biol 2008; 450:193-209.
    1. Maclean JN, Wilkinson MF. Gene regulation in spermatogenesis. Curr Top Dev Biol 2005; 71: 131-197.
    2. Hecht NB. Regulation of'haploid expressed genes' in male germ cells. J Reprod Fertil 1990; 88: 679-693.
    3. Oliva R, Dixon GH. Vertebrate protamine genes and the histone-to-protamine replacement reaction. Prog Nucleic Acid Res Mol Biol 1991; 40:25-94.
    4. Narisawa S, Hecht NB, Goldberg E, Boatright KM, Reed JC, Millan JL. Testis-specific cytochrome c-null mice produce functional sperm but undergo early testicular atrophy. Mol Cell Biol 2002; 22: 5554-5562.
    5. Hake LE, Hecht NB. Utilization of an alternative transcription initiation site of somatic cytochrome c in the mouse produces a testis-specific cytochrome c mRNA. J Biol Chem 1993; 268:4788-4797.
    6. Nikolaeva MA, Balyasnikova IV, Alexinskaya MA, Metzger R, Franke FE, Albrecht RN, Kulakov VI, Sukhikh GT, Danilov SM. Testicular isoform of angiotensin I-converting enzyme (ACE, CD143) on the surface of human spermatozoa:revelation and quantification using monoclonal antibodies. Am J Reprod Immunol 2006; 55:54-68.
    7. Howard TE, Shai SY, Langford KG, Martin BM, Bernstein KE. Transcription of testicular angiotensin-converting enzyme (ACE) is initiated within the 12th intron of the somatic ACE gene. Mol Cell Biol 1990; 10:4294-4302.
    8. Ollinger R, Alsheimer M, Benavente R. Mammalian protein SCP1 forms synaptonemal complex-like structures in the absence of meiotic chromosomes. Mol Biol Cell 2005; 16:212-217.
    9. O'Bryan MK, de Kretser D. Mouse models for genes involved in impaired spermatogenesis. Int J Androl 2006; 29:76-89,105-108.
    10. Massin N, Pecheux C, Eloit C, Bensimon JL, Galey J, Kuttenn F, Hardelin JP, Dode C, Touraine P. X chromosome-linked Kallmann syndrome:clinical heterogeneity in three siblings carrying an intragenic deletion of the KAL-1 gene. J Clin Endocrinol Metab 2003; 88:2003-2008.
    11. Tang KF, Wu QF, Zou TJ, Xue W, Wang XY, Xing JP. Molecular analysis of KAL-1 in a series of Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism patients from Northwestern China. Asian J Androl 2009; 11:711-715.
    12. Caron P, Chauvin S, Christin-Maitre S, Bennet A, Lahlou N, Counis R, Bouchard P, Kottler ML. Resistance of hypogonadic patients with mutated GnRH receptor genes to pulsatile GnRH administration. J Clin Endocrinol Metab 1999; 84:990-996.
    13. Wong CH, Mruk DD, Lee WM, Cheng CY. Targeted and reversible disruption of the blood-testis barrier by an FSH mutant-occludin peptide conjugate. FASEB J 2007; 21:438-448.
    14. Radian S, Morris JF. Hyperplasia of gonadotropin-secreting cells in FSH receptor knock-out male mice. J Cell Mol Med 2001; 5:434-435.
    15. Krishnamurthy H, Kumar KM, Joshi CV, Krishnamurthy HN, Moudgal RN, Sairam MR. Alterations in sperm characteristics of follicle-stimulating hormone (FSH)-immunized men are similar to those of FSH-deprived infertile male bonnet monkeys. J Androl 2000; 21:316-327.
    16. Sipila K, Aula P. Database for the mutations of the Finnish disease heritage. Hum Mutat 2002; 19: 16-22.
    17. Ramanujam LN, Liao WX, Roy AC, Ng SC. Association of molecular variants of luteinizing hormone with male infertility. Hum Reprod 2000; 15:925-928.
    18. [Androgen receptor CAG gene polymorphism among azoospermic and oligozoospermic men from Ukraine]. Tsitol Genet 2009; 43:45-51.
    19. Li Y, Wang LA, Wu TX. [Association of male infertility with (CAG)n polymorphism of the androgen receptor gene:a meta-analysis]. Zhonghua Nan Ke Xue 2009; 15:809-813.
    20. Ferlin A, Tessari A, Ganz F, Marchina E, Barlati S, Garolla A, Engl B, Foresta C. Association of partial AZFc region deletions with spermatogenic impairment and male infertility. J Med Genet 2005; 42: 209-213.
    21. Vogt PH. AZF deletions and Y chromosomal haplogroups:history and update based on sequence. Hum Reprod Update 2005; 11:319-336.
    22. Kharbanda S, Pandey P, Morris PL, Whang Y, Xu Y, Sawant S, Zhu LJ, Kumar N, Yuan ZM, Weichselbaum R, Sawyers CL, Pandita TK, Kufe D. Functional role for the c-Abl tyrosine kinase in meiosis I. Oncogene 1998; 16:1773-1777.
    23. Nagao Y. Definitive expression of c-mos in late meiotic prophase leads to phosphorylation of a 34 kda protein in cultured rat spermatocytes. Cell Biol Int 2002; 26:193-201.
    24. Chieffi P, Angelini F, Pierantoni R. Detection of c-Myc, c-Fos, and c-Jun-like products in the lizard (Podarcis s. sicula) testis. Ann N Y Acad Sci 1998; 839:561-563.
    25. Chieffi P, Picascia A, Stanzione R, Tramontano D. C-Jun phosphorylation (Ser-63) in the testis of the lizard, Podarcis s. sicula. J Endocrinol 1999; 163:337-344.
    26. Cobellis G, Meccariello R, Fienga G, Pierantoni R, Fasano S. Cytoplasmic and nuclear Fos protein forms regulate resumption of spermatogenesis in the frog, Rana esculenta. Endocrinology 2002; 143: 163-170.
    27. Kodaira K, Takahashi R, Hirabayashi M, Suzuki T, Obinata M, Ueda M. Overexpression of c-myc induces apoptosis at the prophase of meiosis of rat primary spermatocytes. Mol Reprod Dev 1996; 45: 403-410.
    28. Horvath GC, Kistler MK, Kistler WS. RFX2 is a candidate downstream amplifier of A-MYB regulation in mouse spermatogenesis. BMC Dev Biol 2009; 9:63.
    29. Sleeman JP. Xenopus A-myb is expressed during early spermatogenesis. Oncogene 1993; 8: 1931-1941.
    30. Wolgemuth DJ, Laurion E, Lele KM. Regulation of the mitotic and meiotic cell cycles in the male germ line. Recent Prog Horm Res 2002; 57:75-101.
    31. Nickerson HD, Joshi A, Wolgemuth DJ. Cyclin A1-deficient mice lack histone H3 serine 10 phosphorylation and exhibit altered aurora B dynamics in late prophase of male meiosis. Dev Biol 2007; 306:725-735.
    32. Salazar G, Joshi A, Liu D, Wei H, Persson JL, Wolgemuth DJ. Induction of apoptosis involving multiple pathways is a primary response to cyclin Al-deficiency in male meiosis. Dev Dyn 2005; 234: 114-123.
    33. Liu D, Liao C, Wolgemuth DJ. A role for cyclin Al in the activation of MPF and G2-M transition during meiosis of male germ cells in mice. Dev Biol 2000; 224:388-400.
    34. Ruiz EJ, Vilar M, Nebreda AR. A Two-Step Inactivation Mechanism of Mytl Ensures CDK1/Cyclin B Activation and Meiosis I Entry. Curr Biol 2010.
    35. Kim JM, McGaughy JT, Bogle RK, Ravnik SE. Meiotic expression of the cyclin H/Cdk7 complex in male germ cells of the mouse. Biol Reprod 2001; 64:1400-1408.
    36. Govin J, Caron C, Escoffier E, Ferro M, Kuhn L, Rousseaux S, Eddy EM, Garin J, Khochbin S. Post-meiotic shifts in HSPA2/HSP70.2 chaperone activity during mouse spermatogenesis. J Biol Chem 2006; 281:37888-37892.
    37. Eddy EM. Role of heat shock protein HSP70-2 in spermatogenesis. Rev Reprod 1999; 4:23-30.
    38. Allen JW, Dix DJ, Collins BW, Merrick BA, He C, Selkirk JK, Poorman-Allen P, Dresser ME, Eddy EM. HSP70-2 is part of the synaptonemal complex in mouse and hamster spermatocytes. Chromosoma 1996; 104:414-421.
    39. Dix DJ, Allen JW, Collins BW, Poorman-Allen P, Mori C, Blizard DR, Brown PR, Goulding EH, Strong BD, Eddy EM. HSP70-2 is required for desynapsis of synaptonemal complexes during meiotic prophase in juvenile and adult mouse spermatocytes. Development 1997; 124:4595-4603.
    40. Zhu D, Dix DJ, Eddy EM. HSP70-2 is required for CDC2 kinase activity in meiosis I of mouse spermatocytes. Development 1997; 124:3007-3014.
    41. Wang G, Zhang J, Moskophidis D, Mivechi NF. Targeted disruption of the heat shock transcription factor (hsf)-2 gene results in increased embryonic lethality, neuronal defects, and reduced spermatogenesis. Genesis 2003; 36:48-61.
    42. Coultas L, Bouillet P, Loveland KL, Meachem S, Perlman H, Adams JM, Strasser A. Concomitant loss of proapoptotic BH3-only Bcl-2 antagonists Bik and Bim arrests spermatogenesis. EMBO J 2005; 24: 3963-3973.
    43. Yan W, Huang JX, Lax AS, Pelliniemi L, Salminen E, Poutanen M, Toppari J. Overexpression of Bcl-W in the testis disrupts spermatogenesis:revelation of a role of BCL-W in male germ cell cycle control. Mol Endocrinol 2003; 17:1868-1879.
    44. Yamamoto CM, Hikim AP, Lue Y, Portugal AM, Guo TB, Hsu SY, Salameh WA, Wang C, Hsueh AJ, Swerdloff RS. Impairment of spermatogenesis in transgenic mice with selective overexpression of Bcl-2 in the somatic cells of the testis. J Androl 2001; 22:981-991.
    45. Meehan T, Loveland KL, de Kretser D, Cory S, Print CG. Developmental regulation of the bcl-2 family during spermatogenesis:insights into the sterility of bcl-w-/-male mice. Cell Death Differ 2001; 8: 225-233.
    46. Print CG, Loveland KL, Gibson L, Meehan T, Stylianou A, Wreford N, de Kretser D, Metcalf D, Kontgen F, Adams JM, Cory S. Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc Natl Acad Sci U S A 1998; 95:12424-12431.
    47. Vilagrasa X, Mezquita C, Mezquita J. Differential expression of bcl-2 and bcl-x during chicken spermatogenesis. Mol Reprod Dev 1997; 47:26-29.
    48. Shi YQ, Wang YP, Song Y, Li HW, Liu CJ, Wu ZG, Yang KD. p,p'-DDE induces testicular apoptosis in prepubertal rats via the Fas/FasL pathway. Toxicol Lett 2010; 193:79-85.
    49. Li YJ, Song TB, Cai YY, Zhou JS, Song X, Zhao X, Wu XL. Bisphenol A exposure induces apoptosis and upregulation of Fas/FasL and caspase-3 expression in the testes of mice. Toxicol Sci 2009; 108:427-436.
    50. Nair R, Shaha C. Diethylstilbestrol induces rat spermatogenic cell apoptosis in vivo through increased expression of spermatogenic cell Fas/FasL system. J Biol Chem 2003; 278:6470-6481.
    51. Kilinc F, Guvel S, Kayaselcuk F, Aygun C, Egilmez T, Ozkardes H. p53 expression and apoptosis in varicocele in the rat testis. J Urol 2004; 172:2475-2478.
    52. Yin Y, Stahl BC, DeWolf WC, Morgentaler A. P53 and Fas are sequential mechanisms of testicular germ cell apoptosis. J Androl 2002; 23:64-70.
    53. Chuman Y, Kurihashi W, Mizukami Y, Nashimoto T, Yagi H, Sakaguchi K. PPM1D430, a novel alternative splicing variant of the human PPM1D, can dephosphorylate p53 and exhibits specific tissue expression. J Biochem 2009; 145:1-12.
    54. Shetty G, Shao SH, Weng CC. p53-dependent apoptosis in the inhibition of spermatogonial differentiation in juvenile spermatogonial depletion (Utp14bjsd) mice. Endocrinology 2008; 149: 2773-2781.
    55. Baumer N, Sandstede ML, Diederichs S, Kohler G, Readhead C, Ji P, Zhang F, Bulk E, Gromoll J, Berdel WE, Serve H, Muller-Tidow C. Analysis of the genetic interactions between Cyclin A1, Atm and p53 during spermatogenesis. Asian J Androl 2007; 9:739-750.
    56. Bialas M, Borczynska A, Rozwadowska N, Fiszer D, Kosicki W, Jedrzejczak P, Kurpisz M. SCF and c-kit expression profiles in male individuals with normal and impaired spermatogenesis. Andrologia 2010; 42:83-91.
    57. Unni SK, Modi DN, Pathak SG, Dhabalia JV, Bhartiya D. Stage-specific localization and expression of c-kit in the adult human testis. J Histochem Cytochem 2009; 57:861-869.
    58. Sikarwar AP, Reddy KV. siRNA-mediated silencing of c-kit in mouse primary spermatogonial cells induces cell cycle arrest. Oligonucleotides 2008; 18:145-160.
    59. Bokemeyer C, Kuczyk MA, Dunn T, Serth J, Hartmann K, Jonasson J, Pietsch T, Jonas U, Schmoll HJ. Expression of stem-cell factor and its receptor c-kit protein in normal testicular tissue and malignant germ-cell tumours. J Cancer Res Clin Oncol 1996; 122:301-306.
    60. Orth JM, Jester WJ, Qiu J. Gonocytes in testes of neonatal rats express the c-kit gene. Mol Reprod Dev 1996; 45:123-131.
    61. Albanesi C, Geremia R, Giorgio M, Dolci S, Sette C, Rossi P. A cell-and developmental stage-specific promoter drives the expression of a truncated c-kit protein during mouse spermatid elongation. Development 1996; 122:1291-1302.
    62. Izquierdo MA, Van der Valk P, Van Ark-Otte J, Rubio G, Germa-Lluch JR, Ueda R, Scheper RJ, Takahashi T, Giaccone G. Differential expression of the c-kit proto-oncogene in germ cell tumours. J Pathol 1995; 177:253-258.
    63. Strohmeyer T, Reese D, Press M, Ackermann R, Hartmann M, Slamon D. Expression of the c-kit proto-oncogene and its ligand stem cell factor (SCF) in normal and malignant human testicular tissue. J Urol 1995; 153:511-515.
    64. De Franca LR, Bartke A, Borg KE, Cecim M, Fadden CT, Yagi A, Russell LD. Sertoli cells in testes containing or lacking germ cells:a comparative study of paracrine effects using the W (c-kit) gene mutant mouse model. Anat Rec 1994; 240:225-232.
    65. Morrison-Graham K, Takahashi Y. Steel factor and c-kit receptor:from mutants to a growth factor system. Bioessays 1993; 15:77-83.
    66. Matsuda R, Takahashi T, Nakamura S, Sekido Y, Nishida K, Seto M, Seito T, Sugiura T, Ariyoshi Y, Takahashi T, Et A. Expression of the c-kit protein in human solid tumors and in corresponding fetal and adult normal tissues. Am J Pathol 1993; 142:339-346.
    67. Koshimizu U, Watanabe D, Tajima Y, Nishimune Y. Effects of W (c-kit) gene mutation on gametogenesis in male mice:agametic tubular segments in Wf/Wf testes. Development 1992; 114: 861-867.
    68. Tajima Y, Onoue H, Kitamura Y, Nishimune Y. Biologically active kit ligand growth factor is produced by mouse Sertoli cells and is defective in SId mutant mice. Development 1991; 113:1031-1035.
    69. Guo X, Shen J, Xia Z, Zhang R, Zhang P, Zhao C, Xing J, Chen L, Chen W, Lin M, Huo R, Su B, Zhou Z, Sha J. Proteomic analysis of proteins involved in spermiogenesis in mouse. J Proteome Res 2010; 9:1246-1256.
    70. Schultz N, Hamra FK, Garbers DL. A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A 2003; 100: 12201-12206.
    71. Chang C, Chen YT, Yeh SD, Xu Q, Wang RS, Guillou F, Lardy H, Yeh S. Infertility with defective spermatogenesis and hypotestosteronemia in male mice lacking the androgen receptor in Sertoli cells. Proc Natl Acad Sci U S A 2004; 101:6876-6881.
    72. Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques 2008; 44:613-616.
    73. Kuhn R, Streif S, Wurst W. RNA interference in mice. Handb Exp Pharmacol 2007:149-176.
    74. Shoji M, Chuma S, Yoshida K, Morita T, Nakatsuji N. RNA interference during spermatogenesis in mice. Dev Biol 2005; 282:524-534.
    75. Rao MK, Pham J, Imam JS, MacLean JA, Murali D, Furuta Y, Sinha-Hikim AP, Wilkinson MF. Tissue-specific RNAi reveals that WT1 expression in nurse cells controls germ cell survival and spermatogenesis. Genes Dev 2006; 20:147-152.
    76. Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH, de Rooij DG, Hannon GJ. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 2007; 12: 503-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700