稀土离子对NIH3T3和MC3T3细胞增殖及细胞膜钾通道的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着稀土应用的日益广泛,特别是在我国稀土已大量应用于农业和饲养业,稀土正在越来越多地进入环境,进入食物链,因而对其生理、毒理、药理学的研究引起了广泛关注。同时,其生物效应的研究一直是个热点。稀土化合物具有多种生物学活性和药物活性,但其确切的作用机制尚未完全弄清楚,已限制了稀土合理安全的应用。离子通道在非兴奋性细胞的分化、生长发育中具有重要作用,然而,对稀土影响非可兴奋细胞增殖与离子通道的关系的研究却很少。因此探讨离子通道与细胞增殖分化的关系及其作用机制具有重要意义。本文利用全细胞膜片钳技术研究了稀土镧和镱对培养的大鼠成纤维NIH3T3细胞和大鼠成骨MC3T3细胞膜外向钾通道电流和动力学过程的作用、利用细胞生物学方法研究了镧和镱对培养的大鼠成纤维NIH3T3细胞和大鼠成骨MC3T3细胞增殖、凋亡和细胞周期的影响,试图揭示稀土影响钾通道在细胞增殖过程中的作用及其分子机制。主要研究结果如下:
     MTT法和流式细胞仪检测结果表明:(1)La3+可显著促进成纤维NIH3T3细胞的生长,且具有一定的时间和浓度依赖性特征。100州的La3+作用72小时后增殖率可达到46.7%。(2)与此同时,Ca2+也可时间和浓度依赖性地促进NIH3T3细胞增殖,并且La3+和Ca2+的促增殖作用具有协同效应。这些说明镧离子对NIH3T3细胞的促增殖作用与钙离子相关,钙离子对细胞增殖是必不可少的。(3)La3+同样促进成骨MC3T3细胞的增殖,具有一定的时间和浓度依赖性。50μM的La3+作用72小时后对细胞的增殖率可达到38.7%。(4)与La3+相反,Yb3+抑制成纤维NIH3T3细胞的生长,且具有一定的时间和浓度依赖性特征。1mM的Yb3+作用NIH3T3细胞72小时后抑制率可达到57.2%。(5)而Yb3+对成骨MC3T3细胞的生长基本上没有太大的影响。此外,(6)在所选用的浓度和作用时间下,稀土La3+和Yb3+对NIH3T3细胞和MC3T3细胞凋亡没有明显的影响。
     流式细胞仪检测细胞周期结果表明:(1)不同浓度的La3+作用NIH3T3细胞72h后,与对照组相比,La3+使Gl期细胞数量明显减少,S期细胞数明显上升,并且具有一定的时间和浓度依赖性。100μM的La3+使S期细胞数从6.6%上升到26.1%。说明La3+通过促进G1/S细胞进程而促进细胞增殖。(2)不同浓度的Ca2+;不同浓度的La3+和5mM的Ca2+的细胞周期结果与对照组相比,Ca2+使G1期细胞数量有一定的减少,S期细胞数有一定的上升,但不是很明显;La3+和Ca2+使G1期细胞数量有更明显的减少,S期细胞数有更明显的上升。结果提示镧和钙具有协同效应,1000M的La3+和5mM的Ca2+使S期细胞数从26.1%上升到30.6%。(3)不同浓度的La3+作用MC3T3细胞72h后,稀土La3+对MC3T3细胞周期没有明显的影响,这说明La3+促NIH3T3细胞和MC3T3细胞增殖的作用机制不完全一致,可能是由于不同类型的细胞差异造成的。(4)不同浓度的Yb3+作用NIH3T3细胞72h后,对NIH3T3细胞周期的影响不显著,使G2/M细胞的百分数略微有所增加,结合其对NIH3T3细胞增殖的作用表明,Yb3+可能使细胞阻滞于G2/M期,从而抑制细胞的生长。(5)不同浓度的Yb3+对其细胞周期的影响与对照组相比没有差异性。
     全细胞膜片钳研究结果Ⅰ:(1)NIH3T3细胞外向钾通道电流具有内钙依赖性特征,其半数增大浓度EC50为252 nmol/L。但与兴奋性细胞相比较,其电流密度要小得多。这可能是非兴奋性NIH3T3细胞上钾通道数目少或者是钾通道开放几率小的缘故所造成的。(2)镧和镱这两种稀土离子均浓度依赖性地抑制大鼠成纤维NIH3T3细胞外向钾通道电流,EC50值分别为1.58和10.63μmol/L,因为EC50值越小即表示抑制作用越强,所以稀土离子镧对大鼠成纤维NIH3T3细胞外向钾通道电流的抑制作用比镱离子的要强。(3)通过镧和镱这两种稀土离子对钾电流抑制作用的动力学分析,我们发现镧离子使钾电流的半数激活电压向正电位方向移动16mV,使钾电流的半数失活电压向负电位方向移动9.48mV。相反,镱离子使外向钾电流的激活曲线向负电位方向移动11.41mV,而对失活曲线基本上没有影响。激活曲线右移使得激活过程推迟,电流减小;失活曲线左移使得失活过程提前,电流也减小,这是镧离子抑制作用强于镱离子的一个重要原因。
     全细胞膜片钳研究结果Ⅱ:(1)MC3T3细胞外向钾通道电流具有内钙依赖性特征,其半数增大浓度EC50为39.8nmol/L。(2)镧离子浓度依赖性地抑制MC3T3细胞钾通道电流,其半抑制浓度EC50值为8.23μmol/L。(3)通过镧离子对钾电流抑制作用的动力学分析,我们发现LaCl3使钾电流的半数激活电压向正电位方向移动21mV,使半数失活电压向负电位方向移动9.66mV。(4)镱离子对钾电流及其动力学过程都没有明显的影响。这些结果说明,稀土镧和镱对大鼠成骨MC3T3细胞外向钾通道电流及其动力学的作用不相同。
     总之,论文采用了MTT, FACS流式细胞仪研究了两种稀土离子La3+、Yb3+对NIH3T3和MC3T3细胞增殖、细胞周期及凋亡的作用;采用全细胞膜片钳技术,首次研究了稀土离子La3+、Yb3+对NIH3T3和MC3T3细胞外向钾电流大小及激活和失活动力学的影响,从通道水平阐明了钾通道在细胞生长中的重要作用。通过本文的研究进一步揭示了稀土的生物效应及其分子机制,对深入了解稀土生物效应的作用机制及其潜在的药用价值具有重要意义。
With the widely used of rare earth elements, especially in agriculture and stock breeding in china, they are more and more entered into entironment and food cycle. So the researches of their physiology, toxicology and pharmacology are extensively interested. Researches on their biological effects have been a hot spot. Lanthanide compounds display a variety of biochemical and physiological effects, but the exact mechanism is not clear. it is limit to reasonably and safely use them. Ion channels play an important role in the processes of cell differentiation and upgrowth in non-excitable cells. So it is significant to study the relationship and it's mechanism between ion channel and cell proliferation. Effects of two lanthanide ions of La3+and Yb3+ on potassium currents and it's kinetics in non-excitable NIH3T3 cells and MC3T3 cells were investigated using the whole-cell voltage-clamp technique, and influences of La3+and Yb3+ on cell proliferation, cell apoptosis and cell cycles were studied using cell biological methods. We aim at posting some evidence to reveal the function and it's molecular mechanism of the effect on potassium channel by rare earth elements. The results show as below:
     Cell proliferation and cell apoptosis in NIH3T3 cells and MC3T3 cells were mensurated by MTT assay and by flow cytometer. (1) La3+observably increased cell proliferation of NIH3T3 cells in a dose-and time-dependent manner, with a 46.7% increase in 100μM La3+treated cells for 72 h. (2) At the same time, Ca2+can also promote proliferation of NIH3T3 cells. However, it is lower than that of La3+'s. Furthermore, there have synergistic effects between La3+and Ca2+on increasing proliferation. All these results showed that exposure to La3+was able to increase NIH3T3 cell growth which was correlated with Ca2+and Ca2+is absolutely necessarily in cell proliferation. (3) La3+also increased cell proliferation of MC3T3 cells in a dose-and time-dependent manner, with a 38.7% increase in 50μM La3+ treated cells for 72 h. (4) Oppositely, Yb3+ inhibited observably cell proliferation of NIH3T3 cells in a dose-and time-dependent manner, with a 57.2% increase in 1mM Yb3+treated cells for 72h. (5) Yb3+had no obvious effect on cell proliferation of NIH3T3 cells. (6) In addition, under research condition of time and dose, La3+and Yb3+had no obvious effects on apoptosis of NIH3T3 cells.
     Cell cycles in cultured NIH3T3 cells and MC3T3 cells were assessed by flow cytometer. (1) La3+observably decreased the percentage of cells in G1 phase and increased the percentage of cells in S phase of NIH3T3 cells in a dose-and time-dependent manner, with 6.6% increase to 26.1% in 100μM La3+ treated cells. These showed that La3+ promoted cell proliferation of NIH3T3 cells through promoted G1/S cell cycle progression. (2) At the same time, Ca2+also can decreased the percentage of cells in G1 phase and increased the percentage of cells in S phase of NIH3T3 cells. However, it is not observably. Furthermore, 100μM LaCl3 and 5mM CaCl2 increased the percentage of cells in S phase of NIH3T3 cells from 26.1% to 30.6%. These indicated that La3+and Ca2+have synergistic effect on increase in the percentage of cells in S phase. (3) La3+had no visible effect on cell cycle of MC3T3 cells with different concentration of La3+treated cells for 72h. These results showed that there was different mechanism of La3+promoted cell proliferation between NIH3T3 cells and MC3T3 cells induced by different cell style. (4) The effect of Yb3+on cell cycle of NIH3T3 cells is slender, with little increase in the percentage of cells in G2/M phase. These showed that Yb3+inhibited cell proliferation through promoted G2/M cell cycle progression. (5) Yb3+had no obvious effect on cell cycle of MC3T3 cells.
     Outward potassium currents (Ik) in cultured NIH3T3 cells were recorded by whole cell patch-clamp technique. (1) The outward potassium currents of NIH3T3 cells were concentration-dependent of Ca2+ and the EC50 value of Ca2+was calculated to be 252 nmol/L. Contrast to excitable cells, the currents density are very small. These may be the reason of non-excitable cell few channel or little open rate. (2) La3+and Yb3+all inhibited the outward potassium current in a concentration-dependent manner and EC50 was 1.58 and 10.63μmol/L respectively. The inhibition effect of La3+was stronger than that of Yb3+ due to his small inhibition EC50. (3) The kinetics of blockade of La3+and Yb3+on IK indicated that the activation curves was shifted by La3+to positive potential for 16mV and the inactivation curves was shifted to negative potential for 9.48mV; contrarily, the activation curves was shifted by Yb3+to negative potential for 11.41mV and the inactivation curves no changed. The suspendment of activation and the advance of inactivation all decreased current intensity. This was the main reason of La3+inhibition stronger than that of Yb3+.
     Outward potassium currents (IK) in cultured MC3T3 cells were recorded by whole cell patch-clamp technique. (1) The outward potassium currents of MC3T3 cells were concentration-dependent of Ca2+and the EC50 value of Ca2+was calculated to be 39.8 nmol/L. (2) La3+inhibited the outward potassium current in a concentration-dependent manner and EC50 was 8.23μmol/L. (3) The kinetics of blockade of La3+indicated that the activation curves was shifted by La3+to positive potential for 21mV and the inactivation curves was shifted to negative potential for 9.66mV. (4) The activation curves and the inactivation curves by Yb3+had no changed. These showed that it is a different mechanism between La3+and Yb3+on K+currents and its kinetics.
     In summary, in this dissertation, it has been researched the effects of La3+ and Yb3+on cell proliferation, cell apoptosis and cell cycles of NIH3T3 cells and MC3T3 cells; it has been studied, for the first time, the effects of La3+ and Yb3+on potassium currents and its kinetics of activation and inactivation in NIH3T3 cells and MC3T3 cells by whole cell patch-clamp technique. It is demonstrated that potassium channel plays a crucial roles in cell growth from channel level. In conclusion, our experiments have revealed the rare earth element biology effect and their molecular mechanism further. These results are significant for the further understand biology effect of rare earth element and its potential used in medicine.
引文
[1]倪嘉赞等.稀土生物无机化学.科学出版社,2002
    [2]魏幼章.稀土在农业中应用的生理学基础.植物营养与肥料学报,2000,6(4):464-470
    [3]江玲.稀土元素在植物中的生理效应.生物学通报,1997,32(2):9-11
    [4]Diatloff E, Simth F W, Asher C J. Effects of La3+and Ce3+on root elongation of corm and mung-bean. J Plant Nutr,1995,18:963-976
    [5]唐惠安,赵爱萍,刘妍等.稀土生物无机化学近十年进展.天水师范学院学报,2003,23(2):19-23
    [6]郭伯生.农业中的稀土.北京:农业出版社,1998
    [7]方能虎,何友昭,赵贵文.稀土元素的植物物理作用研究进展.稀土,1998,19(15):66-70
    [8]解惠光.中国稀土元素在农业上应用研究进展.科学通报,1991,36(8):561-564
    [9]Switzer M E. The lanthanide ions as probes of calcium ion binding sites in biological systems. Sci Prog,1978,65:19-30
    [10]Das T, Sharma A, Talukder G. Effects of lanthanum in cellular systems. A review, Biol. Trace Elem Res,1988,18:201-228
    [11]Wang K, Cheng Y, Yang X G, et al. Cell responses to lanthanides and potential pharmmacological actions of lanthanides. Sigel/Sigel-Metal Ions in Biological Systems,2003,40:707-751
    [12]霍春芳,刘进荣,张冬艳.稀土抑菌剂的研究现状[J].内蒙古工业大学学报,2000,19(2):144-
    [13]Kramsch D M, Aspen A J, Rozler L J. Atherosclerosis:prevention by agents not affecting abnormal levels of blood lipids. Science,1981,213:1511-1518
    [14]Deng R W,Wu J G Lanthanide complexes of ethyl biscoumocetate and their anticoalant action[J]. Synth React Inorg Met-org Chem,1993,23(4):493-499
    [15]Deng R W, Wu J G Lanthanide complexes of di(4-hedroxycoumarinyl-3) acetic acid and their anticoalant action [J]. Bull soc Chim Beig,1992,101(5):439-445
    [16]Vincke E, Sucker E. Nd salt of 3-salfoisonicotimic acid as all antithmlnbotic [J]. Klin wschr,1950,28:74-77
    [17]Monafo W W, Tandon S N, Ayvazian V H, et al. Cerium nitrate:a new topical antiseptic for extensive burns. Surgery,1976,80:465-473
    [18]兰州大学化学系等(Department of Chemistry of Lanzhou University).兰州大学学报(化学辑刊)(J. Lanzhou Univ.(Chem. Ed.)),1983,19:200
    [19]Fox C L, Monafo W W, Ayazian V H. Comparative eficacy of typc-, iso-, and hypertonic sodium solutions in experimental burn shook [J]. Surg Gynecol Obstet, 1977,14:686-690
    [20]昊集贵,邓汝温,纳新力等.磺胺嘧啶稀土络合物的研究[J].中国稀土学报,1985,3(1):7-10
    [2l]马娴贤.稀土樟脑磺酸、邻菲咯啉二元及三元配合物及药敏作用的研究.科学通报,1990,35(1):38-41
    [22]高翔,王玉苗,王流芳等.1-(2-硫代乙酸)-3-甲基-4-丁基-5-羟基嘧啶及其稀土配合物的合成和其抗菌活性[J].兰州大学学报(自然科学版),1993,29(2):99-104
    [23]Albaaj F, Hutchison AJ. Lanthanum carbonate for the treatment of hyperphosphataemia in renal failure and dialysis patients. Expert Opin Pharmacoyher,2005,6:319-328
    [24]Fricker S P. The therapeutic application of lanthanides.Chem Soc Rev,2006,35: 524-533
    [25]Behets G J, Verberckmoes S C, D'Haese P C, De-Broe M E. Lanthanum carbonate: A new phosphate binder. Curr Opin Nephrol Hypertens,2004,13(4):403-409
    [26]Bern J S, Kobrin S. Boning up on lanthanum. Semin Dial,2006,19(1):87-89
    [27]Magda D, Miller R A. Motexafin gadolinium:A novel redox active drug for cancer therapy. Semin Cancer Biol,2006,16(6):466-476
    [28]Hashemy S I, Ungerstedt J s, Zahedi Awal F, Holmgrn A. Motexafin gadolinium, a tumor-selective drug targeting thioredoxin reductase and ribonucleotide reductase. J Biol Chem,2006,281:10691-10697
    [29]Wang K, Li R, Cheng Y, Zhu B. Lanthanides-the future drugs? Coord Chem Rev, 1999,190-192:297-308
    [30]刘庆芬,诸洪达.镧系元素由土壤向人体转移及其分布.中国辐射卫生[J],2004,13(1):13-15
    [31]王夔,韩万书.中国生物无机化学十年进展.北京:高等教育出版社,1997.19-31
    [32]Berridge M J, Bootman M D, Lipp P. Calcium-a life and death signal. Nature, 1998,395:645-648
    [33]Hardie M J, Raston C L, Salinas A. A 3,12-connected vertice sharing a damantoid hydrogen bonde network featuring tetrameric clusters of cyclo-triveratrylene. Chem Commun,2001,21:1850-1851
    [34]Jalilehvand F, Spangberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandstrom M. Hydration of the calcium ion. An EXAFS, large-angle x-ray scattering and molecular dynamics simulation study. J Am Chem Soc,2001,123: 431-441
    [35]Evans C H. Chemical properties of biochemical relevance. In:Biochemistry of the Lanthanides. New York:Plenum,1990, p9-46.
    [36]Nieboer E. The lanthanide ions as probes in biological systems.Structure and Bonding,1975,22:1-47
    [37]周晓波,魏幼璋.稀土离子与Ca2+在生物体内的相互作用机制及应用.生命科学研究,1999,3(1):30-35
    [38]郑志侠,黄碧霞,芮蕾等.稀土元素对Ca在细胞中分布影响机制的探讨.稀土,2001,22(6):27-31
    [39]安宜.铕对小麦根细胞钙调素及NAD激酶的影响研究.中国稀土学报,2005,23(6): 757-761
    [40]Kui Wang. The analogy in chemical and biological behavior between non-special ions compared with essential ions. South Africa Tydskv Chem,1997,50(4): 232-238
    [41]倪嘉缵.稀土生物无机化学.北京:科学出版社,1995
    [42]Calabrese E J. Toxicological awakenings:the rebirth of hormesis as a central pillar of toxicology. Toxicology and Applied Pharmacology,2005,204:1-8
    [43]杨频,魏春英.稀土与细胞、器官、组织的作用及其生理效应[J].化学通报,1996,7:14-17
    [44]杨频.生物化学中的稀土元素[J].化学通报,1985,7:31-36
    [45]Furst A. Hormetic effects in pharmacology:phamacological inversions as prototyes for hormesis. Health Physics,1987,52(5):527-530.
    [46]童世沪,卢国锃.稀土的生物效应[J].稀土,1987(4):42-52
    [47]李荣昌,杨晓达,王夔等.我国稀土生物无机化学研究进展[J].中国稀土学报,2004,22(1):1-6
    [48]张金超,张晓新,许善锦等.稀土离子对体外培养的成骨细胞增殖、分化和功能表达的影响[J].自然科学进展,2004,14(4):404-409
    [49]杨维东,罗琛,田雪梅等.Ce(NO3)3对不同细胞DNA的损伤作用研究[J].中山大学学报(自然科学版),1999,38(5):50-53
    [50]王洋,聂刘旺,王倩等.硝酸镧染毒对小鼠骨髓细胞微核率的影响[J].环境与健康杂志,2004,21(1):54-55
    [51]熊炳昆.稀土生物功能化合物的应用研究[J].中国稀土学报,1994,12(4):358-365
    [52]徐书显,陈崇智.轻硝酸稀土盐对肠道细菌生长的影响[J].微生物学通报,1988,15(1):24-27
    [53]周峰,陈浮,曹建华等.外源稀土对土壤微生物特征的影响及时间效应[J].中国稀土学报,2003,21(5):589-593
    [54]陈声明,贾小明,胡勤海.镧与钕对棕色固氮菌342菌株的海藻酸发酵的影响[J].中国稀土学报,1994,12(1):64-67
    [55]王景辉,袁甲业.稀土拌料对平菇产量的影响[J].食用菌,1991,13(2):6-7
    [56]李惠君,李玉祥,谢连琪等.生长调节剂对液体培养香菇出菇和酶活性的影响[J].南京农业大学学报,1995,18(增刊):102-103
    [57]鲁宽科,陈宝卫,王夔等.氯化铕对大黄愈伤组织生长及超微结构的影响[J].中国稀土学报,1998,16(4):371-374
    [58]肖广庆,霍霜红,唐任寰等.稀土元素对四膜虫的异常作用研究[J].中国环境科学,1992,12(4):292-295
    [59]周宁波,肖华,何新快.稀土对雏鸡生物效应影响的研究[J].环境化学,2004,23(3):349-350
    [60]郭伯生,赖运生,严启明.稀土在畜牧业中的应用[J].中国稀土学报,1993,11(2):183-185
    [61]王宗惠,苏英,庞新民等.混合硝酸稀土对人正常细胞及癌细胞生长作用的体外观察[J].卫生毒理学杂志,1994,8:197-202
    [62]凤志慧,王玺.稀土元素La、Gd和Ce对培养大鼠细胞生物学效应的研究[J].中华核医学杂志,2001,21:111-114
    [63]邱关明,李幼荣,陈石燕等.稀土对生物机体剂量效应机理的研究进展[J].稀土,2003,24(1):49-56
    [64]屈艾,李宗芸.稀土多元复合肥和三种稀土元素的遗传毒性研究[J].遗传,2001,23:243-246
    [65]纪云晶,肖白,王宗惠等.轻稀土元素抑癌作用机理研究[J].卫生毒理学杂志,1996,10:223-227
    [66]杨频.稀土分子探析[J].化学进展,2003,10(2):65-71
    [67]李晓滨,周爱儒,俞文华等.柠檬酸镧对人肺癌PG细胞、人胃癌BGC2823细胞的作用[J].中国稀土学报,2000,18(2):156-160
    [68]申治国,雷衡毅.铈对培养肝细胞的影响[J].中山大学学报(自然版),1999,38:109-112
    [69]栗建林,张丽帼,刘建中等.混合轻稀土元素抑制小鼠肺腺癌及机理的研究[J].卫生毒理学杂志,1997,11:158-163
    [70]刘玉荣,陈东,姜文华,陈爱军.三氯化镧对体外培养人肝癌细胞的抑制作用.吉林大学学报(医学版),2006,32(6):1029-1033
    [7l]纪云晶,肖白,张丽帼.稀土化合物杀伤癌细胞分子机理研究初探[J].卫生毒理学杂志,1994,8:223-226
    [72]周莉,黄可欣,王晓辉等.小剂量SmCl3对大鼠甲状腺结构的功能的影响[J].中国稀土学报,1996,14(1):69-71
    [73]王丽华,王绍,聂毓秀等.低剂量氯化钐对大鼠血清激素水平的影响[J].中国稀土学报,1996,14(2):186-188
    [74]肖纫秋,朱向红,昊家祥等.低剂量的氯化钐对实验性非胰岛素依赖型糖尿病大鼠胰岛的影响[J].中国稀土学报,1997,15(3):239-243
    [75]朱为方,徐素琴,张辉等.稀土区儿童智商调查研究—Ⅰ.赣南稀土区生物效应研究[J].科学通报,1996,41(10):914-916
    [76]陈祖义,程薇,章力干.稀土元素钷(Pm)在食草动物中的富集性[J].南京农业大学学报,1999,22(3):83-86
    [77]陈祖义,刘玉,王元兴.稀土元素铈(Ce)在小鼠体内的分布与蓄积动态[J].南京农业大学学报,2000,23(3):101-103
    [78]张华,卢国锃,沈子威等.稳定态氯化钇对大鼠精子的毒性[J].卫生毒理学杂志,1991,5(1):38-40
    [79]Meyer J M, Mezrahid P, Vignon F, et al. Sertoli cell barrier dysfunction and spermatogenetic cycle breakdown in the human testis:a lanthanum tracer investigation [J]. Int J Androl,1996,19 (3):190-198
    [80]黄幸纾,陈星若.环境化学物致突变致畸致癌试验方法[M].杭州:浙江科学技术出版社,1985.264-267
    [81]曹睿,周青.稀土细胞毒理效应研究进展.中国生态农业学报,2007,15(4):180-184
    [82]任吉民,张喜荣,王英姿等.稀土离子与红细胞作用的133Cs NMR.科学通报,1995,40(3):1-9
    [83]LiRC, Duan G H, Liu M, et al. Studies on the interaction between yttrium and human erythrocyte membrane. J Rare Earths,1995,13 (2):114-118
    [84]劳凤云,李荣昌,王夔.稀土离子及其柠檬酸配合物诱导人红细胞的溶血作用.北京大学学报,2002,34(2):163-166
    [85]Cheng Y, Liu M.Z., Li R.C., et al. Gadolinium induces domain and pore formation of human erythrocyte membrane:an atomic force microscopic study. Biochim. Biophys. Acta,1999,1421 (2):249-260
    [86]程驿,刘峁子,李友等.经消化道吸收的氯化铈诱导Wistar大鼠红细胞膜“畴”结构的形成.科学通报,1999,44(14):1520-1523
    [87]Cheng Y, Liu M z, Li R C, et al. Gadolinium induces domain and pore formation of human eryt hrocyte membrane:an atomic force microscopic study [J]. Biochim. Biop hys Acta,1999,1421:249-260
    [88]申治国,庄志雄.Ce3+对细胞内游离Ca2+的影响.中国稀土学报,2002,20(2):186-189
    [89]Hu J, Jia X, Li Q, et al. Binding of La3+to calmodulin and its effects on the interaction between calmodulin and calmodulin binding peptide, polistes mastoparan. Biochemistry,2004,43:2688-2698
    [90]Hu J, Yang X D, Wang K. La3+stimulate the activity of calcineurin in two different ways. J Biol Inorg Chem,2005,10(6):704-711
    [91]Eldik L J V, Watterson D M. Calmodulin and signal Transduction[M]. New York: Academic Press,1998
    [92]Ye Y, Lee H W, Yang W, et al. J Am Chem Soc,2005,127:3743-3750
    [93]杨秦,刘会雪,李勤等.核磁共振法研究大肠杆菌细胞内La3+与钙调蛋白的相互作用.中国稀土学报,2007,25(3):344-348
    [94]Yang Q, Hu J, Yang X D, et al. J Inorg Biochem,2008,102:278-284
    [95]胡健.La3+对钙调蛋白及钙调蛋白-靶肽/靶蛋白间分子识别的影响及其作用机制.北京,北京大学,2004
    [96]申治国,雷衡毅,魏青等.Ce3+对大白鼠肝细胞及器官中环核苷酸的影响.稀土,1999,20(4):42-45
    [97]刘会雪,胡健,刘湘陶等.稀土离子促进人红细胞膜磷脂酰肌醇水解的效应.科学通报,2000,45(20):2178-2181
    [98]杨维东,刘洁生,王艇等.Ce(NO3)3对大鼠内脏组织和大脑一氧化氮及合成酶的影响.稀土,2000,21(2):46-48
    [99]Hagenbeek D., Quatrano R.S., Rock C.D. Trivalent ions activate abscisic acid-inducible promoters through an ABI1-dependent pathway in rice protoplasts. Plant Physiol.,2000,123 (4):1553-1560
    [100]Ge Z Q, Song Y, Cheng J S, et al. Signal role for activation of caspase-3-like protease and burst of superoxide anions during Ce4+-in-duced apoptosis of cultured T ax us cuspidata cells. BioMetals,2005,18:221-231
    [101]杨松,葛志强,元英进.铈诱导细胞凋亡过程中02-对ERK-like激酶的调控.化工学报,2006,57(4):902-907
    [102]Fu L J, Li J X, Yang X G, Wang K. Gadolinium-promoted cell cycle progression with enhanced S-phase entry via activation of both ERK and PI3K signaling pathways in NIH 3T3 cells. J Biol Inorg Chem,2009,14:219-227
    [103]Yu S W, Yuan L, Yang X D, Qian Z M, Wang K. La3+-Promoted Proliferation Is Interconnected with Apoptosis in NIH 3T3 Cells. J Cell Biochem,2005,94: 508-519
    [104]Yu S W, Hu J, Yang X D, Wang K, Qian Z M. La3+-induced extracellular signal-regulated kinase (ERK) signaling via a metal-sensing mechanism linking proliferation and apoptosis in NIH 3T3 cells. Biochemistry.2006; 45(37):11217-25
    [105]王熙,黄健,张天蓝,王夔.La3+通过重组细胞骨架影响大鼠成骨细胞增殖、分化.自然科学进展,2008,18(9):1053-1057
    [106]Lacour B, Auchere D, Ruellan N, et al. Chronic renal failure is associated with increased tissue deposition of lanthanum after 28-day oral administration. Kidney Int,2005,67(3):1062-1069
    [107]Huang J, Zhang T L, Xu S J, et al. Effects of lanthnum on composition, crystal size, and lattice structure of femur bone mineral of Wistar rats. Calcif Tissue Int,2006, 78(4):241-247
    [108]Behets G J, Verberckmoes S C, D'Haese P C, et al. Lanthanum carbonate:A new phosphate binder. Curr Opin Nephrol Hypertens,2004,13(4):403-409
    [109]Liu Peng, Liu Yi, Lu Zhexue, et al. Study on biological effect of La3+on Escherichia coli by atomic force mi-croscopy. Journal of Inorganic Biochemistry, 2004,98(1):68-72.
    [110]冉勇,刘铮.外源稀土在我国主要土壤中化学形态的研究[J].稀土,1993,14(2):31-35
    [111]章力干,竺律民,张继棒等.同位素示踪法测定稀土在土壤中的吸附、解吸和扩散[J].中国稀土学报,1996,14(3):249-253
    [112]竺律民,张继棒,章力干等.稀土在土壤中运移数值模拟研究[J].中国稀土学报,1996,14(4):341-346
    [113]张金红,魏继中,吴隽平等.几种镧系元素离子对人红细胞膜Ca2+,Mg2+-ATPase活性影响的研究[J].中国稀土学报,1993,11(3):163-167
    [114]纪云晶,王宗惠,栗建林等.稀土与肿瘤关系的探讨[J].卫生毒理学杂志,1994,8(3):164-170
    [115]王金胜,郭春绒,程玉香.铈离子清除超氧自由基的机理[J].中国稀土学报,1997,15(2):151-154
    [116]李泱,程芮.离子通道学.湖北科学技术出版社,2007
    [117]杨宝峰.离子通道药理学.北京:人民卫生出版社,2005
    [118]贾宏钧,王钟林,杨期东.离子通道与心脑血管疾病—基础与临床.北京:人民卫生出版社,2001
    [119]薛邵武.稀土对保卫细胞、叶肉细胞钾通道以及气孔、蒸腾作用的影响.山西大学2005届博士研究生学位论文2005,91-92
    [120]杜会枝.乙酰胆碱酯酶抑制剂和金属离子对大鼠海马细胞膜离子通道的作用研究.山西大学2005届博士研究生学位论文2006,14-15
    [121]张朝峰.A(10-21)肽对海马锥形细胞钾电流的影响及LiCl的神经保护功能.山西大学2005届博士研究生学位论文2007,39-42
    [122]Neher E. Ion channels for communication between and within cells. Neuron,1992, 8:605-612
    [123]Hille B. Inorc channels of excitable membranes (3nd edition). Sinauer Associates, Sunderland, MA.2001
    [124]Hatta S, Sakamoto J, Horio Y. Ion channels and diseases. Med Electron Microsc 2002; 35:117-126
    [125]贾宏钧等.离子通道与心脑血管疾病.人民卫生出版社,2001
    [126]Long S B, Campbell E B, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+channel. Science,2005,309 (5736):897-903
    [127]陈军.膜片钳实验技术.北京:科学出版社,2001
    [128]Hamill O P, Marty A, Neher E, et al. Improved patch-clamp technique for high resolution current recording from cells and cell-free membrane patch. Pflugers. Arch. [J],1981,391:85-100
    [129]Block B, Stacey W, and Jones S. Surface charge and lanthanum block of calcium current in bullfrog sympathetic neurons, Biophys J,1998,74:2278-2284
    [130]Shorte S L, and Schofield J G. The effect of extracellular polyvalent cations on bovine anterior pituitary cells. Evidence for a Ca2+-sensing receptor coupled to release of intracellular calcium stores, Cell Calcium,1996,19:43-57.
    [1]Smith RS, Smith T J, Blieden T M, et al. Fibroblast as sentinell cell:synthesis of chemokines and regulation of inflammation[J]. Am J Pathol,1997,151:317-322.
    [2]Phan S H. Fibroblast phenotypes in pulmonary fibrosis. Am J Respir Cell Mol Biol, 2003,29(3 Suppl):S87-92.
    [3]Trovato-Salinaro A, et al. Altered intercellular communication in lung fibroblast cultures from patients with idiopathic pulmonary fibrosis. Respir Res.2006,7: 122-130.
    [4]Strutz F, Muller G A. Renal fibrosis and the origin of the renal fibroblast. Nephrol Dial Transplant.2006,21(12):3368-3370.
    [5]Pannu J, Trojanowska M. Recent advances in fibroblast signaling and biology in scleroderma. Curr Opin Rheumatol.2004,16(6):739-745.
    [6]Darby I A, Hewitson T D. Fibroblast differentiation in wound healing and fibrosis. Int Rev Cytol.2007; 257:143-179.
    [7]Friedenstein A J. Precursor cells of mechonocytes. In Rev Cytol,1976,47(3): 327-359.
    [8]Abdin M, Friedenstein AY. Electron microscopic study on bone induction by the transitional epithelium of the bladder in guinea pigs. Clin Orthop,1972,82(2): 182-194.
    [9]裘世静,柴本甫.不同接骨板固定后骨折修复的超微结构研究.中华外科杂志,1990,28(2):88
    [10]Brighton C T, Lorich D G, Kupcha R, et al. The pericyte as a possible osteoblast progenitor cell. Clin Orthop,1992,275(2):287-299
    [11]Chai B F, Zhu X L, Yang L F, et al. Ultrastructural investition of experimental fracture healing-Ⅲ:electron microscopic observation on deposition of calcium salt crystals. Clin Med J,1979,92(10):668-692
    [12]Tang xM, Chai B F. Ultrastructural investition of experimental fracture healing-IV: electron microscopic observation on transformation and fate of fibroblast and chondrocytes. Clin Med J,1981,94(5):291-300
    [13]柴本甫,汤雪明,李慧.实验性骨折愈合中钙化骨化的超微结构观察(兼论成纤维细胞的成骨作用).中华创伤杂志,1995,11(1):4
    [14]柴本甫,汤雪明,李慧.骨折二期愈合过程中的成纤维细胞成骨作用.中华骨科杂志,1996,16(4):245
    [15]Fu L J, Li J X, Yang X G, Wang K. Gadolinium-promoted cell cycle progression with enhanced S-phase entry via activation of both ERK and PI3K signaling pathways in NIH3T3 cells. J Biol Inorg Chem,2009,14:219-227
    [16]Yu S W, Yuan L, Yang X D, Qian Z M, Wang K. La3+-Promoted Proliferation Is Interconnected with Apoptosis in NIH3T3 Cells. J Cell Biochem,2005,94: 508-519
    [17]Yu S W, Hu J, Yang X D, Wang K, Qian Z M. La3+-induced extracellular signal-regulated kinase (ERK) signaling via a metal-sensing mechanism linking proliferation and apoptosis in NIH3T3 cells. Biochemistry.2006; 45(37):11217-25
    [18]Fleming J E, Cornell C N, Muschler G F. Bone cells and matrices in orthopedic tissue engineering. Orthop Clin North Am,2000,31(3):357-374
    [19]崔玉明,胡蕴玉,吕昌伟等.诱导骨髓基质细胞向软骨细胞分化的实验研究.中国临床康复,2003,7(17):2397-2399
    [20]倪嘉缵.稀土生物无机化学.北京:科学出版社,2002.30-31
    [21]王熙,黄健,张天蓝,王夔.La3+通过重组细胞骨架影响大鼠成骨细胞增殖、分化.自然科学进展,2008,18(9):1053-1057
    [22]Lacour B, Auchere D, Ruellan N, et al. Chronic renal failure is associated with increased tissue deposition of lanthanum after 28-day oral administration. Kidney Int,2005,67(3):1062-1069
    [23]Huang J, Zhang T L, Xu S J, et al. Effects of lanthnum on composition, crystal size, and lattice structure of femur bone mineral of Wistar rats. Calcif Tissue Int,2006, 78(4):241-247
    [24]Behets G J, Verberckmoes S C, D'Haese P C, et al. Lanthanum carbonate:A new phosphate binder. Curr Opin Nephrol Hypertens,2004,13(4):403-409
    [25]张金超,李晓新,许善锦等.稀土离子对体外培养的成骨细胞增殖、分化和功能表达的影响.自然科学进展,2004,14(4):404-409
    [26]李荣昌,杨惠雯,王夔.低剂量长期饲喂La(NO3)3后La在大鼠骨中的蓄积及骨微结构的改变.北京大学学报(医学版),2003,35(6):622-624
    [27]江谦.现代医学实验方法[M].北京:人民卫生出版社,1997:146-186
    [28]翟中和,丁明孝,王喜忠等.细胞生物学.高等教育出版社,2000
    [29]李荣昌,杨晓达,王夔,倪嘉缵.我国稀土生物无机化学研究进展.中国稀土学报,2004,22:1-6
    [30]Hardie M J, Raston C L, Salinas A. A 3,12-connected vertice sharing a damantoid hydrogen bonde network featuring tetrameric clusters of cyclo-triveratrylene. Chem Commun,2001,21:1850-1851
    [31]Jalilehvand F, Spangberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandstrom M. Hydration of the calcium ion. An EXAFS, large-angle x-ray scattering and molecular dynamics simulation study. J Am Chem Soc,2001,123: 431-441
    [32]Evans CH. Chemical properties of biochemical relevance. In:Biochemistry of the Lanthanides. New York:Plenum,1990,9-46.
    [33]Nieboer E. The lanthanide ions as probes in biological systems.Structure and Bonding,1975,22:1-47
    [34]Yu S W, Yuan L, Yang X D, et al. La3+-Promoted Proliferation Is Interconnected with Apoptosis in NIH3T3 Cells. J Cell Biochem,2005,94:508-519
    [35]王宗惠,苏英,庞新民等.混合硝酸稀土对人正常细胞及癌细胞生长作用的体外观察[J].卫生毒理学杂志,1994,8:197-202
    [36]凤志慧,王玺.稀土元素La,Gd和Ce对培养大鼠细胞生物学效应的研究[J].中华核医学杂志,2001,21:111-114
    [37]邱关明,李幼荣,陈石燕等.稀土对生物机体剂量效应机理的研究进展[J].稀土,2003,24(1):49-56
    [38]屈艾,李宗芸.稀土多元复合肥和三种稀土元素的遗传毒性研究[J].遗传,2001,23:243-246
    [39]纪云晶,肖白,王宗惠等.轻稀土元素抑癌作用机理研究[J].卫生毒理学杂志,1996,10:223-337
    [40]倪嘉缵主编.稀土生物无机化学[M].北京:科学出版社,1995
    [41]李晓滨,周爱儒,俞文华等.柠檬酸镧对人肺癌PG细胞、人胃癌BGC2823细胞的作用[J].中国稀土学报,2000,18(2):156-160
    [42]申治国,雷衡毅.铈对培养肝细胞的影响[J].中山大学学报(自然版),1999,38:109-112
    [43]Switzer M E. The lanthanide ions as probes of calcium ion binding sites in biological systems. Sci Prog,1978,65:19-30
    [44]Das T, Sharma A, Talukder G. Effects of lanthanum in cellular systems. A review, Biol. Trace Elem Res,1988,18:201-228
    [45]Wang K, Cheng Y, Yang X G, et al. Cell responses to lanthanides and potential pharmmacological actions of lanthanides. Sigel/Sigel-Metal Ions in Biological Systems,2003,40:707-751
    [46]Wang K, Li R, Cheng Y, Zhu B. Lanthanides-the future drugs? Coord Chem Rev, 1999,190-192:297-308
    [47]Selman M, Pardo A. The epithelial/fibroblastic pathway in the pathogenesis of idiopathic pulmonary fibrosis. Am J Respir Cell Mol Biol,2003,29(3 Suppl): 93-97
    [1]Berridge M J, Bootman M D, Lipp P. Calcium-a life and death signal. Nature, 1998,395:645-648
    [2]Hardie M J, Raston C L, Salinas A. A 3,12-connected vertice sharing a damantoid hydrogen bonde network featuring tetrameric clusters of cyclo-triveratrylene. Chem Commun,2001,21:1850-1851
    [3]Jalilehvand F, Spangberg D, Lindqvist-Reis P, Hermansson K, Persson I, Sandstrom M. Hydration of the calcium ion. An EXAFS, large-angle x-ray scattering and molecular dynamics simulation study. J Am Chem Soc,2001, 123:431-441
    [4]Evans C H. Chemical properties of biochemical relevance. In:Biochemistry of the Lanthanides. New York:Plenum,1990, p9-46.
    [5]Nieboer E. The lanthanide ions as probes in biological systems.Structure and Bonding,1975,22:1-47
    [6]周晓波,魏幼璋.稀土离子与Ca2+在生物体内的相互作用机制及应用.生命科学研究,1999,3(1):30-35
    [7]Israels ED,Israels LG.The cell cycle[J].Oncologist,2000,5(6):510-513.
    [8]Kaufmann WK, Kaufman DG. Cell cycle control,DNA repair and initiation of carcinogenesis[J]. FASEB J,1993,7(12):1188-1191.
    [9]任辉,房学东等.苯乙酸对人结直肠癌细胞HCT28的G1细胞周期阻滞及增殖抑制作用.中国普通外科杂志,2007,16(9),852-854
    [10]翟中和,丁明孝,王喜忠等.细胞生物学.高等教育出版社,2000
    [l]李泱,程芮.离子通道学.湖北科学技术出版社,2007
    [2]Hatta S, Sakamoto J, Horio Y. Ion channels and diseases. Med Electron Microsc 2002; 35:117-126
    [3]贾宏钧,王钟林,杨期东.离子通道与心脑血管疾病.人民卫生出版社,2001
    [4]Hirasawaa T, Kotania S, Suzukia T, et al. Effects of lanthanides on voltage-dependent potassium currents in bullfrog sympathetic neurons. Neuroscience Letters,2000,290:97-100
    [5]Li G R, Baumgarten C M. Modulation of cardiac Na+current by gadolinium, a blocker of stretch-induced arrhythmias. Am J Physiol Heart Circ Physiol,2001, 280:272-279.
    [6]杨频,薛邵武,杜会枝.膜片钳法研究镧对心肌细胞钾通道的作用.科学通报,2005,50(6):531-534
    [7]杜会枝,杨频.镧对大鼠海马神经元瞬时外向钾电流和延迟整流钾电流动力学的影响.高等学校化学学报,2006,27(1):13-16
    [8]Zhang L P, Chen M, Yang P. Effects of ytterbium on outward K+currents in NIH3T3 cell. Chinese Science Bulletin,2010,55(3):246-250
    [9]张丽平,陈明,杨频.稀土元素镱对NIH3T3细胞外向钾电流的影响.科学通报,2009,54(20):3186-3190
    [10]周晓波,魏幼璋.稀土离子与Ca2+在生物体内的相互作用机制及应用.生命科学研究,1999,3(1):30-35
    [11]郑志侠,黄碧霞,芮蕾等.稀土元素对Ca在细胞中分布影响机制的探讨.稀土,2001,22(6):27-31
    [12]杜会枝,杨频.镧对大鼠海马神经元瞬时外向钾电流和延迟整流钾电流动力学的影响.高等学校化学学报,2006,27(1):13-16
    [13]Hamill O P, Marty A, Neher E, et al. Improved patch-clamp technique for high resolution current recording from cells and cell-free membrane patch. Pflugers. Arch. [J],1981,391:85-100
    [14]安宜.铕对小麦根细胞钙调素及NAD激酶的影响研究.中国稀土学报,2005,23(6):757-761
    [15]Block B, Stacey W, and Jones S. Surface charge and lanthanum block of calcium current in bullfrog sympathetic neurons, Biophys. J.,1998,74: 2278-2284
    [16]Shorte S L, and Schofield J G The effect of extracellular polyvalent cations on bovine anterior pituitary cells. Evidence for a Ca2+-sensing receptor coupled to release of intracellular calcium stores, Cell Calcium,1996,19:43-57.
    [17]Hille B. Ion Channel of Excitable Membrane. Third ed., Sinauer, Sunderland, MA,2001
    [18]Kayser, ST, Ulrich, H, Schaller, H C. Involvement of a Gardos-type potassium channel in head activator-induced mitosis of BON cells. Eur. J. Cell Biol,1998, 76:119-124
    [19]Liu, S I, Chi, C W, Lui, W Y, Mok, et al. Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. Biochim Biophys Acta,1998,1368:256-266
    [20]Rader, R K, Kahn, L E, Anderson, G D, et al. T cell activation is regulated by voltage-dependent and calcium-activated potassium channels. J Immunol, 1996,156:1425-1430
    [21]Wonderlin, W F, Strobl, J S. Potassium channels, proliferation and G1 progression. J Membr Biol,1996,154:91-107
    [22]Good T A, Smith D O, Murphy R M. Amyloid peptide blocks the fast-inactivating K+current in rat hippocampal neurons. Biophys J,1996,70: 296-304
    [23]Hu J, Jia X, Li Q, Yang X D, and Wang K. La3+binds to Ca2+sites of calmodulin but results in altered conformation and kinetic properties as binding of calmodulin to mastoparan, Biochemistry,2004,43:2688-2698
    [24]Hu J, Yang X D, and Wang K. La3+stimulate the activity of calcineurin in two different ways, J. Biol. Inorg. Chem.,2005,10:704-711
    [25]Long S B, Campbell E B, Mackinnon R. Crystal structure of a mammalian voltage-dependent Shaker family K+channel. Science,2005,309(5736): 897-903
    [26]焦勇,吕海港,杨频.肽管状通道中镧离子转运机理的分子模拟,待发表。
    [27]杨频,高孝恢.性能-结构-化学键.高等教育出版社,1987,253
    [1]李泱,程芮.离子通道学.湖北科学技术出版社,2007
    [2]Zhang L P, Chen M, Yang P. Effects of ytterbium on outward K+currents in NIH3T3 cell. Chinese Science Bulletin,2010,55(3):246-250
    [3]张丽平,陈明,杨频.稀土元素镱对NIH3T3细胞外向钾电流的影响.科学通报,2009,54(20):3186-3190
    [4]杨频,薛邵武,杜会枝.膜片钳法研究镧对心肌细胞钾通道的作用.科学通报,2005,50(6):531-534
    [5]Barila B, Cupello A, Robello M. Modulation by lanthanum ion of aminobutyric acidA receptors of rat cerebellum granule cells in culture:clues on their subunit composition. Neuroscience Letters,2001,298:13-16
    [6]Davies R, Hayat S, Wigley C B, et al. The calcium influx pathway in rat olfactory ensheathing cells shows TRPC channel pharmacology. Brain Res, 2004,1023:154-156
    [7]Fernando K C, Barritt G J. Charactezation of the divalent cation channels of the heaptocyte plasma membrane receptor-activated Ca2+in flow system using lanthanide ions. Biochimica et Biophysica Acta,1995,1268:97-106
    [8]Tytgat J, Daenens P, Effects lanthanum on voltage-dependent gating of a cloned mammalian neuronal potassium channel. Brain Res,1997,749: 232-237
    [9]Hille B. Ion Channel of Excitable Membrane. Sinauner Associates Inc, Sundorland, MA,1984,70-75
    [10]Agus Z S, Iain D D, Martin M. Divalent cations modulate the transient outward current in rat ventricular myocytes. Am J Physiol,1991,261: C310-C318
    [11]Mayer M L, Sugiyama K. A modulatory action of divalent cation on transient outward current in cultured rat sensory neurons. Journal of Physiology,1988, 396:417-433
    [12]Talukder G, Harrison N L. On the mechanism of modulation of transient outward current in cultured rat hippocampal neurons by di-and trivalent cation. Journal of Neurophysiology,1995,73:73-79
    [13]焦勇,吕海港,杨频.肽管状通道中镧离子转运机理的分子模拟,待发表.
    [14]Tew W P. Use of the coulombic interacttion of the lanthanide series to identify two classes of Ca binding sites in mitochomdria. Biochem Biophys Res Commum,1977,78:624-630
    [15]Tam S C, William R J P. Electrostatics and biological systems. Structure and Bonding,1985,63:103-151
    [16]薛邵武.稀土对保卫、叶肉细胞钾通道以及气孔、蒸腾作用的影响.山西大学2005届博士研究生学位论文,2005:62
    [1]Switzer M E. The lanthanide ions as probes of calcium ion binding sites in biological systems. Sci Prog,1978,65:19-30
    [2]Das T, Sharma A, Talukder G Effects of lanthanum in cellular systems. A review,Biol. Trace Elem Res,1988,18:201-228
    [3]Wang K, Cheng Y, Yang XG, etal. Cell responses to lanthanides and potential pharmmacological actions of lanthanides. Sigel/Sigel-Metal Ions in Biological Systems,2003,40:707-751
    [4]Kramsch D M, Aspen A J, Rozler L J. Atherosclerosis:prevention by agents not affecting abnormal levels of blood lipids. Science,1981,213:1511-1518