用户名: 密码: 验证码:
柔性光掩模制备及有机材料表面微图案化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料与环境的相互作用主要发生在表面,诸如印刷、吸附、粘接、涂装、染色、防腐、微图案化等都要求材料有适当的表面性能。其中有机聚合物材料具有低成本、高透明、易加工、柔软、质轻、可回收、可降解等诸多优异性能更为引人关注。但由于其大分子基表面的化学惰性和疏水性导致亲水性、染色性、黏附性、生物相容性等表面功能化方面较差,从而限制了它们在一些领域的应用,因此对其表面进行改性进而功能化是一个重要的研究课题。而表面微图案化是功能化的一个重要手段,也是现代科技发展的关键技术之一。光刻技术因其具有准确、精细、高输出等优点一直是微图案化领域的主导技术,而光刻掩模(铬掩模)的制备更是其转移微图案中的关键步骤,但需要复杂的特殊设备、苛刻的实验条件、繁琐的工艺过程。这些技术壁垒限制了光刻掩模在非光刻领域中的应用。基于上述考虑,在充分研究现有的表面微图案化技术及光掩模制备的基础上,本论文首先采用打印技术在改性的有机/无机杂化膜表面打印设计的任意微米级图案、多色图案以及色阶图案,并以此代替光刻掩模,实现了在有机基材表面任意微图案的精确复制进而进行功能化修饰。取得的主要结果如下:
     1.提出了一种全新的制备柔性紫外-可见光掩模技术,主要包括:(1)光掩模基材制备:通过受限光催化氧化(CPO)反应对透明聚合物膜或片材如双向拉伸聚丙烯(BOPP)和聚对苯二甲酸乙二醇酯(PET)表面实施光感应羟基化改性形成亲水表面,再通过溶胶-凝胶法在该表面制备纳米厚度氧化硅(SiOx),得到全透明柔性有机/无机杂化(BOPP/SiOx和PET/SiOx)膜。(2)通过颜料型普通商用喷墨打印机(EPSON R800)在该基材表面直接打印,得到通过计算机设计的任意微米级表面图案。相关参数如墨水与基材的附着力由无机层(SiOx)来调节,挡光层(即墨水层)厚度(d=0.5μm-1.3μm)、透光性(波长λ<500nm的光全吸收)及线条宽度(w>50μm)均可通过设计图案颜色深浅及设计线宽尺寸进行调控。相比于传统的铬掩模/金属掩模,这种打印的柔性光掩模制备技术简单快捷、成本低廉、轻薄柔韧。因此在各种形状的有机基材表面微图案化领域有重要的实际应用价值。
     2.针对聚合物材料表面改性及光化学反应是近年来的一个热点和前沿问题,从实际应用的角度考虑,将这种打印的柔性紫外-可见光掩模应用于通过光反应修饰聚合物材料表面来证明所制备的光掩模使用性能及价值。利用本实验室已有的CPO反应,通过打印的柔性光掩模控制,对有机基材表面进行紫外光感应羟基化改性形成润湿性微图案表面,基于该表面,进一步在其上沉积制备了导电聚合物聚苯胺(PANI)、无机半导体材料氧化锌(ZnO)等微图案化构筑。利用光接枝技术,在各种有机薄膜(BOPP、PET)表面接枝功能性单体如丙烯酸(AA)、丙烯酰胺(AM)等制备各种接枝聚合物聚丙烯酸(PAA)、聚丙烯酰胺(PAM)微图案表面。利用打印光掩模自身柔韧性及超薄性特点,结合光反应在非平表面进行光接枝AA聚合制备PAA刷子微图案化曲面。
     3.对不同夺氢型光引发剂异丙基硫杂蒽酮(ITX)和樟脑醌(CQ)的吸光特性,及其在不同有机基材BOPP和PET表面的引发机理、接枝方式(一步法、二步法)和接枝规律等方面进行了详细的研究。发现ITX可通过λ=200-300nm紫外光或λ=300-400nm的远紫外光在有机薄膜如BOPP、聚乙烯(PE)、PET等表面进行一步法或两步法光接枝烯类(AA,AM)等单体反应;CQ可通过λ=200-300nm的紫外光进行相似的接枝反应,同时,对于聚烯烃(BOPP、PE)膜表面,CQ可通过紫外光感应与其表面进行化学反应,然后在此表面进行可见光再引发接枝(AA、AM)聚合反应,对于PET膜,CQ还可通过λ=400-500nm的可见光一步法或两步法在胺化的PET膜表面进行光接枝(AA或AM)反应,并详细的探讨了其接枝规律。
     4.利用不同颜色的墨水对光波透过的选择性,如一定厚度(d>500nm)黑色墨水对λ<500nm的光都有优异的全吸收性,黄色墨水在λ=300-400nm左右的远紫外光有25%-30%的透过性,蓝色墨水则在λ=400-500nm左右可见光有55%-60%的透过性。首次提出了一种波长可控光掩模的制备技术,即首先在通过溶胶-凝胶法改性PET膜表面形成有机/无机杂化(PET/SiOx)膜,然后将设计好的三色图案(黑色、黄色和蓝色)打印到杂化膜表面制备出波长可控光掩模,通过前面提到的对应的不同夺氢型光引发剂(ITX和CQ)对光波吸收的选择性:ITX和CQ分别对λ=300-400nm和λ=400-500nm左右的光有一定的吸收,以及这两种光引发剂在相应光感应下均可进行两步法光接枝。因此通过波长可控光掩模控制,在胺化的PET膜表面进行双接枝(AA/AM)聚合制备双微图案化有机表面。相比于其它双图案化表面构筑除了该法更为简便外,所形成的双图案间距可调,方法具有一定的普适性。
     5.基于打印墨水颜色的深浅对全波段的紫外-可见光透过性弱强特性,首次提出了在有机/无机杂化(BOPP/SiOx、PET/SiOx)膜基材表面打印出一种能使透过的光强呈梯度变化的梯度光掩模技术,并通过此掩模控制,结合CPO反应,可在同一有机基材(BOPP、PE、PET)等表面制备出一种表面能呈梯度分布的梯度聚合物表面;结合表面受限光接枝聚合技术在同一有机基材表面接枝AA制备出接枝层厚度呈梯度分布的梯度接枝物(PAA)刷子表面;结合表面沉淀紫外光接枝聚合技术可在同一有机基材(BOPP、PE)等表面接枝单体(AM)形成接枝密度呈梯度分布的梯度接枝聚合物(PAM)表面,同时考察了各种反应条件(引发剂和单体浓度、光强、辐照时间)对接枝密度及表面形貌的影响。梯度聚合物表面由于其化学组成和结构呈梯度变化,这种特殊的表面在生物医学、微流体器件、细胞吸附等方面具有重要的实际应用价值。
Materials and environmental interaction occurs mainly in the material surface, such as printing, adsorption, adhesive, coating, dyeing, anticorrosion, micropatterns, and etc., which all required its surface with appropriate surface properties. Organic polymer materials have received increasing attentions because they have unique benefits including low cost, easy processibility, high transparency, flexibility, light-weight, recyclability and disposability, but chemically inert and hydrophobic surface of polymer materials lead to poor hydrophilicity, moisture content, adhesion, biocompatibility, and etc., which limit them to use in some fields mentioned above, so the surface modification or functionalization is an important research topic. While surface micropattern fabrication is an important way in realizing materials function, and it is also a key technique in modern science and engineering. Photolithography techniques due to its accurate, precise, and high output has been leading technology in the field of micropattern fabrication. The lithography mask (chromium mask) is the key component in the transformation of the micropatterns, but its fabrication requires special and complex equipment, strict experimental conditions, and complicated processing technology and so on, which limits its applications in many fields of nonphotolithographic microstructure fabrication. Based on the above consideration, we fully researched the existing micropatterning fields and photomask fabrication methods. Firstly, we fabricated organic/inorganic hybrid (BOPP/SiOx, PET/SiOx) film by spin-coating method via Sol-Gel reaction, and then by inkjet printing any desired micropattern can be printed, such as multicolor micropattterns, and color gradation patterns. As an alternative mask to lithography mask, we did some applications on polymer surface modification controlled by these special printing photomasks.
     The main results and significance are summarized as follows:
     1. Presented a new technology for fabrication of a UV-visible photomask. The processes included:(1) photomask substrate preparation:We did wettability modification through " Confined Photo-catalytic Oxidation" (CPO) reaction on the transparent polymer film or sheet such as biaxially oriented polypropylene (BOPP) film, polyethylene terephthalate (PET) film, and then fabricated organic/inorganic (BOPP/SiOx and PET/SiOx) hybrid film through Sol-Gel via spin-coating silica, which had nanometer thickness of the silica surface. The film was absolutely transparent and flexible hybrid film. (2) Inkjet printed any desired micropattern onto this hybrid film to form a kind of soft photomask technology through the pigment-based inkjet printer EPSON R800. Parameters such as the ink adhesion to the substrate was adjusted by inorganic layer, the thickness of light blocking (opaque ink) layer (0.5μ-1.3μ), light transmittance (absorbed almost all the light with wavelengthλ<500nm) and line width (w> 50μm) were controlled by the designed depth of color and designed line width. Compared to traditional chromium mask/metal mask, the printing photomask is suitable for non-planar substrates, scalable for large area production, and extremely low cost, which is much preferable to the conventional chrome-mask fabrication methods. So this photomask has widespread applications in fabrication of micropatterns in many kinds of shapes of organic substrate surface.
     2. Polymer surface modification and the photochemical reaction are a hot topic and cutting-edge issues in recent years. From the practical point of view, the soft UV-visible photomask was used in polymer surface modification fields to prove its operational performance and value. Combining CPO reaction of our lab, controlled by this inkjet printing soft photomask, it was very convenient to make the wettability patterns via UV-induced hydroxyl formation on BOPP or PET surface, and further deposited conductive polymers such as polyaniline (PANI) and inorganic zinc oxide (ZnO) semiconductor micropatterns; by photografting polymerization, we grafted patterned functional monomer such as crylic acid (AA) and acrylamide (AM) polymerization on the organic polymer PET or BOPP substrates controlled by the photomask and thus fabricated micropatterning grafting PAA brushes and PAM microstructures; and for the photomask is very soft and thin, we photografted AA polymerization on non-planar plastic substrate.
     3. Polymer substrate immobilizing abstract hydrogen photoinitiators, such as isopropyl thioxanthone (ITX) and camphorquinone (CQ) has different absorption characteristics to different wavelength lights. We did some research on the mechanism of grafting, the type of photograft (one-step and two-step), grafting rules, and etc. It was found that ITX can absorbλ=200-300nm UV light andλ=300-400nm far ultraviolet light which wavelengths can induce surface grafting vinyl polymer (AA or AM) polymerization on organic (polyethylene PE, BOPP, PET) by one-step or two-step method. As to CQ, it can absorb 200-300nm UV light and did similar photograft (one-step) (AA or AM) polymerization on the same polymer surface. Meanwhile, CQ can absorbλ=400-500nm visible-light. It was found that UV light can induced immobilization initiator CQ, and then visible light induced photografted AA on BOPP or PE surface by two-step method, it can also induced living surface photografting polymerization via two-step visible light induced AA polymerization on aminated PET film surface.
     4. Based on the above results, different abstract hydrogen photoinitiators (ITX and CQ) have different characteristics to different light absorbance. For ITX can absorbλ=300-400nm far UV light and CQ can absorbλ=400-500nm visible light. Meanwhile, different color inks have some corresponding transmitted light, so it is very convenient to fabricate a wavelength controllable photomask technology. Controlled by this printing photomask, we provided a novel and alternative route to generate covalent photografting of binary component polymer brushes on aminated PET film surface. For example, we printed black, blue, and yellow three kinds of color ink, which have different transmittance to light. For black ink, it can almost absorb all the light with wavelength range less thanλ=500nm, yellow ink transmitλ=300-400nm far UV light, and blue ink can transmit k=400-500nm visible light, while according to rules of the ITX and CQ mentioned above, the procedure involved fabrication of wavelength controllable photomask by inkjet printing technology, immobilization of two kinds of patterned photoinitiating system which attacted to aminated PET surface by covalent bonds, and two-step UV-visible light irradiation on polymer film via surface-initiated controlled radical polymerization, and thus fabrication binary component grafts PAA/PAM micropatterns on the same organic substrates. Compared to other methods, it avoided complex lithographic schemes and the passivation of the "living" chain ends when graft the second monomer. This method can easily be applied to graft a large variety of chemical functional materials onto polymer substrates with potential utility in molecular recognition, directed cell selective adhesion, switchable surface wettability, and other microscale polymeric surface applications.
     5. Hybrid BOPP/SiOx film can be served as substrate for inkjet printing gradation photomask designed by software program such as Auto CAD, Chemdraw, Freehand. The transmitted light intensity from the photomask shows a gradient distribution. According to this rule, we successfully implemented CPO reacton, confined photografting polymerization with AA and precipitation-photografting polymerization with AM grafted onto the surface of BOPP or PE film. ART-FTIR, X-ray photoelectron spectroscopy (XPS), water contact angle, fluorescence microscope and scanning electron microscopy (SEM) analysis showed that the gradient surfaces could be the different gradient distributed functional surface such as surface energy, grafting chain density and grafting thickness gradient distributed polymer surfaces. This is by far the most convenient reported method in preparation of gradient surfaces, and it is a versatile facile method in preparation of a gradient surface by UV light-induced-reaction. These fabricated special surfaces could be used widely in the fields such as biomedical materials, microfluidics devices, cell adsorbance, improve the efficiency of heat conduction adsorption etc..
引文
[1]McAlear J H, Wehrung J M. Microsubstrates and method for making micropattern device[P]. US Patent, US 4103073,1978-07-25.
    [2]W. M. Moreau. Semiconductor Lithography:Principles and Materials[M]. Plenum, New York. 1988.
    [3]Xia Y N, Qin D, Yin Y D. Surface Patterning and its application in wetting/dewetting studies[J]. Curr. Opin. Colloid Interface Sci.,2001,6:54-64.
    [4]Li S H, Li H J, Wang X B, Song Y L, Liu Y Q, Jiang L, Zhu D B. Super-hydrophobicity of large-area honeycomb-like aligned carbon nanotubes[J]. J. Phys. Chem. B.,2002,106: 9274-9276.
    [5]Sun T L, Wang G J, Liu H, Feng L, Jiang L, Zhu D B. Control over the wettability of an aligned carbon nanotube film[J]. J. Am. Chem. Soc.,2003,125:14996-14997.
    [6]Xia Y N, Whitesides G M. Softlithography[J]. Angew. Chem. Int. Ed.,1998,37:551-575.
    [7]Petersen K E. Silicon as a mechanical material[J]. Proc. IEEE.,1982,70:420-457.
    [8]Effenhauser C S, Manz A. Miniaturizing a whole analytical laboratory down to chip size[J]. American Lab.,1994,26:15-16,18.
    [9]Jacobson S C, Hergenroder R, Koutny L B, Ramsey J M. High-speed separations on a microchip[J]. Anal. Chem.,1994,66:1115-1118.
    [10]Mrksich M, Whitesides G M. Patterning self-assembled monolayers using microcontact printing:a new technology for biosensors. Trends. Biotech.,1995,13:228-235.
    [11]Blawas A S, Reichert W M. Review:protein patterning[J]. Biomaterials,1998,19:595-609.
    [12]Makohliso S A, Leonard D, Giovangrandi L, Mathieu H J, Ⅱegems M, Aebischer P. Surface characterization of a biochip prototype for cell-based biosensor applications[J]. Langmuir. 1999,15:2940-2946.
    [13]D'Souza S F. Microbial biosensors[J]. Biosens. Bioelectron.,2001,16:337-353.
    [14]Ito Y. Surface micropatterning to regulate cell functions[J]. Biomaterials,1999,20: 2333-2342.
    [15]Kane R S, Takayama S, Ostuni E, Ingber D E, Whitesides G M. Patterning proteins and cells using soft lithography[J]. Biomaterials,1999,20:2363-2376.
    [16]刘建军,刘莉,何平笙.微反应器和微聚合反应器[J].化学通报,2002,11:758-761.
    [17]Geissler M, Xia Y N. Patterning:principles and some new developments[J]. Adv. Mater. 2004,16:1249-1269.
    [18]Xu S, Liu G Y. Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly [J]. Langmuir.1997,13:127-129.
    [19]Liu G Y, Xu S, Qian Y L. Nanofabrication of self-assembled monolayers using scanning probe lithography [J]. Acc. Chem. Res.,2000,33:457-466.
    [20]Kramer S, Fuierer R R, Gorman C B. Scanning probe lithography using self-assembled monolayers[J]. Chem. Rev.,2003,103:4367-4418.
    [21]张强,胡松,姚汉民,刘业异.ASML光刻技术最新进展[J].微细加工技术,2002,3:8-11.
    [22]潘力佳,何平笙.软刻蚀-图形转移和微制造新工艺[J].微细加工技术,2000,2:1-7.
    [23]王喆,邢汝博,韩艳春,李滨耀.软刻蚀及其应用[J].化学通报,2002,9:606-613.
    [24]Xia Y N, Whitesides G M. Soft lithography[J]. Angew. Chem. Int. Ed.,1998,37:551-575.
    [25]Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication:a new trend in nanotechnology of soft materials[J]. Curr. Opin. Colloid Interface Sci.,2001,6:11-16.
    [26]张希,沈家骢.“浮萍”与“倒浮萍”聚合物超薄膜结构与功能组装[J].高分子学报,1997,4:469-473.
    [27]邹勃,张力,吴立新,等.界面分子组装与表面图案化[J].科学通报,2001,46(6):441-443.
    [28]Schena M, Heller R A, Therisult T P. Microarrays:biotechnology's discovery platform for functional genomics[J]. TIB Tech.,1998,16:301-306.
    [29]Zubritsky E. Spotting a microarray system:a broader array of commercial products edges out home-built systems[J]. Anal. Chem.,2000,72:761A-767A.
    [30]Xu S, Liu G Y. Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly[J]. Langmuir,1997,13:127-129.
    [31]Kraemer S, Fuierer R R, Gorman C B. Scanning probe lithography using self-assembled monolayers[J]. Chem. Rev.,2003,103:4367-4418.
    [32]Hong S H, Zhu J, Mirkin C A. A new tool for studying the in situ growth processes for self-assembled monolayers under ambient conditions[J]. Langmuir,1999,15:7897-7900.
    [33]Piner R D, Zhu J, Xu F, Hong S H, Mirkin C A. "Dip-pen" nanolithography[J]. Science,1999, 283:661-663.
    [34]Hong S H, Zhu J, Mirkin C A. Multiple ink nanolithography:Toward a multiple-pen nano-plotter[J]. Science,1999,286:523-525.
    [35]Hong S H, Mirkin C A. A nanoplotter with both parallel and serial writing capabilities[J]. Science,2000,288:1808-1811.
    [36]Ivanisevic A, Mirkin C A. "Dip-Pen" Nanolithography on Semiconductor Surfaces[J]. J. Am. Chem. Soc.,2001,123:7887-7889.
    [37]Wilson D L, Martin R, Hong S H, Mark C G, Mirkin C A, Kaplan D L. Surface organization and nanopatterning of collagen by dip-pen nanolithography[J]. Proceedings of the National Academy of Sciences of the United States of America,2001,98:13660-13664.
    [38]Su M, Liu X G, Li S Y, Dravid V P, Mirkin C A. Moving beyond molecules:patterning solid-state features via dip-Pen nanolithography with sol-based inks[J]. J. Am. Chem. Soc., 2002,124:1560-1561.
    [39]Lee K, Park S, Mirkin C A, Smith J C, Mrksich M. Protein nanoarrays generated by dip-pen nanolithography[J].Science,2002,295:1702-1705.
    [40]Demers L M, Ginger D S, Park S J, Li Z, Chung S W, Mirkin C A. Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography[J]. Science, 2002,295:1836-1838.
    [41]Noy A, Miller A E, Klare J E, Weeks B L, Woods B W, De Yorer J. Fabrication of luminescent nanostructures and polymer nanowires using dip-pen nanolithography[J]. Nano. Letters., 2002,2:109-112.
    [42]Liu X G, Fu L, Hong S H, Dravid V P, Mirkin C A. Arrays of magnetic nanoparticles patterned via "dip-pen" nanolithography [J]. Adv. Mater.,2002,14:231-234
    [43]Maynor B W, Li Y, Liu J. Au "ink" for AFM "dip-pen" nanolithography[J]. Langmuir,2001, 17:2575-2578.
    [44]Troughton E B, Bain C D, Whitesides G M, Nuzzo R G, Allara D L, Porter M D. Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates:structure, properties, and reactivity of constituent functional groups[J]. Langmuir,1988,4:365-385.
    [45]Bain C D, Whitesides G M. Formation of monolayers by the coadsorption of thiols on gold: variation in the length of the alkyl chain[J]. J. Am. Chem. Soc.,1989,111,7164-7175.
    [46]Okazaki S J. Resolution limits of optical lithography[J]. J. Vac. Sci. Technol. B.,1991,9: 2829-2833.
    [47]马立人,蒋中华.生物芯片[M].北京:化学工业出版社,2000.1-130.
    [48]McGall G H, Fidanza J A. High-density oligonucleotide probe arrays[J]. Proceedings of SPIE-The International Society for Optical Engineering,2000, v3926:106-110.
    [49]Harnett C K, Satyalakshmi K M, Craighead H G. Bioactive templates fabricated by low-energy electron beam lithography of self-assembled monolayers[J]. Langmuir,2001,17: 178-182.
    [50]He W, Gonsalves K E, Pickett J H. Synthesis, characterization, and preliminary biological study of poly(3-(tert-butoxycarbonyl)-N-vinyl-2-pyrrolidone)[J]. Biomacromolecules,2003,4: 75-79.
    [51]Kiichi S, Hiroshi Y, Jinko K, Akio Y. Photocathodes for electron image projection[P]. Eur. Patent, EP 257528,1988-03-02.
    [52]Celio H, Barton E, Stevenson K J. Patterned Assembly of Colloidal Particles by Confined Dewetting Lithography [J]. Langmuir,2006,22:11426-11435.
    [53]Akagi Y, Fukui H, Yamamoto K. Method for formation of precise micropatterns[P]. Jpn. Patent, JP 2009212135 A,2009-07-17.
    [54]Ji Q, Jaing X S, Yin J. Facile approach to the fabrication of a micropattern possessing nanoscale substructure[P]. Langmuir,2007,23:12663-12668.
    [55]Hozumi A. Processing and applications of "oxide nanoskin"[C]. National Institute of Advanced Industrial Science and Technology,45(11th International Ceramics Congress, 2006,660-667.
    [56]Teshima K, Sugimura H, takano A, Inoue Y, Takai O. Ultrahydrophobic/ultrahydrophilic micropatterning on a polymeric substrate[J]. Chem.Vap. Deposition,2005,11:347-349.
    [57]Luo L, Metters A T, Hutchison J B, Bowman C N, Anseth K S. A methacrylated photoiniferter as a chemical basis for microlithography:micropatterning based on photografting polymerization[J]. Macromolecules,2003,36:6739-6745.
    [58]Herndon M K, Collins R T, Hollingsworth R E, Larson P R, Johnson M B. Near-field scanning optical nanolithography using amorphous silicon photoresists[J]. Appl. Phys. Lett., 1999,74:141-143.
    [59]Melliar-Smith C M. Ion etching for pattern delineation[J]. J. Vac. Sci. Technol.,1976,13: 1008-1022.
    [60]Morinoto H, Sasaki Y, Saitoh K, Watakabe Y, Kato T. Focused ion beam lithography and its application to submicron devices[J]. Microelectron. Eng.,1986,4:163-179.
    [61]Chou S Y, Wei M S, Krauss P R, Fischer P B. Single-domain magnetic pillar array of 35nm diameter and 65 Gbits/in.2 density for ultrahigh density quantum magnetic storage[J]. J. Appl. Phys.,1994,76:6673-6675.
    [62]Goodberlet J, Carter J, Smith H I. Scintillating global-fiducial grid for electron-beam lithography[J]. J. Appl. Phys. B,1998,16:3672-3675.
    [63]Dial O, Cheng C C, Scherer A. Fabrication of high-density nanostructures by electron-beam lithography[J]. J. Vac. Sci. Technol. B,1998,16:3887-3890.
    [64]Nicolau D V, Taguchi T, Taniguchi H, Yoshikawa S. Negative and positive tone protein patterning on e-beam/deep-UV resists[J]. Langmuir,1999,15:3845-3851.
    [65]Okazaki S. Resolution limists of optical lithography [J]. J. Vac. Sci. Technol. B,1991,9: 2829-2833.
    [66]Xia Y N, Whitesides G M. Soft Lithography [J]. Annu. Rev. Mater Sci.,1998,28:153-184
    [67]刘建平,何平笙.微接触印刷构造金属银的二维和准三维微图纹结构[J].物理化学学报,2003,19:1143-1145.
    [68]Xia Y, Kim E, Zhao X M, Rogers J A, Prentiss M, Whitesides G M. Complex optical surfaces formed by replica molding against elastomeric masters[J]. Science,1996,273:347-349.
    [69]Xia Y, McClelland J J, Gupta R, Qin D, Zhao X M, Sohn L L, Celotta R J, Whitesides G M. Replica molding using polymeric materials:A practical step toward nanomanufacturing. Adv. Mater.,1997,9:147-149.
    [70]Mrksich M, Chen C S, Xia Y N, Dike L E, Ingber D E, Whitesides G M. Controlling cell attachment on contoured surfaces with self-assembled monolayers of alkanethiolates on gold[J]. Proc. Natl. Acad. Sci. USA.,1996,93:10775-10778.
    [71]Zhao X M, Xia Y N, Whitesides G M. Fabrication of three-dimensional micro-structures: Microtransfer molding[J]. Adv. Mater.,1996,8:837-840.
    [72]Dalton L R, Harper A W, Wu B, Ghosn R, Laquindalum J, Liang Z, Hubbel A, Xu C. Polymeric electro-optic modulators:materials synthesis and processing. Adv. Mater.,1995,7: 519-540.
    [73]Peppas N A, Langer R. New challenges in biomaterials[J]. Science,1994,263:1715-1720.
    [74]Zhao X M, Smith S P, Waldman S J, Whitesides G M, Prentiss M. Demonstration of waveguide couplers fabricated using microtransfer molding[J]. Appl. Phys. Lett.,1997,71: 1017-1019.
    [75]Schueller O J A, Brittain S T, Whitesides G M. Fabrication of glassy carbon microstructures by pyrolysis of microfabricated polymeric precursors[J]. Adv. Mater.,1997,9:477-480.
    [76]Kim E, Xia Y N, Whitesides G M. Micromolding in capillaries:applications in amatierals science[J]. J. A. Chem. Soc.,1996,118:5722-5731.
    [77]Trau M, Yao N, Kim E, Xia Y, Whitesides G M, Aksay I A. Microscopic patterning of oriented mesoscopic silica through guided growth[J]. Nature,1997,390:674-676.
    [78]Xia Y N, Kim E, Whitesides G M. Micromolding of polymers in capillaries:applications in microfabrication[J]. Chem. Mater.,1996,8:1558-1567.
    [79]Delamarche E, Bernard A, Schmid H, Michel B, Biebuyck H. Patterned delivery of immunoglobulins to surfaces using microfluidic networks[J]. Science,1997,390:779-781.
    [80]Kim E, Xia Y, Zhao X M, Whhitesides G M. Solvent-assisted microcontact molding:A convenient method for fabricating three-dimensional structures on surfaces of polymers[J]. Adv. Mater.,1997,9:651-654.
    [81]Rogers J A, Bao Z N, Dhar L. Fabrication of patterned electroluminescent polymers that emit in geometries with feature sizes into the submicron range[J]. Appl. Phys. Lett.,1998,73: 294-296.
    [82]Paul K E, Breen T L, Aizenberg J, Whitesides GM. Fabrication of nanometer-scale features
    by controlled isotropic wet chemical etching[J]. Adv. Mater.,2001,13:604-607.
    [83]Rogers J A, Paul K E, Jackman R J, Whitesides G M. Using an elastomeric phase mask for sub-100 nm photolithography in the optical near field[J]. Appl. Phys. Lett.,1997,70: 2658-2660.
    [84]Zou B, Wang L Y, Wu T, Zhang X. Ex situ SFM study of 2-D aggregate geometry of azobenzene containing bolaform amphiphiles after adsorption at the mica/aqueous solution interface[J]. Langmuir,2001,17:3682-3688.
    [85]Zhang L, Huo F W, Wang Z Q, et al. Investigation into self-assembled monolayers of a polyether Dendron thiol:Chemisorption, kinetics, and patterned surface[J]. Langmuir,2000, 16:3813-3817.
    [86]Zhang L, Zou B, Dong B, et al. Self-assembled monolayers of new Dendron-thiols: Manipulation of the patterned surface and wetting properties [J]. Chem. Commun.2001: 1906-1907.
    [87]Gleiche M, Chi LF, Fuchs H. Nanoscopic channel lattices with controlled anisotropic wetting[J]. Nature,2000,403:173-175.
    [88]Shen J C, Wang L Y, Zhang X. Some amphiphilic polymers at interface and functional films[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2000,175: 235-242.
    [89]Williams J R. Marking electronics products and packages-choosing the right method[J]. Adv. Packaging.,2005,21-22.
    [90]Fuller S B, Wilhelm E J, Jacobson J M. Ink-jet printed nanoparticle microelectromechanical systems[J]. J. Microelectromech. Sys.,2002,11:54-59.
    [91]Gans B D, Duineveld P C, Schubert U S. Inkjet printing of polymers:state of the art and future developments[J]. Adv. Mater.,2004,16:203-213.
    [92]Calvert P. Inkjet printing for materials and devices[J]. Chem. Mater.,2001.13:3299-3305.
    [93]Ridley B A, Nivi B, Jacobson J M. All-inorganic field effect transistors fabricated by printing[J]. Science,1999,286:746-749.
    [94]Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. High-resolution inkjet printing of all-polymer transistor circuits[J]. Science,2000, 290:2123-2126.
    [95]Service R F. Printable electronics that stick around[J]. Science,2004,304:675
    [96]Wang J Z, Zheng Z H, Li H W, Huck W T S, Sirringhaus H. Dewetting of conducting polymer inkjet droplets on patterned surfaces[J]. Nature Mater.,2004,3:171-176.
    [97]Natori A Y, Canestraro C D, Roman L S, Ceschin A M. Modification of the sheet resistance of ink jet printed polymer conducting films by changing the plastic substrate[J]. Mater. Sci. Engi. B,2005,122:231-235.
    [98]Heule M, Vuillemin S, Gauckler L J. Powder-based ceramic meso-and microscale fabrication processes[J]. Adv. Mater.,2003,15:1237-1245.
    [99]Slade C E, Evans J R G Freeforming ceramics using a thermal jet printer[J]. J. Mater. Sci. Lett.,1998,17:1669-1671.
    [100]Ramachandran N, Hainsworth E, Bhullar B, Eisenstein S, Rosen B, Lau A Y, Walter J C, Labaer J. Self-assembling protein microarrays[J]. Science,2004,305:86-90.
    [101]MacBeath G, Schreiber S L. Printing proteins as microarrays for high-throughput function determination[J]. Science,2000,289:1670-1673.
    [102]Wilson W C, Boland J R. Cell and organ printing 1:protein and cell printers[J]. Anatom. Rec. Part A,2003,272A:491-496.
    [103]Xu T, Petridou S, Lee E H, Roth E A, Vyavahare N R, Hickman J J, Boland T. Construction of high-density bacterial colony arrays and patterns by the ink-jet method[J]. Biotech. Bio. Engi.,2004,85:29-33.
    [104]Xia Y, Kim E, Zhao X M, Rogers J A, Prentiss M, Whitesides G M. Complex Optical surfaces formed by replica molding against elastomeric masters[J]. Science,1996,273:347-349.
    [105]Reichmanis E, Thompson L F. Polymer materials for microlithography[J]. Chem. Rev.,1989, 89:1273-1289.
    [106]Kim E, Kumar A, Whitesides G M. Combining patterned self-assembled monolayers of alkanethiolates on gold with anisotropic etching of silicon to generate controlled surface morphologies[J]. J. Electrochem. Soc.,1995,142:628-633.
    [107]Jean M L. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization[J]. Angew. Chem. Int. Ed.,1990,26: 1305-1319.
    [108]Schena M, Heller R A, Theriault T P, Konrad K, Lachenmeier E, Davis R W. Microarrays: biotechnology's discovery platform for functional genomics[J]. Trends. Biotechnol.,1998, 16:301-306.
    [109]Kim E, Kumar A, Whitesides G M. Combining patterned self-assembled monolayers of alkanethiolates on gold with anisotropic etching of silicon to generate controlled surface morphologies[J]. J. Electrochem. Soc.,1995,142:628-633.
    [110]Halteen J C, Van Duyne R P. Nanosphere lithography:A materials general fabrication process for periodic particle array surfaces[J]. Journal of Vacuum Science & Technology, A:Vacuum, Surfaces, and Films,1995,13:1553-1558.
    [111]Hulteen J C. Treichel D S, Smith M T, Duval M L, Jensen T R, Van Duyne R P. Nanosphere Lithography:Size-Tunable Silver Nanoparticle and Surface Cluster Arrays[J]. J. Phys. Chem. B,1999,103:3854-3863.
    [112]Kuo C-W, Shiu J-Y,Chen P. Size-and Shape-Controlled Fabrication of Large-Area Periodic Nanopillar Arrays[J]. Chem. Mater.,2003,15:2917-2920.
    [113]Bullen H A, Garrett S J. TiO2 Nanoparticle Arrays Prepared Using a Nanosphere Lithography Technique[J]. Nano. Lett.,2002,2:739-745.
    [114]Frey W, Woods C K, Chilkoti A. Ultraflat nanosphere lithography:a new method to fabricate flat nanostructures[J]. Adv. Mater.,2000,12:1515-1519.
    [115]Haynes C L, McFarland A D, Smith M T, Hulteen J C, Van Duyne R P. Angle-resolved nanosphere lithography:Manipulation of nanoparticle size, shape, and interparticle spacing[J]. J. Phys. Chem. B,2002,106:1898-1902.
    [116]Kuo C-W, Shiu J-Y, Cho Y-H, Chen P. Fabrication of large-area periodic nanopillar arrays for nanoimprint lithography using polymer colloid masks[J]. Adv. Mater.,2003,15:1065-1068.
    [117]Kuo C W, Shiu J Y, Chen P, Somorjai G A. Fabrication of size-tunable large-area periodic silicon nanopillar arrays with sub-10-nm resolution[J]. J. Phys. Chem. B,2003,107: 9950-9953.
    [118]McLellan J M, Geissler M, Xia ZY. Edge Spreading Lithography and Its Application to the Fabrication of Mesoscopic Gold and Silver Rings[J]. J. Am. Chem. Soc.,2004,126: 10830-10831.
    [119]Fahm A W, Branu H-G, Stamm M. Fabrication of metalized nanowires from self-assembled diblock copolymer templates[J]. Adv. Mater.,2003,15:1201-1204.
    [120]Mansky P, Chaikin APO M, Thomas E L. Monolayer films of diblock copolymer microdomains for nanolithographic applications [J]. J. Mater. Sci.,1995,30:1987-1992.
    [121]Mansky P, Harrison C K, Chaikin P M,Register R A, Yao N. Nanolithographic templates from diblock copolymer thin films[J]. App. Phys. Lett.,1996,68:2586-8.
    [122]Park M, Harrison C, Chaikin P M, Register R A, Adamson D H. Block copolymer lithography:periodic arrays of-1011 holes in 1 square centimeter[J]. Science,1997,276: 1401-1404.
    [123]Harrison C, Park M, Chaikin P M, Register R A, Adamson D H. Lithography with a mask of block copolymer microstructures[J]. J. Vac. Sci. & Tech. B,1998,16:544-552.
    [124]Lammertink R G H, Hempenius M G, Van den Enk J E, Chan V Z H, Thomas E L, Vancso G J. Nanostructured thin films of organic-organometallic block copolymers. One-step lithography with poly(ferrocenylsilanes) by reactive ion etching[J]. Adv. Mater.,2000,12: 98-103.
    [125]Li R R, Dapkus P D, Thompson M E, Jeong W G, Harrison C, Chaikin P M, Register R A, Adamson DH. Dense arrays of ordered GaAs nanostructures by selective area growth on substrates patterned by block copolymer lithography[J]. Appl. Phys. Lett.,2000,76: 1689-1691.
    [126]Park M, Chaikin P M, Register R A, Adamson D H. Large area dense nanoscale patterning of arbitrary surfaces[J]. Appl. Phys. Lett.,2001,79:257-259.
    [127]Cheng J Y, Ross C A, Chan VZH, Thomas E L, Rob G H, Lammertink RGH, Vancso G J. Formation of a cobalt magnetic dot array via block copolymer lithography[J]. Adv. Mater., 2001,13:1175-1178.
    [128]Cheng J Y, Ross C A, Thomas E L, Smith H I, Vancso G J. Magnetic properties of large-area particle arrays fabricated using block copolymer lithography [J]. IEEE. Trans. Magn.,2002, 38:2541-2543.
    [129]Thurn-Albrecht T, Schotter J, Kastle G A, Emley N, Shibauchi T, Krusin-Elbaum L, Guarini K, Black C T, Tuominen M T, Russell T P. Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates[J]. Science,2000,290:2126-2129.
    [130]Black C T, Guarini K W, Milkove K R, Baker S M, Russell T P, Tuominen M T. Integration of self-assembled diblock copolymers for semiconductor capacitor fabrication[J]. Appl. Phys. Lett.2001,79:409-411.
    [131]Watanabe R, Kamata K, Iyoda T. Smart block copolymer masks with molecule-transport channels for total wet nanopatterning[J]. J.Mater. Chem.,2008,18:5482-5491.
    [132]Chen A, Komura M, Kamata K, Iyoda T. Highly ordered arrays of mesoporous silica nanorods with tunable aspect ratios from block copolymer thin films [J]. Adv. Mater.,2008, 20:763-767.
    [133]Qin D, Xia Y N, Whitesides G M. Rapid prototyping of complex structures with feature sizes larger than 20μm[J]. Adv. Mater.,1996,8:917-919
    [134]Tao D, Joe T, Bing X U, Whitesides G M. Using patterns in microfiche as photomasks in 10-um-scale microfabrication. Langmuir.1999,15,6575-6581.
    [135]Linder V, Wu H K, Jiang X Y, Whitesides G. M. Rapid prototyping of 2D structures with feature sizes large than 8μm. Anal. Chem.,2003,75,10,2522-2527
    [136]Tao D, Wu H K, Brittain S T, Whitesides G. M. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction. Anal. Chem.,2000,72,14,3176-3180
    [137]Lin C H, Yang H, Chang F Y, Chang S H, Yen M T. Fast patterning microstructures using inkjet printing conformal masks. Microsyst Technol.,2008,14,1263-1267.
    [138]周其凤, 胡汉杰 主编 高分子化学[M]北京 化学工业出版社.
    [139]李会玲.紫外光引发丙烯酸(AA)水溶液聚合体系研究[D],北京化工大学研究生论文,2001.
    [140]Oster G, Shibata O. Graft copolymer of polyacrylamide and natural rubber produced by means of ultraviolet light[J]. J. Polym. Sci.,1957,26:233-237.
    [141]Tazuke S, Kimura H. Surface photografting. I. Graft polymerization of hydrophilic monomers onto various polymer films[J]. J. Polym. Sci. Polym. Lett. Ed.,1978,16:497-502.
    [142]Tazuke S, Kimura H. Surface photografting. II. Modification of polypropylene film surface by graft polymerization of acrylamide[J]. Makromol. Chem.,1978,179:2603-2612.
    [143]Yang WT, Ranby B. The role of far UV radiation in the photografting process[J]. Polym. Bull.,1996,37:89-96.
    [144]Yang W T, Ranby B. Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system[J]. Eur. Polym. J.,1999,35:1557-1568.
    [145]Yang W T, Ranby B. Bulk surface photografting process and its applications. I. Reactions and kinetics[J]. J. Appl. Polym. Sci.,1996,62:533-543.
    [146]Yang W T, Ranby B. Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting[J]. J. Appl. Polym. Sci.,1996,62:545-555.
    [147]Yang W T, Ranby B. Bulk surface photografting process and its applications. III. Photolamination of polymer films[J],. J. Appl. Polym. Sci.1997,63:1723-1732.
    [148]Yang W T, Ranby B. Radical living graft polymerization on the surface of polymeric materials[J]. Macromolecules,1996,29:3308-3310.
    [149]Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Structure and properties of high-density polymer brushes prepared by surface-initiated living radical polymerization[J]. Adv. Polym. Sci.,2006,197:1-45.
    [150]Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation:A fast furface hydrophilic modification method for polymeric materials[J]. Polymer,2003,44:7157-7164.
    [151]Yang P, Xie J Y, Yang W T. A Simple Method to Fabricate Conductive Polymer Micropattern on Organic Polymer Substrate[J]. Macromol. Rapid. Commun.,2006,27: 418-423.
    [152]Amanda R M, Anna M, Clark and Christopher T C. The effect of photomask resolution on separation efficiency on microfabricated devices[J]. Lab. Chip.,2006,6:1355-1361.
    [153]Deng T, Wu H K, Brittain S T, Whitesides G M. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction[J]. Anal. Chem.,2000,72:3167-3180.
    [154]Yang S M, Chang C. A piezoresistive bridge-microcantilever biosensor by CMOS process for surface stress measurement[J]. Sens. Actuators B,2010, B145:405-410.
    [155]Hu S W, Ren X Q, Bachman M, Sims C E, Li G P, Allbritton N L. Surface-directed, graft polymerization within microfluidic channels[J]. Anal. Chem.,2004,76:1865-1870.
    [156]Smythe E J, Dickey M D, Whitesides G M, Capasso F. A technique to transfer metallic nanoscale patterns to small and non-planar surfaces[J]. Nano. Lett.,2009,3:59-65.
    [157]Bradley P, Harris and Andrew T M. Generation and characterization of photopolymerized polymer brushes gradients[J]. Macromolecules,2006,39:2764-2772.
    [158]Yang P, Yang M, Zou S L, Xie J Y, Yang W T. Positive and negative TiO2 micropatterns on organic polymer substrates [J]. J. Am. Chem. Soc.,2007,129:1541-1552.
    [159]Yang P, Zhang X X, Zhao H C, Chen J C, Yang W T. Facile preparation of a patterned, aminated polymer surface by UV-light-induced surface aminolysis[J]. Adv. Funct. Mater., 2005,15:1415-1425.
    [160]Gan S H, Yang P, Yang W T. Interface-directed Sol-Gel:direct fabrication of covalently attached ultraflat inorganic oxide pattern on functionalized plastic[J]. Sci. China Chem.,2010, 53:173-182.
    [1]Moreau W M. Semiconductor Lithography:Principles and Materials[M]. Plenum, New York, 1988.
    [2]Liu G Y, Xu S, Qian Y L. Nanofabrication of self-assembled monolayers using scanning probe lithography[J]. Acc. Chem. Res.,2000,33:457-466.
    [3]Petersen K E. Silicon as a mechanical material[J]. Proc. IEEE.,1982,70:420-457.
    [4]Briceno G, Chang H Y, Sun X D, Schultz P G, Xiang X D. A class of cobalt oxide magnetoresistance materials discovered with combinatorial synthesis[J]. Science,1995,270: 273-275.
    [5]Singhvi R, Kumar A, Lopez G P, Stephanopoulos G N, Wang D I, Whitesides G M, Ingber D E. Engineering cell shape and function[J]. Science,1994,264:696-698.
    [6]Lee S S, Lin L Y, Wu M C. Surface-micromachined free-space micro-optical systems containing three-dimensional microgratings[J]. Appl. Phys. Lett.,1995,67:2135-2137.
    [7]Davidson M R, Berry G J, Fan Y, Cairns J A, Thomson J. Analytical electron microscopy of laser-deposited metal patterns[J]. Electron. Microscopy and Analysis,2001,168:215-218.
    [8]Hsieh M D, Zellers E T. In situ UV-photopolymerization of gas-phase monomers for microanalytical system applications[J]. Sens. Actuators B,2002,82:287-296.
    [9]Huang H Y, Li N P. Technological Fundanental of Semiconductor Device[M]. Shanghai Science and Technology Press,1985:156.
    [10]Xia Y N, Kim E, Zhao X M, Rogers J A, Prentiss M, Whitesides G M. Complex optical surfaces formed by replica molding against elastomeric masters[J]. Science,1996,273: 347-349.
    [11]Jean M L. Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization[J]. Angew. Chem. Int. Ed.,1990,26: 1305-1319.
    [12]Schena M, Heller R A, Theriault T P, Konrad K, Lachenmeier E, Davis R W. Microarrays: biotechnology's discovery platform for functional genomics[J]. Trends. Biotechnol.,1998,16: 301-306.
    [13]Kim E, Kumar A, Whitesides G M. Combining patterned self-assembled monolayers of alkanethiolates on gold with anisotropic etching of silicon to generate controlled surface morphologies[J]. J. Electrochem. Soc.,1995,142:628-633.
    [14]Ostuni E, Kane R, Chen C S, Ingber D E, Whitesides G M. Patterning mammalian cells using elastomeric membranes[J]. Langmuir,2000,16:7811-7819
    [15]张希,沈家骢.“浮萍”与“倒浮萍”聚合物超薄膜结构与功能组装[J].高分子学报,1997,4:469-473.
    [16]邹勃,张力,吴立新,等.界面分子组装与表面图案化[J].科学通报,2001,46(6):441-443.
    [17]Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication:a new trend in nanotechnology of soft materials[J]. Curr. Opin. Colloid Interface Sci.,2001,6:11-16
    [18]Schena M, Heller R A, Therisult T P. Microarrays:biotechnology's discovery platform for functional genomics[J]. TIB Tech.,1998,16:301-306.
    [19]Zubritsky E. Spotting a microarray system:a broader array of commercial products edges out home-built systems[J]. Anal. Chem.,2000,72:761A-767A.
    [20]潘力佳,何平笙.软刻蚀-图形转移和微制造新工艺[J].微细加工技术,2000,2:1-7.
    [21]王喆,邢汝博,韩艳春,李滨耀.软刻蚀及其应用[J].化学通报,2002,9:606-613.
    [22]Xia Y N, Whitesides G M. Soft lithography[J]. Angew. Chem. Int. Ed.,1998,37:550-575.
    [23]孙旭平,张柏林,汪尔康.扫描探针显微镜在纳米加工中的应用[J].分析化学,2003,9:1127-1130.
    [24]Dupuis O, Delvaux M H, Dufour P, Sendrowicz H, Soumillion J P. Selective metalization of non-conductor substrates by ink-jet printing[C]. IS&T's International Congress on Advances in Non-Impact Printing Technologies,10th, New Orleans,1994:461-463.
    [25]Giordano R A, Wu B M, Borland S W, Cima L G, Sachs E M, Cima M J. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing[J]. J. Biomater. Sci. Polym. Ed.,1996,8:63-75.
    [26]Uhland S A, Holman R K, Cima M J, Sachs E, Enokido Y. New process and materials developments in 3-dimensional printing[C]. Mater. Res. Soc. Symp. Proc.,1999,542: 153-158.
    [27]Minagawa K, Kakisawa H, Takamori S, Osawa Y, Halada K. Application of 3-dimensional powder laminating fabrication to metallic components[C]. Mater. Sci. Forum,2007:539-543.
    [28]Nambiar R V, Jones R E, Gomez J R. Custom fabrication of hard tissue reconstructive frameworks[C]. Solid Freeform Fabrication Symposium Proceedings,2001:539-554.
    [29]Hayes D J, Grove M E, Cox W R. Development and application by ink-jet printing of advanced packaging materials[C]. Proceedings-International Symposium on Advanced Packaging Materials:Processes, Properties and Interfaces. Braselton Ga. Mar.,1999:15-17, 88-93.
    [30]Meyer E M, Arp A, Calderone F, Kolbe J Meyer W, Schaefer H, Stuve M. Adhesive and conductive-inkjettable nano-filled inks for use in microelectronics and microsystems technology[C]. NSTI Nanotechnology Conference and Trade Show, Anaheim, United States, 2005,2:441-444.
    [31]Kolbe J. A novel electrically conductive adhesive for use in microelectronics and microsystems by ink jet technology[F]. J. Adhes.,2009,85:381-394.
    [32]Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W, Woo E P. High-resolution inkjet printing of all-polymer transistor circuits[J]. Science,2000,2123-2126.
    [33]Han S H, Kim Y H, Choi M H, Lee S H, Jang J, Park Y B, Irvin G, Drzaic P. Inkjet printed organic thin-film transistors with CNT S/D electrodes for flexible displays[C]. Digest of Technical Papers-Society for Information Display International Symposium,2009,40: 1536-1539.
    [34]O'Toole M, Shepherd R, Wallace Gordon G, Diamond D. Inkjet printed LED based pH chemical sensor for gas sensing[F]. Anal. Chim. Acta.,2009,652:1-2.
    [35]Lewis J A, Smay J E, Stuecker J, Cesarano J. Direct ink eriting of three-dimensional ceramic structures[F]. J. Am. Chem. Soc.,2006,89:3599-3609.
    [36]Peck B J, Leproust E M. Modular printing of biopolymer arrays and dispensing apparatus for forming polymeric arrays[P]. US Patent, US2008085511.2008-05-10.
    [37]Fan H Y, Lu Y F, Stump A, Reed S, Baer T, Schunk R, Luna V P, Lopez G P, Brinker C J. Rapid prototyping of patterned functional nanostructures[J]. Nature,2000,405:56-60.
    [38]Martinez A W, Phillips S T, Wiley B J, Gupta M, Whitesides G M. Flash:A rapid method for prototyping paper-based microfluidic devices[J]. Lab. Chip.,2008,8:2146-2150.
    [39]Lin B C, Qin J H, Shi W W, Lu Y. Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay[J]. Electrophoresis,2009,30:1497-1500.
    [40]Qin D, Xia Y N, Whitesides G M. Rapid prototyping of complex structures with feature sizes larger than 20μm[J]. Adv. Mater.,1996,8,11:917-919.
    [41]Deng T, Joe T, Xu B, Whitesides G M. Using patterns in microfiche as photomasks in 10-um-scale microfabrication[J]. Langmuir,1999,15:6575-6581.
    [42]Linder V, Wu H K, Jiang X Y, Whitesides G M. Rapid prototyping of 2D structures with feature sizes large than 8μm[J]. Anal. Chem.,2003,75:2522-2527.
    [43]Deng T, Wu H K, Brittain S T, Whitesides G M. Prototyping of masks, masters, and stamps/molds for soft lithography using an office printer and photographic reduction[J]. Anal. Chem.,2000,72:3176-3180.
    [44]Lin C H, Yang H, Chang F Y, Chang S H, Yen M T. Fast patterning microstructures using inkjet printing conformal masks[J]. Microsyst. Technol.,2008,14:1263-1267.
    [45]Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation:A fast furface hydrophilic modification method for polymeric materials [J]. Polymer,2003,44:7157-7164. Gan S H, Yang P, Yang W T. Interface-directed Sol-Gel:direct fabrication of covalently
    [46]attached ultraflat inorganic oxide pattern on functionalized plastic[J]. Sci. China. Chem.,2010, 53:173-182.
    [1]施敏著,赵鹤明,钱敏,黄秋萍译.半导体器件物理与工艺[M].苏州:苏州大学出版社,2002.
    [2]Gates B D, Xu Q B, Stewart M, Ryan D, Willson C G, Whitesides G M. New approaches to nanofabrication:molding, printing, and other techniques[J]. Chem. Rev.,2005,105: 1171-1196.
    [3]Xia Y N, Rogers J A, Paul K. E, Whitesides G M. Unconventional methods for fabricating and patterning nanostructures[J]. Chem. Rev.,1999,99:1823-1848.
    [4]张希,沈家骢.“浮萍”与“倒浮萍”聚合物超薄膜结构与功能组装[J].高分子学报,1997,4:469-473.
    [5]邹勃,张力,吴立新,等.界面分子组装与表面图案化[J].科学通报,2001,46(6):441-443.
    [6]Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication:a new trend in nanotechnology of soft materials[J]. Curr. Opin. Colloid Interface Sci.,2001,6:11-16
    [7]Schena M, Heller R A, Therisult T P. Microarrays:biotechnology's discovery platform for functional genomics[J]. TIB Tech.,1998,16:301-306.
    [8]Zubritsky E. Spotting a microarray system:a broader array of commercial products edges out home-built systems[J]. Anal. Chem.,2000,72:761A-767A.
    [9]潘力佳,何平笙.软刻蚀-图形转移和微制造新工艺[J].微细加工技术,2000,2:1-7.
    [10]王喆,邢汝博,韩艳春,李滨耀.软刻蚀及其应用[J].化学通报,2002,9:606-613.
    [11]Xia Y N, Whitesides G M. Soft lithography[J]. Angew. Chem. Int. Ed.,1998,37:551-575.
    [12]Blanchet G B, Loo Y L, Rogers J A, Gao F, Fincher C R. Large area high resolution, dry printing of conducting polymers for organic electronics[J]. Appl. Phys. Lett.,2003,82: 463-465.
    [13]Pardo D A, Jabbour G E, Peyghambarian N. Application of screen printing in the fabrication of organic light-emitting devices[J]. Adv. Mater.,2000,12:1249-1252.
    [14]Xia Y N, Whitesides G M. Soft lithography[J]. Angew. Chem. Int. Ed.,1998,37:550-575.
    [15]Ling M M, Bao Z N. Thin film deposition, patterning, and printing in organic thin film transistors[J]. Chem. Mater.,2004,16:4824-4840.
    [16]Chou S Y, Krauss P R, Renstrom P J. Imprint lithography with 25-nanometer resolution[J]. Science,1996,272:85-87.
    [17]Ruchhoeft P, Colburn M, Choi B, Nounu H, Johnson S, Bailey T, Darmle S, Stewart M, Ekerdt J, Sreenivasan S V, Wolfe J C, Willson C G. Patterning curved surfaces:template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography[J]. J. Vac. Sci. Technol. B,1999,17:2965-2969.
    [18]De Gans B J, Duineveld P C, Schubert U S. Inkjet printing of polymers:State of the art and future developments[J]. Adv. Mater.,2004,16:203-213.
    [19]Liu G Y, Xu S, Qian Y L. Nanofabrication of self-assembled monolayers using scanning probe lithography[J]. Acc. Chem. Res.,2000,33:457-466.
    [20]孙旭平,张柏林,汪尔康.扫描探针显微镜在纳米加工中的应用[J].分析化学,2003,9:1127-1130.
    [21]Ostuni E, Kane R, Chen C S, Ingber D E, Whitesides G M. Patterning mammalian cells using elastomeric membranes[J]. Langmuir,2000,16:7811-7819
    [22]Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation:A fast furface hydrophilic modification method for polymeric materials[J]. Polymer,2003,44:7157-7164.
    [23]Huang Z Y, Wang P C, MacDiarmid A G, Xia Y N, Whitesides G M. Selective deposition of conducting polymers on hydroxyl-terminated surfaces with printed monolayers of alkylsiloxanes as templates[J]. Langmuir,1997,13:6480-6484.
    [24]Huang Z Y, MacDiarmid A G, Whitesides G M. Selective deposition of films of polypyrrole, polyaniline and nickel on hydrophobic/hydrophilic patterned surfaces and applications [J]. Synt. Met.,1997,85:1375-1376.
    [25]Wang Z, Qian X F, Yin J, Xhu Z K. Large-scale fabrication of tower-like, flower-like, and tube-like ZnO arrays by a simple chemical solution route[J]. Langmuir,2004,20:3340-3348.
    [26]Li Q C, Kumar V, Li Y, Zhang H T, Marks T J, Chang R P H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions[J]. Chem. Mater.,2005,999-1006.
    [27]Zou S L, Bai H D, Yang P, Yang W T. A biomimetic chemical approach to facile preparation of large-area, patterned, ZnO quantum dot/polymer nanocomposites on flexible plastics[J]. Macromol. Chem. Phys.,2009,210:1519-1527.
    [28]Yang W T, Ranby B. Radical living graft polymerization on the surface of polymeric materials[J]. Macromolecules,1996,29:3308-3310.
    [29]Yang W T, Ranby B. Bulk surface photografting process and its applications. I. Reactions and kinetics[J]. J. Appl. Polym. Sci.,1996,62:533-543.
    [30]Yang W T, Ranby B. Bulk surface photografting process and its applications. Ⅱ. Principal factors affecting surface photografting[J]. J. Appl. Polym. Sci.,1996,62:545-555.
    [31]徐绍刚,孙玉凤,杜久明,杨万泰.LDPE-丙烯酸体系光接枝表面改性的研究[J].北京化工大学学报,2000,27(4):39-31.
    [32]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (Vac), maleic anhydride, and their charge transfer complex. I. Vac (1)[J]. J. Appl. Polym. Sci., 2000,77:1513-1521.
    [33]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (Vac), maleic anhydride, and their charge transfer complex. II. Vac (2)[J]. J. Appl. Polym. Sci., 2000,77:1522-1531.
    [34]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (Vac), maleic anhydride (AMH), and their charge transfer complex (CTC). III. Vac (3)[J]. J. Appl. Polym. Sci.,2001,80:1426-1432.
    [35]Madathil R, Parkesh R, Ponrathnam S, Large M C J. Nucleation and growth of semiconductor particles on self-assembled monolayers by chemical solution deposition[J]. Macromolecules, 2004,37:2002-2003.
    [36]Hayes W A, Shannon C. Self-assembly and micropatterning of spherical-partical assemblies[J]. Langmuir,1998,14:1099-1102.
    [37]Tao Y T, Pandian K, Lee W C. Microfabrication of interdigitated polyaniline/polymethylene patterns on a gold surface[J]. Langmuir,1998,14:6158-6166.
    [38]Rozsnyai L F, Wrighton M S. Controlling the adhesion of conducting polymer films with patterned self-assembled monolayers [J]. Chem. Mater.,1996,8:309-311.
    [39]Sayre C N, Collard D M. Diffraction graftings in dry developed dichromated gelatin films[J]. J. Mater. Chem.,1997,7:909-912.
    [40]Xu P, Kaplan D L. Electroactive polymer patterns with metal incorporation on a polymeric substrate[J]. Adv. Mater.,2004,16:628-633.
    [41]Trakhtenberg S, Bruno F F, Kumar J, Nagarajan R, Balkir Y H, Warner J C, Samuelson L A. Photo-cross-linked immobilization of polyelectrolytes for enzymatic construction of conductive nanocomposites[J]. J. Am. Chem. Soc.,2005,127:9100-9104.
    [42]Gamier F, Hajlaoui R, Srivastava P, et al. All-polymer field-effect transistor realized by printing techniques[J]. Science,1994,265:1685-1686.
    [43]Hohnholz D, MacDiarmid A G. Line patterning of conducting polymers:new horizons for inexpensive, disposable electronic devices[J]. Synt. Met.,2001,121:1327-1328.
    [44]Lee C W, Kim Y B, Lee S H. Synthesis and properties of tailor-made supermolecular photo acid generators for conducting patterns of polyaniline[J]. Chem. Mater.,2005,17:366-372.
    [45]Xu D, Kang E T, Neoh K G, et al. Reactive coupling of 4-vinylaniline with hydrogen-terminated Si(100) surfaces for electroless metal and "synthetic metal" deposition[J]. Langmuir,2004,20:3324-3332.
    [46]Han S, Briseno A L, Zhou F, et al. Polyelectrolyte-coated nanosphere lithographic patterning of surfaces:fabrication and characterization of electropolymerized thin polyaniline honeycomb films[J]. J. Phys. Chem. B,2002,106:6465-6472.
    [47]Massari A M, Stevenson K J, Hupp J T. Development and application of patterned conducting polymer thin films as chemoresponsive and electrochemically responsive optical diffraction gratings[J]. J. Electroanalytic. Chem.,2001,500:185-191.
    [48]Tian S, Armstrong N R, Knoll W. Electrochemically tunable surface-plasmon-enhanced diffraction graftings and their (bio-) sensing applications[J]. Langmuir,2005,21:4656-4660.
    [49]Beh W S, Kim I T, Whitesides G M, et al. Formation of patterned microstructures of conducting polymers by soft lithography and applications in microelectronic device fabrication[J]. Adv. Mater.,1999,11:1038-1041.
    [50]Li G, Martinez C, Semancik S. Controlled electrophoretic patterning of polyaniline from a colloidal suspension[J]. J. Am. Chem. Soc.,2005,127:4903-4909.
    [51]Gamier F, Hajlaoui R, Srivastava P, et al. All-polymer field-effect transistor realized by printing techniques[J]. Science,1994,265:1684-1686.
    [52]Gau H, Herminghaus S, Lipowsky R, et al. Liquid morphologies on structured surfaces:from microchannels to microchips[J]. Science,1999,283:46-49.
    [53]Zhang X, Zhu Y, Gramick S. Hydrophobicity at a janus interface[J]. Science,2002,295: 663-666.
    [54]Xiang J H, Masuda Y, Koumoto K. Fabrication of super-site-selective TiO2 micropattern on a flexible polymer substrate using a barrier-effect self-assembly process[J]. Adv. Mater.,2004, 16:1461-1464.
    [55]Fustin C A, Glasser G, Spiess H W, Jonas V. Site-selective growth of colloidal crystal with photonic properties on chemically patterned surfaces[J]. Adv. Mater.,2003,15:1025-1028.
    [56]Dulcey C S, Georger J H J, Krauthamer V, Stenger D A, Fare T L, Calvert J M. Deep UV photochemistry of chemisorbed monolayers:patterned coplanar molecular assemblies[J]. Science,1991,252:551-554.
    [57]Zhao B, Moore J S, Beebe D J. Surface-directed liquid flow inside microchannels[J]. Science, 2001,291:1023-1026.
    [58]Lopez G P, Biebuyck H A, Frisbie C D, whitesides G M. Imaging of features on surfaces by condensation figures[J]. Science,1993,260:647-649.
    [59]Lahann J, Mitragotri S, Tran T N, Kaido H, Sundaram J, Choi I S, Hoffer S, Somorjai G A, Langer R. A reversibly switching surface[J]. Science,2003,299:371-374.
    [60]Yang P, Xie J Y, Yang W T. A Simple Method to Fabricate Conductive Polymer Micropattern on Organic Polymer Substrate[J]. Macromol. Rapid. Commun.,2006,27:418-423.
    [61]Zhong W B, Wang Y X, Yan Y, Sun Y F, Deng J P, Yang W T. Fabrication of shape-controllable polyaniline micro/nanostructures on organic polymer surfaces:obtaining spherical particles, wires, and ribbons[J]. J. Phys. Chem. B,2007,111:3918-3926.
    [62]Fu M, Zhou J, Xiao Q, Li B, Zong R, Chen W, Zhang J. ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition[J]. Adv. Mater., 2006,18:1001-1004.
    [63]Koh Y W, Lin M, Tan C K, Foo Y L, Loh K P. Self-assembly and selected area growth of zinc oxide nanorods on any surface promoted by an aluminum precoat[J]. J. Phys. Chem. B,2004, 108:11419-11425.
    [64]Lee S H, Lee H J, Oh D, Lee S W, Goto H, Buckmaster R, Yasukawa T, Matsue T, Hong S K, Ko H C, Cho M W, Yao T. Control of the ZnO nanowires nucleation site using microfluidic channels[J]. J. Phys. Chem. B,2006,110:3856-3859.
    [65]Teh L K, Yeo K H, Wong C C. Isotropic photonic pseudogap in electrodeposited ZnO inverse opal[J]. Appl. Phys. Lett.,2006,89:051105/1-051105/3.
    [66]Kreye M, Postels B, Wehmann H H, Fuhrmann D, Hangleiter A, Waag A. Aqueous chemical growth and patterning of ZnO nanopillars on different substrate materials[J]. Phys. Stat. Sol. C,2006,3:992-996.
    [67]Liu T Y, Liao H C, Lin C C, Hu S H, Chen S Y. Biofunctional zinc oxide nanorod arrays grown on flexible substrates [J]. Langmuir,2006,22:5804-5809.
    [68]Kim S W, Ueda M, Kotani T, Fujita S, Fujita S. Multidimensional ZnO nanodot arrays by self-ordering on functionalised substrates[J]. Phys. Stat. Sol. C,2004,1:896-899.
    [69]Takahashi K, Funakubo H, Ohashi N, Haneda H. Micro-patterning of ZnO single crystal surface by anisotropic wet-chemical etching[J]. Thin Solid Films,2005,486:42-45.
    [70]Perton S J, Norton D P. Dry etching of electronic oxides, polymers, and semiconductors[J]. Plasma Process. Polym.,2005,2:16-37.
    [71]Tak Y, Yong K. Controlled growth of well-aligned ZnO nanorod array using a novel solution method[J]. J. Phys. Chem. B,2005,109:19263-19269.
    [72]Lee J Y, Yin D, Horiuchi S. Site and morphology controlled ZnO deposition on Pd catalyst prepared from Pd/PMMA thin film using UV lithography[J]. Chem. Mater.,2005,17: 5498-5503.
    [73]Saito N, Haneda H, Sekiguchi T, Ohashi N, Sakaguchi I, Koumoto K. Low-temperature fabrication of light-emitting zinc oxide micro-patterns using self-assembled monolayers[J]. Adv. Mater.,2002,14:418-421.
    [74]He J H, Hsu J H, Wang C W, Lin H N, Chen L J, Wang Z L. Pattern and feature designed growth of ZnO nanowire arrays for vertical devices[J]. J. Phys. Chem. B,2006,110:50-53.
    [75]Wang X, Summers C J, Wang Z L. Large-scale hexagonal-patterned growth of aligned ZnO nanorods for nano-optoelectronics and nanosensor arrays[J]. Nano Letters,2004,4:423-426.
    [76]Dorfman A, Kumar N, Hahm J. Highly sensitive biomolecular fluorescence detection using nanoscale ZnO platforms[J]. Langmuir,2006,22:4890-4895.
    [77]Rybczynski J, Banerjee D, Kosiorek A, Giersig M, Ren Z F. Formation of super arrays of periodic nanoparticles and aligned ZnO nanorods-simulation and experiments [J]. Nano Letters,2004,4:2037-2040.
    [78]Masuda Y, Kinoshita N, Sato F, Koumoto K. Site-selective deposition and morphology control of UV-and visible-light-emitting ZnO crystals[J]. Crystal Growth & Design,2006,6:75-78.
    [79]Zubkov T, Lucassen A C B, Freeman D, Feldman Y, Cohen S R, Evmenenko G, Dutta P, van der Boom M E. Photoinduced deprotection and ZnO patterning of hydroxyl-terminated siloxane-based monolayers[J]. J.Phys. Chem. B,2005,109:14144-14153.
    [80]Saito N, Haneda H, Seo W S, Koumoto K. Selective deposition of ZnF(OH) on self-assembled monolayers in Zn-NH4F aqueous solutions for micropatterning of zinc oxide[J]. Langmuir, 2001,17:1461-1469.
    [81]Hsu J W P, Tian Z R, Simmons N C, Matzke C M, Voigt J A, Liu J. Directed spatial organization of zinc oxide nanorods[J]. Nano Letters,2005,5:83-86.
    [82]Turgeman R, Gershevitz O, Palchik O, Deutsch M, Ocko B M, Gedanken A, Sukenik C N. Oriented growth of ZnO crystals on self-assembled monolayers of functionalized alkyl silanes[J]. Crystal Growth & Design,2004,4:169-175.
    [83]Yan M, Koide Y, Babcock J R, Markworth P R, Belot J A, Marks T J, Chang R P H. Selective-area atomic layer epitaxy growth of ZnO features on soft lithography-patterned substrates[J]. Appl. Phys. Lett.,2001,79:1709-1711.
    [84]Li Q, Kumar V, Li Y, Zhang H, Marks T J, Chang R P H. Fabrication of ZnO nanorods and nanotubes in aqueous solutions [J]. Chem. Mater.,2005,17:1001-1006.
    [85]Fadeev A Y, McCarthy T J. Surface modification of poly(ethylene terephthalate) to prepare surfaces with silica-like reactivity[J]. Langmuir,1998,14:5586-5593.
    [86]Rogers J A, Jackman R J, Whitesides G M, Microcontact Printing and Electroplating on Curved Substrates:Production of Free-Standing Three-Dimensional Metallic Microstructures[J]. Adv Mater,1997,9:475-477.
    [87]Rogers J A, Jackman R J, Whitesides G M, Constructing Single-and Multiple-Helical Microcoils and Characterizing Their Performance as Components of Microinductors and Microelectromagnets[J]. IEEE JMEMS,1997,6:185-192.
    [88]Rogers J A, Jackman R J, Whitesides G M, Wagener J L, Vengsarkar A M. Using Microcontact Printing to Generate Amplitude Photomasks on the Surfaces of Optical Fibers:A Method for Producing In-Fiber Grafings[J]. Appl Phys Lett,1997,70:7-9.
    [89]Jackman R J, Wilbur J L, Whitesides G M. Fabrication of Submicrometer Features on Curved Substrates by Microcontact Printing[J]. Science,1995,269:664-666
    [1]Oster G, Shibata O. Graft copolymer of polyacrylamide and natural rubber produced by means of ultraviolet light[J]. J. Polym. Sci.,1957,26:233-234.
    [2]Tazuke S, Kimura H. Surface photografting. I. Graft polymerization of hydrophilic monomers onto various polymer films[J]. J. Polym. Sci. Polym. Lett. Ed.,1978,16(10):497-500.
    [3]Tazuke S, Kimura H. Surface photografting. II. Modification of polypropylene film surface by graft polymerization of acrylamide[J]. Makromol. Chem.,1978,179(11):2603-2612.
    [4]Yang W T, Ranby B. The role of far UV radiation in the photografting process [J]. Polym. Bull., 1996,37(1):89-96.
    [5]Yang W T, Ranby B. Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system[J]. Eur. Polym. J.,1999,38(8):1557-1568.
    [6]Yang W T, Ranby B. Bulk surface photografting process and its applications. I. Reactions and kinetics[J]. J. Appl. Polym. Sci.,1996,62(3):533-543.
    [7]Yang W T, Ranby B. Bulk surface photografting process and its applications. Ⅱ. Principal factors affecting surface photografting[J]. J. Appl. Polym. Sci.,1996,62(3):545-555.
    [8]Yang W T, Ranby B. Bulk surface photografting process and its applications. III. Photolamination of polymer films[J]. J. Appl. Polym. Sci.,1997,63(13):1723-1732.
    [9]Yang W T, Ranby B. Radical living graft polymerization on the surface of polymeric materials[J]. Macromolecules,1996,29(9):3308-3310.
    [10]杨万泰,尹梅贞.表面光接枝技术及应用[J].影像技术,1998(3):5-10.
    [11]杨万泰,尹梅贞,邓建元,杜久明.表面光接枝原理、方法及应用前景[J].高分子通报,1999(3):60-65.
    [12]杨万泰.光引发与表面改性,高分子化学(周其凤,胡汉杰编)[M].1版.北京:化学工业出版社,2001:31-42.
    [13]杨万泰,邓建元.复合膜光接枝层合技术及用途[J].影像技术,2001(3):10-11.
    [14]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride, and their charge transfer complex. I. VAc (1)[J]. J. Appl. Polym. Sci.,2000, 77(7):1513-1521.
    [15]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride, and their charge transfer complex. II. VAc (2)[J]. J. Appl. Polym. Sci.,2000, 77(7):1522-1531.
    [16]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride (AMH), and their charge transfer complex (CTC). III. VAc (3)[J]. J. Appl. Polym. Sci.,2001,80(9):1426-1432.
    [17]Kuluncsics Z, Perdiz D, Brulay E, Muel B, Sage E. Wavelength dependence of ultraviolet-induced DNA damage distribution:Involvement of direct or indirect mechanisms and possible artefacts[J]. J. Photochem. Photobiol. B,1999,49(1):71-80.
    [18]Alba F J, Bermudez A, Daban J R. Green-light trans-illuminator for the detection without photodamage of proteins and DNA labeled with different fluorescent dyes [J]. Electrophoresis, 2001,22(3):399-403.
    [19]Li C, Sajiki T, Nakayama Y, Fukui M, Matsuda T. Novel visible-light-induced photocurable tissue adhesive composed of multiply styrene-derivatized gelatin and poly(ethylene glycol) diacrylate [J]. J..Biomed. Mater. Res. B,2003,66B(1):439-446.
    [20]De Smet L C P M, Pukin A V, Sun Q Y, Eves B J, Lopinski G P, Visser G M, Zuilhof H, Sudholter E J R. Visible-light attachment of Si-C linked functionalized organic monolayers on silicon surfaces [J]. Appl. Surf. Sci.,2005,252(1):24-30.
    [21]Neumann M G, Schmitt C C, Correa I C, Goi B E. The effect of using mixed initiator systems on the efficiency of photopolymerization of dental resins[J]. J. Braz. Chem. Soc.,2008,19(7): 1413-1417.
    [22]Schroeder W F, Cook W D, Vallo C. Photopolymerization of N,N-dimethylaminobenzyl alcohol as amine co-initiator for light-cured dental resins[J]. Dent. Mater.,2008,24(5):686-693.
    [23]Fouassier J P, Allonas X, Lalevee J, Visconti M. Radical polymerization activity and mechanistic approach in a new three-component photoinitiating system [J] J Polym. Sci. A. Polym. Chem., 2000,38(24):4531-4541.
    [24]Chan K, Gleason K K, Photoinitiated chemical vapor deposition of polymeric thin films using a volatile photoinitiator [J]. Langmuir,2005,21(25):11773-11779.
    [25]Crivello J V, Kong S. Long-wavelength-absorbing dialkylphenacylsulfonium salt photoinitiators: Synthesis and photoinduced cationic polymerization[J]. J. Polym. Sci. Polym. Chem.,2000,38(9): 1433-1442.
    [26]Hu S, Sarker A M, Kaneko Y, Neckers D C. Reactivities of Chromophore-Containing Methyl Tri-n-butylammonium Organoborate Salts as Free Radical Photoinitiators:Dependence on the Chromophore and Borate Counterion[J]. Macromolecules,1998,31(19):6476-6480.
    [27]Hu S, Malpert J H, Yang X, Neckers D C. Exploring chromophore tethered aminoethers as potential photoinitiators for controlled radical polymerization[J]. Polymer,2000,41(2):445-452.
    [28]Kaneko Y, Neckers D C. Simultaneous photoinduced color formation and photoinitiated polymerization [J]. J. Phys. Chem. A,1998,102(28):5356-5363.
    [29]Mateo J L, Bosch P, Lozano A E. Reactivity of radicals derived from dimethylanilines in acrylic photopolymerization[J]. Macromolecules,1994,27:7794-7799.
    [30]Kucybala Z, Pietrzak M, Paczkowski J. Kinetic studies of a new photoinitiator hybrid system based on camphorquinone-N-phenylglicyne derivatives for laser polymerization of dental restorative and stereolithographic (3D) formulations[J]. Polymer,37:4585-4591.
    [31]Nie J, Linde L A, Rabek J F, Fouassier J P, Morlet-Savary F, Scigalski F, Wrzyszczynski A, Andrzejewska E. A reappraisal of the photopolymerization kinetics of triethyleneglycol dimethacrylate initiated by camphorquinone-N, N-dimethyl-p-toluidine for dental purposes [J]. Acta. Polymer.,49:145-161.
    [32]Angiolini L, Caretti D, Salatelli E. Synthesis and photoinitiation activity of radical polymeric photoinitiators bearing side-chain camphorquinone moieties[J]. Macromol. Chem. Phys.,2000, 201:2646-2653.
    [33]Dean K, Cook W D. Effect of curing sequence on the photopolymerization and thermal curing kinetics of dimethacrylate/eposy interpenetrating polymer networks[J]. Macromlecules,2002,35: 7942-7954.
    [34]Jakubiak J, Allonas X, Fouassier J P, Sionkowska A, Andrzejewska E, Linden L A, Rabek J F. Camphorquinone-amines photoinitating systems for the initiation of free radical polymerization[J]. Polymer,2003,44:5219-5226.
    [35]Burget D, Mallein C, Fouassier J P. Visible light induced polymerization of maleimide-vinyl and maleimide-allyl ether based systems[J]. Polymer,44:7671-7678.
    [36]Andrzejewska E, Zych-Tomkowiak D, Andrzejewski M, Hug G L, Marciniak B. Heteroaromatic thiols as co-initiators for type Ⅱ photoinitiating systems based on camphorquinone and isopropylthioxanthone[J]. Macromolecules,2006,39:3777-3785.
    [37]Yagci Y, Sangermano M, Rizza G. A visible light photochemical route to silver-epoxy nanocomposites by simultaneous polymerization-reduction approach[J]. Polymer,2008,49: 5195-5198.
    [38]Ganster B, Fischer U K, Moszner N, Liska R. New photocleavable structures. Diacylgermane-baded photoinitiators for visible light curing[J]. Macromolecules,2008,41: 2394-2400.
    [39]Yagci Y, Sangermano M, Rizza G. Synthesis and characterization of gold-epoxy nanocomposites by visible light photoinduced electron transfer and cationic polymerization processes[J]. Macromolecules,2008,41:7268-7270.
    [40]Lee H J, Matsuda T. Surface photograft polymerization on segmented polyurethane using the iniferter technique[J]. J. Biomed. Mater. Res.,1999,47(4):564-567.
    [41]Ziani Cherif H, Abe Y, Imachi K, Matsuda T. Visible-light-induced surface graft polymerization via camphorquinone impregnation technique[J]. J. Biomed. Mater. Res.,2002,59(2):386-389.
    [42]冯树铭.PET薄膜的品质控制及其性能检测[J].聚酯工业,2009,22(4):3-7.
    [43]Shalaby S E, Abo E S M, Ramadan A M, Al-Balakosy N G. Modification of some properties of poly(ethylene terephthalate) fabric[J]. J. Textile Association,2004,65(2):69-75.
    [44]Vigo F, Uliana C, Turska E. The vibrating ultrafitration module performance in the 50-1000 Hz frequency range[J]. Eur. Polym. J.,1999,27(8):779-783.
    [45]Kubota H, Hata Y. Distribution of methacrylic acid grafted chains introduced into polyethylene film by photografting[J]. Appl. Polym. Sci.,1990,41(3-4):689-695.
    [46]韦亚兵,钱翼清.聚酯薄膜表面的光化学接枝改性[J].高分子材料科学与工程,1994,15(4):127-129.
    [47]张振锋,赵敏,金霞朝,李志祥,罗小伟.辐射接枝改性聚酯薄膜表面防雾滴性研究[J].中国塑料,2005,19(6):82-85.
    [48]Liu C, Jin Y, Zhu Z, Sun Y, Hou M, Wang Z, Zhang C, Chen X, Liu J, Li B. Molecular conformation changes of PET films under high-energy Ar ion bombardment[J]. Nuclear Instruments and Methods in Physics Research B,2000(169):72-77.
    [49]Borcia G, Brown N M D, Dixon D, Mcllhagger R. The effect of an air-dielectric barrier discharge on the surface properties and peel strength of medical packaging materials[J]. Surf. Coat Technol., 2004,179(1):70-77.
    [50]Yang P, Zhang X X, Yang B, Zhao H C, Chen J C, Yang W T. Facile preparation of a patterned, aminated polymer surface by UV-light-induced surface aminolysis[J]. Adv. Funct. Mater.,2005, 15(9):1415-1425.
    [1]Schwarz A, Rossier J S, Roulet E, Mermod N, Roberts M A, Girault H H. Micropatterning of biomolecules on polymer substrates[J]. Langmuir,1998,14:5526-5531.
    [2]Urquhart A J, Taylor M Anderson D G, Langer R, Davies M C, Alexander M R. TOF-SIMS analysis of a 576 micropatterned copolymer array to reveal surface moieties that control wettability[J]. Anal. Chem.,2008,80:135-142.
    [3]Altomare L, Fare S. Cells response to topographic and chemical micropatterns[J]. J. Appl. Bio. & Biomech.,2008,6:132-143.
    [4]Otsuka H, Satomi T. Integration of surface microfabrication and cell culture for cell-based assays and tissue engineering[J]. Surface Design and Modification of Biomaterials for Clinical Application[M].2008,127-144.
    [5]Mandal S, Bhaskar S, Lahann J. Micropatterned fiber scaffolds for spatially controlled cell adhesion[J]. Macromol. Rapid Commun.,2009,30:1638-1644.
    [6]Shivashankar G V, Libchaber A. Aspects of DNA assembly:extension, lithography and recognition[J]. Current Science,1999,76:813-818.
    [7]Hwang I T, Kim D K, Jung C H, Nho Y C, Suh D H, Choi J H. Surface functionalization of a flexible polymer film for the fabrication of biosensors by radiation grafting[C].238th ACS National Meeting, Washington, DC, United States,2009,16-20.
    [8]Ahn S J, Kaholek M, Lee W K, LaMattina B, LaBean T H, Zauscher S. Surface-initiated polymerization on nanopatterns fabricated by electron-beam lithography[J]. Adv. Mater.,2004, 16:2141-2145.
    [9]Prucker O, Ruehe J. Synthesis of poly(styrene) monolayers attached to high surface area silica gels through self-assembled monolayers of AZO initiators[J]. Macromolecules,1998,31: 592-601.
    [10]Kaholek M, Lee W K, LaMattina B, Caster K C, Zauscher S. Fabrication of stimulus-responsive nanopatterned polymer brushes by scanning-probe lithography[J]. Nano. Lett.,2004,4:373-376.
    [11]Von Werne T A, Germack D S, Hagberg E C, Sheares V V, Hawker C J, Carter K R. A versatile method for tuning the chemistry and size of nanoscopic features by living free radical polymerization[J]. J. Am. Chem. Soc.,2003,125:3831-3838.
    [12]Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol "ink" followed by chemical etching[J]. Appl. Phys. Lett.,1993,63:2002-4.
    [13]Husemann M, Mecerreyes D, Hawker C J, Hedrick J L, Shah R, Abbott N L. Surface-initiated polymerization for amplification of self-assembled monolayers patterned by microcontact printing[J]. Angew. Chem.Int. Ed.,1999,38:647-649.
    [14]Jones D M, Smith J R, Huck W T S, Alexander C. Variable adhesion of micropatterned thermoresponsive polymer brushes:AFM investigations of poly(N-isopropylacrylamide) brushes prepared by surface-initiated polymerizations [J]. Adv. Mater.,2002,14:1130-1134.
    [15]Paul K E, Prentiss M, Whitesides G M. Patterning spherical surfaces at the two-hundred-nanometer scale using soft lithography[J]. Adv. Func. Mater.,2003,13:259-263.
    [16]Uyama Y, Kato K, Ikada Y. Surface modification of polymers by grafting[J]. Adv. Poly. Sci., 1998,137:1-39.
    [17]Marcon L, Wang M, Coffinier Y, Le N F, Melnyk O, Boukherroub R, Szunerits S. Photochemical immobilization of proteins and peptides on benzophenone-terminated boron-doped diamond surfaces[J]. Langmuir,2010,26:1075-1080.
    [18]Larsson A, Du C X, Liedberg B. UV-patterned poly(ethylene glycol) matrix for microarray applications[J]. Biomacromolecules,2007,8:3511-3518.
    [19]Moran I W, Jhaveri S B, Carter K R. Patterned layers of a semiconducting polymer via imprinting and microwave-assisted grafting[J]. Small,2008,4:1176-1182.
    [20]Tovar G, Paul S, Knoll W, Prucker O, Ruehe J. Patterning molecularly thin films of polymers-new methods for photolithographic structuring of surfaces[J]. Supramolecular Science,1995,2:89-98.
    [21]Prucker O, Schimmel M, Tovar G, Knoll W, Ruehe J. Microstructuring of molecularly thin polymer layers by photolithography[J]. Adv. Mater.,1998,10:1073-1077.
    [22]Prucker O, Habicht J, Park I J, Ruhe J. Photolithographic structuring of surface-attached polymer monolayers[J]. Mater. Sci. & Eng. C,1999, C8-C9:291-297.
    [23]Xu F J, Song Y, Cheng Z P, Zhu X L, Zhu C X, Kang E T, Neoh K G. Controlled micropatterning of a Si(100) surface by combined nitroxide-mediated and atom transfer radical polymerizations[J]. Macromolecules,2005,38:6254-6258.
    [24]Xu F J, Li H Z, Li J, Teo Y H E, Zhu C X, Kang E T, Neoh K G. Spatially well-defined binary brushes of poly(ethylene glycol)s for micropatterning of active proteins on anti-fouling surfaces[J]. Biosensors & Bioelectronics,2008,24:773-780.
    [25]Clark S L, Hammond P T. Engineering the microfabrication of layer-by-layer thin films[J]. Adv. Mater.,1998,10:1515-1519.
    [26]Frank H, Thomas W, Sergiy M, Manfred S. Photochemical structureing and fixing of structures in binary polymer brush layers via 2n+2n photodimerization[J]. J. Colloid Interface Sci., 2005,282:349-358.
    [27]Liu Y, Klep V, Luzinov I. To patterned binary polymer brushes via capillary force lithography and surface-initiated polymerization[J]. J. Am. Chem. Soc.,2006,128:8106-8107.
    [28]Zhou F, Jiang L, Liu W M, Xue Q J. Fabrication of chemically tethered binary polymer-brush pattern through two-step surface-initiated atomic-transfer radical polymerization[J]. Macromol. Rapid Commun.,2004,25:1979-1983.
    [29]Zhou F, Zheng Z J, Yu B, Liu W M, Huck W T S. Multicomponent polymer brushes[J]. J. Am. Chem. Soc.2006,128:16253-16258.
    [30]Liu Z L, Hu H Y, Yu B, Chen M, Zheng Z J, Zhou F. Binary oppositely charged polyelectrolyte brushes for highly selective electroless deposition of bimetallic patterns [J]. Electrochem. Commun.,2009,11:492-495.
    [31]Liu Z L, Khan N, Hu H Y, Yu B, Liu J X, Chen M, Zhou F. Binary reactive/inert non-fouling polymeric surfaces[J]. Macro. Rapid Commun.,2008,29:1937-1943.
    [32]Dong R, Krishnan S, Baird B A, Lindau M, Ober C K. Patterned biofunctional poly(acrylic acid) brushes on silicon surfaces[J]. Biomacromolecules,2007,8:3082-3092.
    [33]Driscoll P F, Milkani E, Lambert C R, McGimpsey W G. A multilayered approach to complex surface patterning[J]. Langmuir,2010,26:3731-3738.
    [34]Li L J, Driscoll M, Kumi G, Hernandez R, Gaskell K J, Losert W, Fourkas J T. Binary and gray-scale patterning of chemical functionality on polymer films[J]. J. Am. Chem. Soc.,2008, 130:13512-13513.
    [35]Mueller-Buschbaum P, Bauer E, Pfister S, Roth S V, Burghammer M, Riekel C, David C,Thiele U. Creation of multi-scale stripe-like patterns in thin polymer blend films[J]. Europhys. Lett.,2006,73:35-41.
    [36]Hayes D J, Grove M E, Cox W R. Development and application by ink-jet printing of advanced packaging materials[J]. Proceedings-International Symposium on Advanced Packaging Materials:Processes, Properties and Interfaces,1999,15-17:88-93.
    [37]Meyer E M, Arp A, Calderone F, Kolbe J, Meyer W, Schaefer H, Stuve M. Adhesive and conductive-Inkjettable nano-filled inks for use in microelectronics and microsystems technology[J]. NSTI Nanotech,2005,2:441-444.
    [38]Kolbe J. A novel electrically conductive adhesive for use in microelectronics and microsystems by ink jet technology [J]. J.Adhes.,2009,85:381-394.
    [39]Dupuis O, Delvaux M H, Dufour P, Sendrowicz H, Soumillion J P. Selective metalization of non-conductor substrates by ink-jet printing[C]. IS&T's International Congress on Advances in Non-Impact Printing Technologies,1994,10:461-463.
    [40]Giordano R A, Wu B M, Borland S W, Cima L G, Sachs E M, Cima M J. Mechanical properties of dense polylactic acid structures fabricated by three dimensional printing[J]. J. biomater. sci. Polym. Edit.,1996,8:63-75.
    [41]Uhland S A, Holman R K, Cima M J, Sachs E, Enokido Y. New process and materials developments in 3-dimensional printing,3DP. Materials Research Society Symposium Proceedings,1999,542:153-158.
    [42]Han S H, Kim Y H, Choi M H, Lee S H, Jang J, Park Y B, Irvin G, Drzaic P. Inkjet printed organic thin-film transistorswith CNT S/D electrodes for flexible displays[C]. Digest of Technical Papers-Society for Information Display International Symposium,2009,40: 1536-1539.
    [43]O'Toole M, Shepherd R,Wallace G G, Diamond D. Inkjet printed LED based pH chemical sensor for gas sensing[J]. Analytica. Chimica. Acta.,2009,652:1-2.
    [44]Lewis J A, Smay J E, Stuecker J, Cesarano J. III. Direct ink writing of three-dimensional ceramic structures[J]. J. Am. Ceramic Soc.,2006,89:3599-3609.
    [45]Peck B J, Leproust E M. Modular printing of biopolymer arrays and dispensing apparatus for forming polymeric arrays[P]. US Patent, US 2008085511,2008-05-10.
    [46]Lin C-H, Yang H, Chang F-Y, Chang S-H, Yen M-T. Fast patterning microstructures using inkjet printing conformal masks[J]. Microsystem Technologies,2008,14:1263-1267.
    [47]Sankhe A Y, Booth B D, Wiker N J, Kilbey S M. II. Inkjet-printed monolayers as platforms for tethered polymers[J]. Langmuir,2005,21:5332-5336.
    [48]Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation:A fast furface hydrophilic modification method for polymeric materials[J]. Polymer,2003,44:7157-7164.
    [49]Gan S H, Yang P, Yang W T. Interface-directed Sol-Gel:direct fabrication of covalently attached ultraflat inorganic oxide pattern on functionalized plastic[J]. Science in China Series B:Chemistry,2010:53
    [50]Yang P, Zhang X X, Yang B, Zhao H C, Chen J C, Yang W T. Facile preparation of a patterned, aminated polymer surface by UV-light-induced surface aminolysis[J]. Adv. Funct. Mater.,2005,15:1415-1425.
    [51]Bai H D, Huang Z H, Yang W T, Visible light-induced living surface grafting polymerization for the potential biological applications[J]. J. Polym. Sci. A,2009,47:6852-6862.
    [1]Choi S H, Newby B Z. Micrometer-scaled gradient surfaces generated using contact printing of octadecyltrichlorosilane[J]. Langmuir,2003,19(18):7427-7435.
    [2]Burgos P, Zhang Z Y, Golestanian R, Leggett G J, Geoghegan M. Directed single molecule diffusion triggered by surface energy gradients[J]. ACS Nano.,2009,3(10):3235-3243.
    [3]Harris B P, Metters A T. Polymer brush gradients promoting cell adhesion and mobility across biomaterial substrates[J]. PMSE Preprints,2006,94:856-857.
    [4]Elkasabi Y, Lahann J. Vapor-based polymer gradients[J]. Macromol. Rapid. Commun.,2009, 30(1):57-63.
    [5]Joubert M, Khoukh A, Tranchant J F, Morvan F, Billon L. Hybrid aluminum colored pigments based on gradient copolymers design[J]. Macromol. Chem. Phys.,2009,210(18): 1544-1555.
    [6]Chaudhury M K, Whitesides G M. How to make water run uphill[J]. Science,1992,256: 1539-1541.
    [7]Koizumi M. FGM Activities in Japan[J]. Composites Part B.,1997,28(B):1-4.
    [8]Smith J T, Tomfohr J K, Wells M C, Beebe T P, Kepler T B, Reichert W M. Measurement of cell migration on surface-bound fibronectin gradients[J]. Langmuir,2004,20:8279-8286.
    [9]Mougin K, Ham A S, Lawrence M B, Fernandez E J, Hillier A C. Construction of a tethered poly(ethylene glycol) surface gradient for studies of cell adhesion kinetics[J]. Langmuir,2005, 21:4809-4812.
    [10]Kramer S, Xie H, Gaff J, Williamson J R, Tkachenko A G, Nouri N, Feldheim D A, Feldheim D L. Preparation of protein gradients through the controlled deposition of protein-nanoparticle conjugates onto functionalized surfaces[J]. J. Am. Chem. Soc.,2004,126:5388-5395.
    [11]Plummer S T, Wang Q, Bohn P W, Stockton R, Schwartz M A. Electrochemically derived gradients of the extracellular matrix protein fibronectin on gold[J]. Langmuir,2003,19: 7528-7536.
    [12]Wang X J, Haasch R T, Bohn P W. Anisotropic hydrogel thickness gradient films derivatized to yield three-dimensional composite materials[J]. Langmuir,2005,21:8452-8459.
    [13]Wu T, Efimenko K, Genzer J. Combinatorial study of the mushroom-to-brush crossover in surface anchored polyacrylamide[J]. J. Am. Chem. Soc.,2002,124:9394-9395.
    [14]Zhao B. A combinatorial approach to study solvent-induced self-assembly of mixed poly(methyl methacrylate)/polystyrene brushes on planar silica substrates:effect of relative grafting density[J]. Langmuir,2004,20:11748-11755.
    [15]Liedberg B, Tengvall P. Molecular gradients of ω-substituted alkanethiols on gold:preparation and characterization[J]. Langmuir,1995,11:3821-3827.
    [16]Elwing H, Welin S, Askendal A, Nilsson U I F, Lundstroem I. A wettability gradient method for studies of macromolecular interactions at the liquid/solid interface[J]. J. Colloid. Interface Sci.,1987,119(1):203-210.
    [17]Wahlgren M, Welin-Klintstroem S, Arnebrant T, Askendal A, Elwing Hans. Competition between fibrinogen and a non-ionic surfactant in adsorption to a wettability gradient surface[J]. Colloids Surf. B:Biointerfaces,1995,4(1):23-31.
    [18]Spijker H T, Bos R, Van Oeveren W, De Vries J, Busscher, H J. Protein adsorption on gradient surfaces on polyethylene prepared in a shielded gas plasma[J]. Colloids Surf B:Biointerfaces, 1999,15(1):89-97.
    [19]Grunze M. Surface science:Driven liquids[J]. Science,1999,283(5398):41-42.
    [20]Daniel S, Chaudhury M K, Chen J C. Fast drop movements resulting from the phase change on a gradient surface[J]. Science,2001,291(5504):633-636.
    [21]Roberson S V, Fahey A J, Sehgal A, Karim A. Multifunctional ToF-SIMS:combinatorial mapping of gradient energy substrates [J]. Appl Surf Sci,2002,200(1-4):150-164.
    [22]Ashley K M, Carson M J, Amis E, Raghavan D, Karim A. Combinatorial investigation of dewetting:polystyrene thin films on gradient hydrophilic surfaces[J]. Polymer 2003,44(3): 769-772.
    [23]Liedberg B, Wirde M, Tao Y-T, Tengvall P, Gelius U. Molecular gradients of ω-substituted alkanethiols on gold studied by x-ray photoelectron spectroscopy[J]. Langmuir,1997,13: 5329-5334.
    [24]Jeong B J, Lee J H, Lee H B. Preparation and characterization of comb-like PEO gradient surfaces[J]. J. Colloid Interface Sci.,1996,178:757-763.
    [25]Lee J H, Kim H G, Khang G S, Lee H B, Jhon M S. Characterization of wettability gradient surfaces prepared by corona discharge treatment[J]. J. Colloid Interface Sci.,1992,151: 563-570.
    [26]Hypolite C L, McLernon T L, Adams D N, Chapman K E, Herbert C B, Huang C C, Distefano M D, Hu W-S. Formation of microscale gradients of protein using heterobifunctional photolinkers[J]. Bioconjugate Chem.,1997,8:658-663.
    [27]Herbert C B, McLernon T L, Hypolite C L, Adams D N, Pikus L, Huang C C, Fields G B, Letourneau P C, Distefano M D, Hu W-S. Micropatterning gradients and controlling surface densities of photoactivatable biomolecules on self-assembled monolayers of oligo(ethylene glycol) alkanethiolates[J]. Chem. Biol.,1997,4:731-737.
    [28]Wang X J, Tu H L, Braun P V, Bohn P W. Length scale heterogeneity in lateral gradients of poly(N-isopropylacrylamide) polymer brushes prepared by surface-initiated atom transfer radical polymerization coupled with in-plane electrochemical potential gradients[J]. Langmuir, 2006,22:817-823.
    [29]Wang X J, Bohn P W. Anisotropic in-plane gradients of poly(acrylic acid) formed by electropolymerization with spatiotemporal control of the electrochemical potential[J]. J. Am. Chem. Soc.,2004,126:6825-6832.
    [30]Terrill R H, Balss K M, Zhang Y, Bohn P W. Dynamic monolayer gradients:active spatiotemporal control of alkanethiol coatings on thin gold films[J]. J. Am. Chem. Soc.,2000, 122:988-989.
    [31]Jeon N L, Dertinger S K W, Chiu D T, Choi I S, Stroock A D, Whitesides G M. Generation of solution and surface gradients using microfluidic systems[J]. Langmuir,2000,16:8311-8316.
    [32]Dertinger S K W, Jiang X, Li Z, Murthy V N, Whitesides G M. Gradients of substrate-bound laminin orient axonal specification of neurons[J]. Proc. Natl. Acad. Sci. USA.,2002,99: 12542-12547.
    [33]Wu T, Efimenko K, Vlcek P, Subr V, Genzer J. Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates[J]. Macromolecules,2003,36: 2448-2453.
    [34]Bhat R R, Tomlinson M R, Genzer J. Assembly of nanoparticles using surface-grafted orthogonal polymer gradients[J]. Macromol. Rapid Commun.,2004,25:270-274.
    [35]Bhat R R, Genzer J, Chaney B N, Sugg H W, Liebmann-Vinson A. Controlling the assembly of nanoparticles using surface grafted molecular and macromolecular gradients [J]. Nanotechnology,2003,14:1145-1152.
    [36]Tomlinson M R, Genzer J. Formation of grafted macromolecular assemblies with a gradual variation of molecular weight on solid substrates [J]. Macromolecules,2003,36:3449-3451.
    [37]Tomlinson M R, Genzer J. Formation of surface-grafted copolymer brushes with continuous composition gradients [J]. Chem. Commun.,2003,12:1350-1351.
    [38]Xu C, Wu T, Drain C M, Batteas J D, Beers K L. Microchannel confined surface-initiated polymerization[J]. Macromolecules,2005,38:6-8.
    [39]Xu C, Barnes S E, Wu T, Fischer D A, DeLongchamp D M, Batteas J D, Beers K L. Solution and surface composition gradients via microfluidic confinement:fabrication of a statistical-copolymer-brush composition gradient[J]. Adv. Mater.,2006,18:1427-1430.
    [40]Patten T E, Matyjaszewski K. Atom-transfer radical polymerization and the synthesis of polymeric materials [J]. Adv. Mater.,1998,10:901-915.
    [41]Pattern T E, Xia J, Abernathy T, Matyjaszewski K. Polymers with very low polydispersities from atom transfer radical polymerization[J]. Science,1996,272:866-868.
    [42]Matyjaszewski K, Patten T E, Xia J. Controlled/"Living" radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene[J]. J. Am. Chem. Soc.,1997, 119:674-680.
    [43]Matyjaszewski K, Miller P J, Shukla N, Immaraporn B, Gelman A, Luokala B B, Siclovan T M, Kickelbick G, Vallant T, Hoffmann H, Pakula T. Polymers at interfaces:using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator[J]. Macromolecules,1999,32: 8716-8724.
    [44]Steenackers M, Kueller A, Stoycheva S, Grunze M, Jordan R. Structured and gradient polymer brushes from biphenylthiol self-assembled monolayers by self-initiated photografting and photopolymerization (SIPGP)[J]. Langmuir,2009,25:2225-2231.
    [45]Kraus T, Stutz R, Balmer T E, Schmid H, Malaquin L, Spencer N D, Wolf H. Printing chemical gradients[J]. Langmuir,2005,21:7796-804.
    [46]Yang W T, Ranby B. Radical living graft polymerization on the surface of polymeric materials[J]. Macromolecules,1996,29:3308-3310.
    [47]Ueda-Yukoshi T, Matsuda T. Cellular responses on a wettability gradient surface with continuous variations in surface compositions of carbonate and hydroxyl groups[J]. Langmuir, 1995,11:4135-4140.
    [48]Pitt W G. Fabrication of a continuous wettability gradient by radio-frequency plasma discharge[J]. J. Colloid. Interface Sci.,1989,133:223-227.
    [49]Lee J H, Khang G, Lee J W, Lee H B. Interaction of different types of cells on polymer surfaces with wettability gradient[J]. J. Colloid. Interface Sci.,1998,205:323-330.
    [50]Lee J H, Lee J W, Khang G, Lee H B. Interaction of cells on chargeable functional group gradient surfaces[J]. Biomaterials,1997,18:351-358.
    [51]Jeong B J, Lee J H, Lee H B. Preparation and characterization of comb-like PEO gradient surfaces[J]. J. Colloid. Interface Sci.,1996,178:757-763.
    [52]Ionov L, Zdyrko B, Sidorenko A, Minko S, Klep V, Luzinov I, Stamm M. Gradient polymer layers by grafting to approach[J]. Macromol. Rapid Commun.,2004,25:360-365.
    [53]Ionov L, Sidorenko A, Stamm M, Minko S, Zdyrko B, Klep V, Luzinov Igor. Gradient mixed brushes:"grafting to" approach[J]. Macromolecules,2004,37:7421-7423.
    [54]Tomlinson M R, Genzer J. Formation of grafted macromolecular assemblies with a gradual variation of molecular weight on solid substrates [J]. Macromolecules,2003,36:3449-3451.
    [55]Wu T, Efimenko K, Vlcek P, Subr V, Genzer J. Formation and properties of anchored polymers with a gradual variation of grafting densities on flat substrates[J]. Macromolecules, 2003,36:2448-2453.
    [56]Bhat R R, Tomlinson M R, Genzer J. Assembly of nanoparticles using surface-grafted orthogonal polymer gradients[J]. Macromol. Rapid Commun.,2004,25:270-274.
    [57]Wijesundara M B J, Fuoco E, Hanley L. Preparation of chemical gradient surfaces by hyperthermal polyatomic ion deposition:a new method for combinatorial materials science[J]. Langmuir,2001,17:5721-5726.
    [58]Choi S H, Newby B Z. Micrometer-scaled gradient surfaces generated using contact printing of octadecyltrichlorosilane[J]. Langmuir,2003,19:7427-7435.
    [59]Fuierer R R, Carroll R L, Feldheim D L, Gorman, C B. Patterning mesoscale gradient structures with self-assembled monolayers and scanning tunneling microscopy based replacement lithography[J]. Adv. Mater.,2002,14:154-157.
    [60]Terrill R H, Balss K M, Zhang Y, Bohn P W. Dynamic monolayer gradients:active spatiotemporal control of alkanethiol coatings on thin gold films[J]. J. Am. Chem. Soc.,2000, 122:988-989.
    [61]Jiang X Y, Xu Q B, Dertinger S K W, Stroock A D, Fu T M, Whitesides G M. A general method for patterning gradients of biomolecules on surfaces using microfluidic networks[J]. Anal. Chem.,2005,77:2338-2347.
    [62]Efimenko K, Genzer J. How to prepare tunable planar molecular chemical gradients[J]. Adv. Mater.,2001,13:1560-1563.
    [63]Hypolite C L, McLernon T L, Adams D N, Chapman K E, Herbert C B, Huang C C, Distefano M D, Hu W S. Formation of microscale gradients of protein using heterobifunctional photolinkers[J]. Bioconjug. Chem.,1997,8:658-663.
    [64]Caelen I, Gao H, Sigrist H. Protein density gradients on surfaces[J]. Langmuir,2002,18: 2463-2467.
    [65]Ito Y, Hayashi M, Imanishi Y. Gradient micropattern immobilization of heparin and its interaction with cells[J]. J. Biomater. Sci. Polym. Ed.,2001,12:367-378.
    [66]Chen G., Ito Y. Gradient micropattern immobilization of EGF to investigate the effect of artificial juxtacrine stimulation[J]. Biomaterials,2001,22:2453-2457.
    [67]Liu H, Ito Y. Gradient micropattern immobilization of a thermo-responsive polymer to investigate its effect on cell behavior. J. Biomed. Mater. Res.,2003,67A:1424-1429.
    [68]Caelen I, Bernard A, Juncker D, Michel B, Heinzelmann H, Delamarche E. Formation of gradients of proteins on surfaces with microfluidic networks[J]. Langmuir,2000,16: 9125-9130.
    [69]Gan S H, Yang P, Yang W T. Interface-directed Sol-Gel:direct fabrication of covalently attached ultraflat inorganic oxide pattern on functionalized plastic[J]. Sci. China Chem.,2010, 53:173-182.
    [70]Wang L N, Ma Y H, Chen M J, Yao H, Zheng X M, Yang W T. An inkjet printing soft photomask and its application on organic polymer substrates[J]. Sci. China Chem., In press
    [71]Yang P, Deng J Y, Yang W T. Confined photo-catalytic oxidation:a fast surface hydrophilic modification method for polymeric materials[J]. Polymer,2003,44:7157-7164.
    [72]Adamson A W. Physical Chemistry of Surfaces[M],4th ed. Wiley Interscience Publishers, NY, 1982.
    [73]Oster G, Shibata O. Graft copolymer of polyacrylamide and natural rubber produced by means of ultraviolet light[J]. J. Polym. Sci.,1957,26:233-234.
    [74]Tazuke S, Kimura H. Surface photografting. I. Graft polymerization of hydrophilic monomers onto various polymer films[J]. J. Polym. Sci. Polym. Lett. Ed.,1978,16(10): 497-500.
    [75]Tazuke S, Kimura H. Surface photografting. II. Modification of polypropylene film surface by graft polymerization of acrylamide[J]. Makromol. Chem.,1978,179(11):2603-2612.
    [76]Yang W T, Ranby B. The role of far UV radiation in the photografting process[J]. Polym. Bull.,1996,37(1):89-96.
    [77]Yang W T, Ranby B. Photoinitiation performance of some ketones in the LDPE-acrylic acid surface photografting system[J]. Eur. Polym. J.,1999,38(8):1557-1568.
    [78]Yang W T, Ranby B. Bulk surface photografting process and its applications. I. Reactions and kinetics[J]. J. Appl. Polym. Sci.,1996,62(3):533-543.
    [79]Yang W T, Ranby B. Bulk surface photografting process and its applications. II. Principal factors affecting surface photografting[J]. J. Appl. Polym. Sci.,1996,62(3):545-555.
    [80]Yang W T, Ranby B. Bulk surface photografting process and its applications. III. Photolamination of polymer films[J]. J. Appl. Polym. Sci.,1997,63(13):1723-1732.
    [81]Yang W T, Ranby B. Radical living graft polymerization on the surface of polymeric materials[J]. Macromolecules,1996,29(9):3308-3310.
    [82]杨万泰,尹梅贞.表面光接枝技术及应用[J].影像技术,1998(3):5-10.
    [83]杨万泰,尹梅贞,邓建元,杜久明.表面光接枝原理、方法及应用前景[J].高分子通报,1999(3):60-65.
    [84]杨万泰.光引发与表面改性,高分子化学(周其凤,胡汉杰编)[M].1版.北京:化学工业出版社,2001:31-42.
    [85]杨万泰,邓建元.复合膜光接枝层合技术及用途[J].影像技术,2001(3):10-11.
    [86]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride, and their charge transfer complex. I. VAc (1)[J]. J. Appl. Polym. Sci., 2000,77(7):1513-1521.
    [87]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride, and their charge transfer complex. Ⅱ. VAc (2)[J]. J. Appl. Polym. Sci., 2000,77(7):1522-1531.
    [88]Deng J P, Yang W T, Ranby B. Surface photografting polymerization of vinyl acetate (VAc), maleic anhydride (AMH), and their charge transfer complex (CTC). Ⅲ. VAc (3)[J]. J. Appl. Polym. Sci.,2001,80(9):1426-1432.
    [89]孟祥飞,杨万泰.光引发丙烯酰胺表面沉淀接枝聚合反应[J].石油化工,2003(32):862867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700